script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Баллов 1 емкостное сопротивление конденсатора с ростом частоты переменного тока

Особенности расчета емкостного сопротивления

Время на чтение:

Электросопротивление — это параметр в электротехнике, характеризующий возможность вещества препятствовать прохождению электричества. В зависимости от качеств материала, электросопротивляемость может уменьшаться до крайне маленьких величин (микро\милиОмы — у проводников, металлов) или повышаться до огромных значений (ГигаОмы — изоляторов, диэлектриков). Величина противоположная сопротивлению — проводимость.

Что такое

Цепь, по которой протекает непостоянный ток, обладает полным сопротивлением. Вычисляется оно по сумме активного и реактивного сопротивлений, возведенных в квадрат.

Формула вычисления

Графическое изображение этой формулы представляет собой треугольник. Его катеты представлены активным и реактивным сопротивлениями, а гипотенуза полным электросопротивлением.

Графическое отображение формулы

Емкостное электросопротивление (Xc) является одним из видов реактивного сопротивления. Этот показатель характеризует противодействие электроемкости в цепи электротоку с переменными параметрами. Преобразование электроэнергии в тепловую в момент протекания электричества сквозь емкость не возникает (свойство реактивного сопротивления). Вместо этого осуществляется передача энергии электрического тока электрическому полю и обратно. Потерь энергии при таком обмене не происходит.

Емкостное сопротивление конденсатора можно сравнить с кастрюлей, наполняемой жидкостью, при полном заполнении ее объема она переворачивается, выливая содержимое, а затем наполняется заново. После достижения максимального заряда конденсатора происходит разрядка, затем он заряжается вновь.

Дополнительная информация: Конденсатор цепи способен накопить лишь ограниченную величину заряда до перемены полярности напряжения. По данной причине непостоянный ток не падает до нуля, важное отличие от постоянного электричества. Низкие значения частоты тока соответствуют низким показателям заряда, накопленного конденсатором, низким значениям противодействия электричеству, что придает реактивные свойства.

По сути, Xc — это противостояние электродвижущей силы конденсатора, уровню его заряда.

От чего зависит сопротивление конденсаторов цепей переменного тока

Показатели его, зависят не только от емкостных характеристик последнего, но и от частотной характеристики электротока, протекающего по цепи. Когда речь идет о сопротивлении резистора, то говорится о параметрах самого резистора, например, материале, форме, но полностью отсутствует взаимосвязь сопротивления его и показателей частоты электричества цепи (речь идет об идеальном резисторе, паразитные параметры которому не характерны). Когда речь идет об устройстве накопления энергии и заряда электрического поля — все иначе. Конденсатор одной и той же емкости при разных частотах тока обладает неодинаковым уровнем сопротивления. Амплитуда протекающего через него электричества при постоянной амплитуде напряжения обладает разной величиной.

Рассматривая эту формулу сопротивления конденсатора в цепи переменного тока, к каким выводам можно прийти? При повышении частотных показателей сигнала, электросопротивляемость конденсатора снижается.

При повышении емкостных характеристик устройства для накопления заряда и энергии электрического поля Xc переменного электричества, проходящего сквозь него, будет стремиться вниз.

График, отображающий эту величину конденсатора при непостоянном токе цепи, имеет форму гиперболы

Момент приближения значений частоты к нулевым отметкам на оси (когда переменный электроток становится похож своими параметрами на постоянный), сопровождается возрастанием Xc конденсатора до беспредельных величин. Это действительно так: известно, что конденсатор сети постоянного тока является фактически разрывом цепи. Реальная электросопротивляемость, естественно, не бесконечна, ее ограничивает уровень конденсаторной утечки. Но величины его остаются на высоком уровне, который невозможно не учитывать.

При возрастании цифр частоты до уровня бесконечных значений, емкостное сопротивление электроконденсатора стремится к нулевым отметкам. Такое характеризует идеальные модели. В реальных условиях конденсатор имеет неприятные характеристики (такие как индуктивность и сопротивления утечек), поэтому снижение емкостного сопротивления происходит до определенных значений, после которых оно возрастает.

Обратите внимание! При подключении конденсатора к цепочке электричества с переменными параметрами, его мощность не тратится, потому что фазовые характеристики напряжения и силы тока сдвинуты на 90° в отношении друг друга. В одну четверть периода происходит зарядка электроконденсатора (энергия запасается в его электрополе), в следующее время происходит его разрядка, энергия поступает обратно в цепочку. Его электросопротивляемость является безваттной, реактивной.

Причины ёмкостного сопротивления

Причиной возникновения сопротивления емкостного считается уровень напряжения, возникающий на конденсаторе в процессе его заряда. Вектор его действия встречен вектору напряжения источника электричества, потому создает помеху воспроизведению электротока этим источником.

Как рассчитать Xc

Сила тока цепи с постоянными показателями напряжения в момент работы электроконденсатора равно 0. Ее значения в цепи с переменным напряжением после подключения конденсатора I ? 0. В итоге, цепочке с непостоянным напряжением конденсатор придает Xc меньшее, чем цепочке с неизменным показателем напряжения.

Формула вычисления показателя напряжения за одну секунду

Формула расчета величины силы электротока за мгновение

Получается, что изменения напряжения отличаются по фазе от изменений тока на π/2.

По закону, сформулированному Омом, показатели силы электротока находятся в прямой пропорциональной зависимости от величины напряжения цепи. Формула вычисления наибольших величин напряженности и силы тока:

Наибольшие величины напряженности и силы тока можно рассчитывать по формуле Окончательная формула расчета емкостного сопротивления в цепи переменного тока

f — показатель частоты непостоянного тока, измеряется в герцах;

ω — показатель угловой частоты тока;

С — размер конденсатора в фарадах.

Важно! Xc не выступает параметром проводника, оно находится в зависимости от такой характеристики электроцепи, как частота электротока.

Повышение значений данной величины вызывает рост пропускающей способности конденсатора (предел его сопротивления току непостоянному понижается).

Представим, к цепи подключен конденсатор, емкостью 1 мкФ. Необходимо вычислить, уровень емкостного сопротивления при величине частоты 50 Гц и как изменится емкостное сопротивление цепи переменного тока при частоте 1 кГц. Амплитуда напряжения, подведенного к конденсатору, составляет 50 В.

После введения данных в формулу, определяющую Xc, и получаются значения:

Результат для частоты 50 Гц Результат для 1 кГц

Емкостное сопротивление приравнивается к соотношению отклонений колебаний напряжения зажимов электрической цепочки с емкостными параметрами (с небольшими индуктивным и активным сопротивлениями) к колебаниям электротока цепочки. Она равнозначна электроконденсатору.

В чем измеряется емкостное электросопротивление

R представлено отношением напряжения к силе тока замкнутой электрической цепи, по закону Ома. Единицы измерения — Ом. Xc, как его разновидность, тоже измеряется в Омах.

Конденсаторы применяются при изготовлении фильтров. При параллельном присоединении к цепи, он способен задерживать высокие частоты, при последовательном удаляет низкие. Также они используются с целью отсечения переменной части от постоянной. Он незаменим в радиотехнике, при производстве датчиков приближения, для контроля процессов производства. Технологии, обладающие выше описанными свойствами, используются во всех областях промышленности.

Источник

Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.

Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.

Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).

Конденсатор в цепи переменного тока эпюры

Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.

В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения. Этот момент соответствует концу первой четверти периода.

После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.

Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.

С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться. Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС. Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.

Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.

Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.

В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.

Читайте также:  Наименьшая скорость тока крови в артериях венах капиллярах

Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.

Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны

Емкостное сопротивление конденсатора

Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС

Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Зависимость емкостного сопротивления от частоты

Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.

Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.

Величина емкостного сопротивления определяется по следующей формуле:

Емкостное сопротивление конденсатора

где Хс — емкостное сопротивление конденсатора в ом;

f—частота переменного тока в гц;

ω — угловая частота переменного тока;

С — емкость конденсатора в ф.

При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°. Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора. Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность. И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.

Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.

Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.

Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.

Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.

Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.

Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.

В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.

В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене. При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей. В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.

Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис. 1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.

Конденсатор в цепи переменоого тока анимация

Рисунок 3. а) Процессы в цепи переменного тока с конденсатором и б) сравнение конденсатора с пружиной.

Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.

Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.

И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.

При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.

А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник



Переменный ток и ёмкостное сопротивление конденсатора

Емкостное сопротивление конденсатора

Конденсатор используется в схемах для разделения переменной и постоянной составляющей напряжения, при этом он хорошо проводит высокочастотный сигнал, и плохо — низкочастотный. Находясь в цепи постоянного тока, его импеданс принимается бесконечно большим. Для переменного тока ёмкостное сопротивление конденсатора не имеет постоянной величиной. Поэтому расчёт этого значения крайне важен при проектировании различных радиоэлектронных приборов.

  • Общее описание
  • Характеристики прибора
  • Импеданс элемента
    • Ёмкостное сопротивление
    • Индуктивная составляющая
  • Пример расчёта

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора

Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

Читайте также:  Ток в антенном кабели

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними.

Характеристики прибора

Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½ , где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Импеданс элемента

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X 2 +Xc 2 ) ½ .

Закон Ома для участка схемы с ёмкостью

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6 ) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (5000 2 +3200 2 )½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

Фотография Андрея Алексеевича

Порошин Андрей

Источник

Переменный ток. Резистор, конденсатор и катушка в цепи переменного тока.

Этот пассивный элемент применяют для создания различных электротехнических схем, защитных и блокирующих устройств. Конденсатор в цепи переменного тока накапливает и возвращает энергию. С помощью этой публикации можно выяснить назначение и функции популярного радиокомпонента, изучить основные определения и особенности практического применения.


Электрические параметры, формулы для расчета и схема измерений при подключении конденсатора к источнику питания переменного тока

Свойства и выполняемые функции

Как подобрать конденсатор

Отмеченные накопительные способности определяются размерами пластин и расстоянием между ними, диэлектрическими характеристиками промежуточного слоя. Заряд сохраняется после отключения источника питания. Если подсоединить нагрузку, энергия может выполнять необходимые полезные функции.


Узкополосный фильтр

На рисунке показано устройство, которое «вырезает» небольшой участок спектра. Показанная на графике рабочая частота определяется параметрами цепочки, составленной из конденсатора и катушки индуктивности. В данном примере выполняются функции фильтрации входного сигнала.

Понятие полярности для конденсаторов и их выход из строя

Для улучшения рабочих параметров некоторые компоненты этой категории создают с применением промежуточного материала, пропитанного электролитом. Дополнительные слои создают из оксидов металлов и диэлектриков.


Конструкция электролитического конденсатора

Конденсатор — для чего нужен, устройство и принцип работы

Эти изделия подключают с обязательным соблюдением полярности. Специальная маркировка на корпусе предупреждает пользователей о наличии соответствующего ограничения. При ошибке в процессе монтажа конденсатор будут выведен из строя первым подключением. Кипение электролита может провоцировать повышенное напряжение.

К сведению. Насечками на крышке и предохранительным клапаном уменьшают разрушительный эффект при возникновении аварийной ситуации.

Емкостное сопротивление

Формула мощности электрического тока

Если подключить генератор синусоидального сигнала, с помощью осциллографа можно регистрировать увеличение силы тока по мере роста частоты. В ходе эксперимента нужно поддерживать одинаковую амплитуду на входе.


Изменение тока

В следующих разделах публикации рассказано о том, почему происходят отмеченные явления.

Понятие ёмкости

Рассмотренная выше схема стандартной конструкции подразумевает влияние следующих параметров на способность накопления определенного заряда (q):

  • площади (S) рабочих пластин или обкладок;
  • расстояния (d) между этими функциональными компонентами;
  • диэлектрических характеристик слоя (e – проницаемость).

Выяснив значения перечисленных величин, можно рассчитать напряженность:

Накопительные свойства (емкость) определяет следующая формула:

С= (e * S)/ d = q/U, где U – напряжение.

Для случая с переменным током нужно учесть изменение параметров за определенный интервал времени:

С учетом представленных выше зависимостей после простых математических преобразований можно создать алгоритм расчета силы тока, который будет проходить по цепи:

I = (C * ΔU)/Δt = f * C * Uo cos f * t = Io * sin (f * t + 90), где f – частота сигнала.

Векторное представление

Для наглядности процессов основные электрические параметры удобно представлять в векторной форме. Чтобы учесть замедление процессов обмена энергией, устанавливают понятие емкостного сопротивления (Xc).


Пояснение общих зависимостей

График и векторное представление демонстрируют отставание напряжения от тока, который будет течь в цепи на 90° (π/2).

К сведению. Обратный эффект наблюдается, если включить в схему катушку индукции. В этом случае напряжение будет опережать ток по фазе на аналогичный угол (90°).

Приведенные особенности подтверждают наличие реактивных компонентов конденсаторов и катушек, соответственно. В упрощенном виде сопротивление Хс выражается обратной зависимостью от частоты и емкости:

Представленную формулу можно использовать для расчета фильтров, колебательных контуров и других схем.

График ёмкостного сопротивления

Может ли через конденсатор протекать постоянный ток, отмечено выше. Наличие слоя диэлектрика предотвращает свободное протекание электронов через этот участок. Такой материал только накапливает заряды, но при одинаковых потенциалах эквивалентен разрыву проводника. При работе с переменным сигналом ток смещения в переделах этой зоны выполняет функцию «соединения» цепи.


Зависимость реактивного сопротивления конденсатора от частоты сигнала

Выводы:

  • отсутствие колебательных процессов (f=0) соответствует уменьшению до нуля проводимости, что аналогично разрыву цепи;
  • при увеличении емкости сопротивление конденсатора уменьшается;
  • чем выше частота, тем лучше проводимость.

Работа (мощность) в ёмкостной нагрузке

Выше отмечена цикличность энергетического обмена между источником переменного сигнала и подключенным конденсатором.


Мощность

Диаграммы демонстрируют процессы в конденсаторе на примере сжимания/ растяжения пружины внешней силой. В идеальных условиях энергетические потери отсутствуют. Однако в реальной ситуации нужно учесть потребление мощности активным сопротивлением соединительных проводов, иных компонентов схемы. Уменьшение КПД объясняется ухудшением функционального состояния диэлектрика.

Прочие параметры

Для уточненных расчетов применяют эквивалентную схему изделия со следующими компонентами:

  • емкость;
  • электрические сопротивления изоляционного слоя, контактных и проводящих элементов конструкции;
  • индуктивные реактивные составляющие.

К сведению. После отключения нагрузки на выводах конденсатора фиксируется небольшой рост напряжения (абсорбция заряда). Также существует зависимость рабочих параметров от температуры.

Не все X7R созданы одинаковыми.

Так как изменение постоянной времени моей RC-цепочки было куда больше, чем это могло быть объяснено температурным коэффициентом ёмкости, мне пришлось копать глубже. Глядя на то, насколько уплыла ёмкость моего конденсатора от приложенного к нему напряжения я был очень удивлён. Результат был очень далёк от того номинала, который был впаян. Я брал конденсатор на 16В для работы в цепи 12В. Даташит говорил, что мои 4,7мкФ превращаются в 1,5мкФ в таких условиях. Это
объясняло мою проблему.

Даташит также говорил, что если только увеличить типоразмер с 0805 до 1206, то результирующая ёмкость в тех же условиях будет уже 3,4мкФ! Этот момент требовал более пристального изучения.

Я нашёл, что сайты Murata® и TDK® имеют классные инструменты для построения графиков изменения ёмкости конденсаторов в зависимости от различных условий. Я прогнал через них керамические конденсаторы на 4,7мкФ для разных типоразмеров и номинальных напряжений. На рисунке 1

показаны графики построенные Murata. Были взяты конденсаторы X5R и X7R типоразмеров от 0603 до 1812 на напряжение от 6,3 до 25В.

Рисунок 1. Изменение ёмкости в зависимости от приложенного напряжения для выбранных конденсаторов.

Обратите внимание, что во-первых, при увеличении типоразмера уменьшается изменение ёмкости в зависимости от приложенного напряжения, и наоборот.

Второй интересный момент состоит в том, что в отличии от типа диэлектрика и типоразмера, номинальное напряжение похоже ни на что не влияет. Я ожидал бы, что конденсатор на 25В под напряжением 12В меньше изменит свою ёмкость, чем конденсатор на 16В под тем же напряжением. Глядя на график для X5R типоразмера 1206 мы видим, что конденсатор на 6,3В на самом деле ведёт себя лучше, чем его родня на большее номинальное напряжение.

Если взять более широкий ряд конденсаторов, то мы увидим, что это поведение характерно для всех керамических конденсаторов в целом.

Третье наблюдение состоит в том, что X7R при том же типоразмере имеет меньшую чувствительность к изменениям напряжения, чем X5R. Не знаю, насколько универсально это правило, но в моём случае это так.

Используя данные графиков, составим таблицу 2

, показывающую насколько уменьшится ёмкость конденсаторов X7R при 12В.

Таблица 2. Уменьшение ёмкости конденсаторов X7R разных типоразмеров при напряжении 12В.

Типоразмер Ёмкость, мкФ % от номинала
0805 1,53 32,6
1206 3,43 73,0
1210 4,16 88,5
1812 4,18 88,9
Номинал 4,7 100

Мы видим устойчивое улучшение ситуации по мере роста размера корпуса пока мы не достигнем типоразмера 1210. Дальнейшее увеличение корпуса уже не имеет смысла.
В моём случае я выбрал наименьший возможный типоразмер компонентов, поскольку этот параметр был критичен для моего проекта. В своём невежестве я полагал что любой конденсатор X7R будет так же хорошо работать, как другой с тем же диэлектриком — и был неправ. Чтобы RC-цепочка заработала правильно я должен был взять конденсатор того же номинала, но в большем корпусе.

Конденсатор в цепях электрического тока

Следующие эксперименты можно проводить в домашней лаборатории. Они демонстрируют, как будет работать конденсатор с разными источниками питания.

Цепь постоянного тока

При подключении к аккумулятору накопление энергии происходит. Однако протекание тока в цепи блокирует диэлектрик.


Опыт с лампочкой

Цепь переменного тока

Собрав простую схему, можно увидеть отличия входного и выходного сигнала. По мере увеличения частоты на определенном уровне амплитуды становятся равными, а фазы совпадут.


Изучение параметров синусоидального сигнала

Напряжение на конденсаторе в цепи синусоидального тока

Если приложенное к конденсатору напряжение не меняется во времени, то заряд q=CU на одной его обкладке и заряд –q=-Cu на другой (С-ёмкость конденсатора) неизменны и ток через конденсатор не проходит ( ). Если же напряжение на конденсаторе меняется во времени, например по синусоидальному закону

то по синусоидальному закону будет меняться заряд q конденсатора:

и конденсатор будет периодически перезаряжаться. Периодическая перезарядка конденсатора сопровождается протеканием через него синусоидального тока

Из сопоставления (2-34) и (2-36) видно, что ток через конденсатор опережает по фазе напряжение на конденсаторе на 90º. На векторной диаграмме вектор тока направлен по вещественной оси комплексной плоскости, а вектор напряжения на конденсаторе направлен в отрицательном направлении мнимой оси.

На рис. 2-16 изображен конденсатор емкостью С, по которому протекает синусоидальный ток .

Рис. 2-16. Конденсатор в цепи синусоидального тока

На рис. 2-17 изображена векторная диаграмма при протекании через конденсатор синусоидального тока.

Рис. 2-17. Векторная диаграмма

Таким образом, при протекании синусоидального тока через конденсатор вектор тока опережает вектор напряжения на конденсаторе на 90º.

Из выражения (2-36) запишем амплитуду тока :


(2-37)

Ясно, что выражение в знаменателе есть некоторое сопротивлению согласно закону Ома:

которое называют емкостным сопротивлением конденсатора.

Проверим размерность Xc:

Таким образом, конденсатор оказывает переменному току сопротивление . Оно обратно пропорционально угловой частоте ω.

Графики мгновенных значений U,I,p приведены на рис. 2-18.

Рис. 2-18. Графики мгновенных значений тока , напряжения и

Во вторую и все чётные четверти периода мгновенная мощность р положительная, и в этой четверти периода энергия от источника передаётся конденсатору и идёт на создание электрического поля конденсатора.

В первую и все нечётные четверти периода мгновенная мощность р отрицательная, и энергия, занесённая в электрическое поле конденсатора, возвращается источнику.

Мгновенная мощность положительная, когда напряжение и ток имеют одинаковые знаки, и отрицательная – когда напряжение и ток имеют противоположные знаки.

Мгновенная мощность р равна нулю, когда либо ток , либо напряжение проходят через нуль. Это происходит каждую четверть, поэтому мгновенная мощность изменяется с двойной частотой питающей сети.

Таким образом, в конденсаторе не происходит потребление энергии от источника, а происходит накапливание энергии в электрическом поле конденсатора в чётные четверти периода и возврат накопленной энергии источнику в нечётные четверти периода.

Напомним, что элемент, не потребляющий энергию от источника, называется реактивным и обладает реактивным сопротивлением. То есть конденсатор – это тоже реактивный элемент, обладающий реактивным сопротивлением .

Диэлектрик, находящийся между обкладками конденсатора, всегда неидеален, то есть в нем всегда есть некоторые потери энергии, которые относительно малы и ими часто можно пренебречь. Если требуется учесть их в расчёте , то конденсатор заменяют схемой замещения (рис. 2-19), в которой параллельно ёмкости присоединено активное сопротивление R, потери энергии в котором имитируют потери энергии в реальном диэлектрике.

Рис. 2-19. Схема замещения реального конденсатора

На рис. 2-20 приведена векторная диаграмма для реального конденсатора.

Включение в цепи синусоидальной ЭДС

Конденсаторы в цепи постоянного тока не работают динамично. Поэтому имеет смысл изучать электрические параметры при подключении генератора синусоидального сигнала. В этой ситуации, кроме энергетических процессов, можно проверить частотные зависимости.

Виды включений

Параллельный способ соединения увеличивает емкость:

Для уменьшения основного функционального параметра используют последовательную схему:

1/Собщ = 1/С1 + 1/С2.

При подключении к источнику переменного тока конденсатор подойдет для решения следующих задач:

  • устранение постоянной компоненты сигнала;
  • ухудшение проводимости для определенного частотного диапазона;
  • настройка частоты колебательного контура и других радиотехнических схем.

При необходимости с помощью конденсатора можно гасить паразитные колебания, убирать импульсные помехи.

Простейший тип включения

Представленные выше формулы по току и напряжению можно изобразить следующим образом:

  • I = Im cos (f*t + π/2);
  • U = Uo * cosf*t.


Пояснения к описанию циклов

В простой схеме включения следует отметить следующие этапы рабочего процесса:

  1. увеличение напряжения с накоплением заряда током максимальной силы;
  2. уменьшение i(t) до нуля с одновременным достижением максимума Um;
  3. снижение U c одновременным разрядом конденсатора;
  4. достижение уровня Im c U =0.

Общий подход к выбору изделий и порядку расчетов корректируют с учетом целевого назначения. Если отсутствуют повышенные требования к точности, можно применить представленные параметры и формулы. Дополнительные данные можно получить из сопроводительной документации, на официальных сайтах производителей радиоэлектронных компонентов.

Вопросы и задания для самоконтроля

Вопросы и задания для самоконтроля

  1. Что представляет собой конденсатор и от чего зависит его ёмкость?
  2. Выведите формулы ёмкости плоского, цилиндрического и сферического конденсаторов.
  3. Как изменяется разность потенциалов на обкладках конденсатора при его зарядке и разрядке?
  4. Какой ток называется квазистационарным?
  5. Выведите формулы электроёмкости батареи последовательно и параллельно соединённых конденсаторов
  6. Что такое время релаксации?
  7. Объясните принцип работы экспериментальной установки.
  8. Нарисуйте графики зависимости силы тока и напряжения от времени при зарядке и разрядке конденсатора.
  9. Соберите на мониторе такую цепь, состоящую из источника тока, двух ламп, выключателя и соединительных проводов, чтобы с выключением лампы в одной цепи загоралась лампа в другой.
  10. Определите заряд, который пройдёт через гальванометр в схеме, показанной на рис. 2, при замыкании ключа.
  11. Конденсатор ёмкости С = 300 пФ подключается через сопротивление R =500 Ом к источнику постоянного напряжения U0. Определите: а) время, по истечению которого напряжение на конденсаторе составит 0,99 U0; в) количество тепла, которое выделится на этом сопротивлении при разрядке конденсатора за это же время.
  12. Имеется ключ, соединительные провода и две электрические лампочки. Составьте на мониторе электрическую схему включения в сеть этих лампочек, которая должна удовлетворять следующему условию: при замкнутом ключе горит только первая лампочка, при размыкании ключа первая гаснет, а вторая загорается.
  13. Конденсатору ёмкостью С сообщают заряд q, после чего обкладки конденсатора замыкают через сопротивление R. Определите: а) закон изменения силы тока, текущего через сопротивление; б) заряд, прошедший через сопротивление за время t; в) количество тепла, выделившееся в сопротивлении за это время.
  14. Определите количество тепла, выделившегося в цепи (рис. 4-6) при переключении ключа К из положения 1 в положение 2. Параметры цепи обозначены на рисунках.

Источник