Меню

Чему равно сопротивление катушки включенной цепь переменного тока

Катушка индуктивности в цепи постоянного и переменного тока

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

феррит

Намотать на него лакированного медного провода и зачистить выводы:

самодельная катушка индуктивности

Замеряем индуктивность нашей катушки с помощью LC метра:

как замерить индуктивность катушки

Теперь собираем все это вот по такой схеме:

L – катушка индуктивности

La – лампочка накаливания на напряжение 12 Вольт

Bat – блок питания, с выставленным напряжением 12 Вольт

катушка индуктивности в цепи постоянного тока

Как вы помните из прошлой статьи, конденсатор у нас не пропускал постоянный электрический ток:

конденсатор в цепи постоянного тока

Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Получилось как то так:

Катушка индуктивности в цепи постоянного и переменного тока

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал – желтым. Следовательно, красная синусоида – это частота, которую нам выдает генератор частоты, а желтая синусоида – это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Красный кружок с цифрой “1” – это замеры “красного”канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой “2”. F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Катушка индуктивности в цепи постоянного и переменного тока

Увеличиваем частоту до 200 Килогерц

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Амплитуда “желтого” сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Читайте также:  Оказание помощи пострадавшим при ожогах кровотечениях переломах ушибах поражении электрическим током

Катушка индуктивности в цепи постоянного и переменного тока

Итак, прогоняем все по тем же значениям частоты

При частоте в 1 Килогерц у нас значение почти не изменилось.

Здесь тоже ничего не изменилось.

Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

Сдвиг фаз стал больше и амплитуда просела еще больше

Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. 😉

2 Мегагерца, предел моего генератор частоты

Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

П – постоянная и равна приблизительно 3,14

В данном опыте мы с вами получили фильтр низких частот (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Видео про катушку индуктивности:

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:

Источник

чему равно индуктивное сопротивление катушки в цепи переменного тока?

катушка индуктивности оказывает сопротивление проходящему по ней переменному току.
непрерывно возникающая в катушке ЭДС самоиндукции создает сопротивление переменному току.
скорость изменения тока уменьшается по мере увеличения тока и увеличивается по мере его уменьшения, независимо от направления тока в цепи.
ЭДС самоиндукции, вызываемая самим переменным током, препятствует его возрастанию и, наоборот, поддерживает его при убывании.
в катушке индуктивности, включенной в цепь переменного тока, создается сопротивление прохождению тока. Но так как такое сопротивление вызывается в конечном счете индуктивностью катушки, то и называется оно индуктивным сопротивлением.
Индуктивное сопротивление обозначается через XL и измеряется, как и активное сопротивление, в омах.

Индуктивное сопротивление цепи тем больше, чем больше частота источника тока, питающего цепь, и чем больше индуктивность цепи. Следовательно, индуктивное сопротивление цепи прямо пропорционально частоте тока и индуктивности цепи; определяется оно по формуле XL = ωL, где ω — круговая частота, определяемая произведением 2πf. — индуктивность цепи в гн.

Закон Ома для цепи переменного тока, содержащей индуктивное сопротивление, звучит так: величина тока прямо пропорциональна напряжению и обратно пропорциональна индуктивному сопротивлению цепи, т. е. I = U / XL, где I и U — действующие значения тока и напряжения, а XL— индуктивное сопротивление цепи.
ри включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между током и напряжением, причем ток отстает по фазе от напряжения на четверть периода
Таким образом, источник тока, отдав в течение первой четверти периода часть своей энергии в цепь, в течение второй четверти получает ее обратно от катушки, выполняющей приэтом роль своеобразного источника тока. Иначе говоря, цепь переменного тока, содержащая только индуктивное сопротивление, не потребляет энергии: в данном случае происходит колебание энергии между источником и цепью. Активное же сопротивление, наоборот, поглощает в себе всю энергию, сообщенную ему источником тока.

xL=w*L где xL — Индуктивное сопротивление (Ом) , w — циклическая частота (Рад/сек) , L — индуктивность (Гн)

Источник



Сопротивления в цепях переменного тока

Цепь переменного тока с активным сопротивлением. Сопротивления в цепях переменного тока бывают активными и реактивными. Активные сопротивления расходуют энергию, реактивные — не расходуют.

Реактивными сопротивлениями, включенными в цепь переменного тока, являются сопротивления ка­тушки индуктивности L и конден­сатора С. Сопротивление катушки называется индуктивным сопротив­лением (Xj), сопротивление кон­денсатора — емкостным (Хс).

На рис. 1.5 показана цепь пере­менного тока с активным сопротив­лением и векторная диаграмма, из которой видно, что ток и напряже­ние совпадают по фазе. Они изменя­ются по одному и тому же закону, следовательно, можно записать:

Читайте также:  Схема подключения мультиметра для измерения силы тока

i = IMsin t, (1.12)

u = U m sin t. (1.13)

Действующее значение силы тока в цепи с активным сопротив­лением равно:

I= (1.14)

где U— действующее значение напряжения на сопротивлении; R — значение активного сопротивления.

Это выражение является выражением закона Ома для цепи с активным сопротивлением. Мощность, расходуемая в цепи на ак­тивном сопротивлении, равна:

где ф — угол сдвига фаз между током и напряжением.

Так как ток и напряжение совпадают по фазе, то угол сдвига Ф = 0°, a cos ф = 1. Мощность же в цепи равна произведению дей­ствующих значений тока и напряжения:

Р = IU, Р = I 2 R. (1,16)

Переменный ток в цепи с индуктивным сопротивлени­ем. Если катушку индуктив­ности, активное сопротивле­ние которой равно нулю, i подключить к источнику переменного тока (рис. 1.6), то и катушке потечет синусоидально изменяющийся пере­менный ток.

Согласно правилу Ленца, индуцированная, в катушке ЭДС противодействует изменениям силы тока. Это значит, что при увели­чении силы тока в катушке ЭДС самоиндукции стремится создать ток, направленный навстречу вызывавшему ее току, а при умень­шении силы тока она, наоборот, стремится создать ток, совпада­ющий по направлению с ним.

Из векторной диаграммы видно, что ЭДС самоиндукции отста­ет по фазе от тока на 90°.

Напряжение на катушке ил на источнике тока равно:

UL = U = 2п fLI = LI. (1.17)

Произведение угловой скорости на индуктивность катушки называется индуктивным сопротивлением Х.

XL= L. (1.18)

Энергия в катушке индуктивности не расходуется. В первую чет­верть периода она запасается в ее магнитном поле, а во вторую — отдается источнику тока. Произведение напряжения UL на величи­ну силы тока в цепи называется реактивной мощностью.

В рассмотренной цепи активная мощность равна нулю, так как энергия в ней не расходуется, сдвиг по фазе между векторами тока /и напряжением U равен 90° и cosy = 0.

Переменный ток в цепи с последовательными активным и индук­тивным сопротивлениями. Теперь рассмотрим цепь с реальной ка­тушкой, которую можно представить как цепь с последовательно включенными индуктивностью L и активным сопротивлением R (рис. 1.7). Если в цепи с последовательными активным и индуктив­ным сопротивлениями протекает переменный синусоидальный ток, то напряжение на индуктивности, как было установлено ранее, опережает ток на 90°, а напряжение на активном сопротивлении

Рис. 1.7. Схема цепи с последовательными активным и индуктивным сопротивлениями (а) и векторная диаграмма напряжений (б) совпадает с ним по фазе. Так как напряжения UL, UR по фазе не совпа­дают, то напряжение, приложенное ко всей цепи, равно их геомет­рической сумме. Сложив векторы ULn UR, нахо­дим величину вектора U, который сдвинут по фазе относительно вектора тока / на угол φ 2 R+U 2 . (1.19)

Из треугольника напряжений можно получить подобный ему треугольник сопротивлений со сторонами R, XL и Z. Из этого треу­гольника полное сопротивление цепи равно:

Так как сдвиг по фазе между током и напряжением меньше 90°, то энергия в такой цепи расходуется лишь на активном со­противлении R.

Активная мощность при этом равна:

P = IU coscp. (1.21)

Цепь переменного тока с емкостью. Если к источнику перемен­ного тока подключить конденсатор, то в цепи появится ток. Спо­собность конденсатора пропускать переменный ток объясняется тем, что под действием переменного синусоидального напряже­ния конденсатор периодически заряжается и разряжается, вслед­ствие чего происходит перемещение электрических зарядов в про­водниках, соединяющих конденсатор с источником тока. Соотно­шение фаз тока и напряжения представлено на рис. 1.8. В цепи с емкостью ток опережает по фазе напряжение на 90°. Закон Ома для цепи переменного тока с емкостью определяет действующее зна­чение силы тока:

(1.22)

Величина Хс= называется емкостным сопротивлением. Она

обратно пропорциональна частоте тока в цепи и емкости конден­сатора. Измеряется в омах (Ом).

Мощность переменного тока

Для цепей переменного тока различают активную, полную и реактивную мощности.

Активная мощность представляет собой действительную мощ­ность переменного тока, аналогичную мощности, развиваемой постоянным током. Она производит полезную работу; может быть преобразована с помощью электродвигателей в механическую мощ­ность, механическую энергию; измеряется в ваттах (Вт) и опреде­ляется по формуле

Р = IU cos ф. (1.23)

Полной мощностью называют максимально возможную величи­ну активной мощности, развиваемую переменным током при за­данных значениях напряжения и силы тока и при наиболее благо­приятных условиях, а именно, когда coscp = 1. Полная мощность обозначается латинской буквой 5 1 и измеряется в вольт-амперах (В-А). Из определения полной мощности следует выражение

Читайте также:  Расчет силы тока электрической нагрузки

Сравнивая между собой формулы (1.23) и (1.24), находим со­отношение между активной и полной мощностями:

(1.26)

Полной мощностью (кВА) принято измерять мощность гене­раторов переменного тока, машин, производящих электроэнер­гию, и трансформаторов, аппаратов, предназначенных для преоб­разования электрической энергии одного напряжения в электри­ческую энергию другого напряжения. Полная мощность этих ма­шин определяется произведением номинальных (нормальных) ве­личин их напряжения и силы тока (т.е. величин этих параметров, на которые рассчитаны машины). А активная их мощность зависит от коэффициента мощности, при котором они работают (Р.= Scoscp). В свою очередь этот коэффициент мощности зависит от соотноше­ния величин активного и реактивного сопротивления, включен­ных в цепь, иными словами, от характера электроприемников, питаемых данным генератором или трансформатором.

Реактивная мощность. Для рассмотрения реактивной мощнос­ти необходимо иметь представление об активной и реактивной со­ставляющих переменного тока. Сравнивая между собой формулы для определения мощности переменного и постоянного тока, мож­но видеть, что на месте полной величины силы тока I в формуле мощности стоит выражение Icosφ, где cosφ — величина, меньше единицы (и только в отдельных случаях равная ей). Отсюда следует, что в цепях переменного тока не весь ток создает полезную, активную мощность, а только некоторая его часть, которая на­зывается активной составляющей тока.

Проекция вектора тока на горизонтальное направление, перпендикулярное вектору напряжения, равная Isincp, называется ре­активной составляющей переменного тока. Реактивная составляющая тока не участвует в создании активной мощности.

Произведение действующего в цепи на­пряжения на реактивную составляющую тока носит название реактивной мощности и обо­значается латинской буквой Q. Реактивная мощность измеряется в единицах, называе­мых «вар». Из приведенного определения ре­активной мощности вытекает соотношение

где Q — реактивная мощность, вар; U— напряжение, В; /— сила тока, A; sinφ — числовой коэффициент, зависящий от угла сдвига фаз в данной цепи.

Реактивная мощность, так же как и реактивная составляющая тока, характеризует собой ту энергию, которая идет на создание магнит­ного поля индуктивности или электрического поля конденсатора (если последний включен в данную цепь). Эта энергия в процессе протека­ния переменного тока в цепях со сдвигом фаз совершает непрерыв­ные колебания между источником энергии и ее потребителем.

Активная, реактивная и полная мощности переменного тока связаны между собой соотношением

S 2 =P 2 +Q 2 . (1.28)

Это соотношение можно представить как векторную диаграм­му, получаемую на основании диаграммы напряжений или токов, носящую название «треугольника мощностей» (рис. 1.9). Два катета этого треугольника представляют собой в том или ином масштабе активную и реактивную мощности (соответственно в кВт и квар), а гипотенуза — полную мощность (кВ А). Угол φ численно равен углу сдвига фаз тока и напряжения в цепи. Значение косинуса это­го угла называют коэффициентом мощности.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Источник

Переменный ток. Индуктивное сопротивление.

Индуктивное сопротивление в цепи переменного тока — это реактивная часть сопротивления, определяемая индуктивностью элементов цепи.

Считается, что элементы цепи, для которых средняя мощность переменного тока равна нулю, обладают реактивным сопротивлением (в отличие от обычного активного сопротивления R, на котором происходит выделение энергии).

Катушка индуктивности (соленоид) при отсутствии сопротивления R ее провода обладает только индуктивным сопротивлением.

Для определения формулы индуктивного сопротивления найдем ЭДС самоиндукции такой катушки в цепи переменного тока, меняющегося по гармоническому синусоидальному закону I = Imsinωt.

Переменный ток Индуктивное сопротивление

ЭДС са­моиндукции катушки еi равна по величине и противоположна по направ­лению напряжению u на ее концах, взятому с обратным знаком:

Учитывая, что u = — еi, из данного равенства получим:

Следовательно, колебания напряжения на катушке опережают колеба­ния силы тока на π/2.

Переменный ток Индуктивное сопротивление

Вследствие этого в среднем за период не происходит ни накопления, ни диссипации энергии в катушке. Дважды за период энергия накачивается внутрь катушки (это энергия магнитного по­ля) и дважды возвращается обратно источнику. Амплитуда силы тока равна:

Переменный ток Индуктивное сопротивление

.

Величина ωL = ХL и есть индуктивное сопротивление. Как и в случае с емкостным сопротивлением, индуктивное сопротивление XL, действующее значение силы тока и действующее значе­ние напряжения связаны соотношением, подобным закону Ома для цепи постоянного тока:

Переменный ток Индуктивное сопротивление

.

Индуктивное сопротивление зависит от частоты. Чем больше частота, тем больше индуктивное сопротивление, тем меньше ток.

Источник