script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Диодная лента постоянный или переменный ток

Информационный портал по безопасности

  • Главная
  • Поиск
  • Контакты
  • RSS

Информационный портал по безопасности » Железо » Сделай Сам » Светодиоды, ленты и их питание от ЭТ переменного тока

  • Информационная безопасность
    • — Вирусы и антивирусы
    • — Безопасность в веб-технологиях
    • — Криптография
  • Администрирование
    • — Системное администрирование
    • — Сетевые технологии
  • Операционные системы
    • — Android
    • — Linux
    • — Windows
    • — Ubuntu
  • Железо
    • — Гаджеты
    • — Старое железо
    • — Сделай Сам

Светодиоды, ленты и их питание от ЭТ переменного тока

Автор: admin от 27-02-2015, 16:50, посмотрело: 2 582

Наверное, не ошибусь, если скажу, что более 90% жителей России знающих, что такое светодиодные ленты, на вопрос «можно ли трансформаторы от „галогенок“ использовать для питания светодиодных лент?» ответят «нет, нельзя!». Самым распространенным объяснением станет банальное «электронный трансформатор – это переменный ток, а светодиодам нужен постоянный». Именно так нам говорят в магазинах, именно такой лейтмотив имеют подавляющее большинство «профессиональных» статей на эту тему, чем, в общем-то, и приучили людей тратить заметно больше денег.

Всегда ли это оправдано и как на самом деле ведут себя светодиоды в самых распространенных СД лентах при питании переменным током мы и попробуем узнать в процессе изложения чтения этой статьи.

Сразу оговорюсь, что для обозначения «светодиод» я и далее буду применять само собой напрашивающееся и вполне естественное сокращение СД и намеренно не буду использовать для этого понятия английскую техническую аббревиатуру LED (Light Emitting Diode). В нашей нынешней стране отсутствие какой либо должной технической подготовки менеджеров и продавцов в магазинах уже привело к замусориванию и появлению таких неестественных для технического языка, юродивых для слуха и ужасных в написании буквосочетаний «леды», «led’ы», «ледовые», или как недавно увидел бегущей строкой — «LEDовые светодиоды». Мало того, что «масло – масляное», я просто вторить и плодить это «словомутие» не хочу…

Её идейным источником стало давнее желание опровергнуть необоснованные и безаппеляционные утверждения подавляющего большинства продавцов электротехники в России о недопустимости питания светодиодных лент (СД лент) от 12-ти вольтовых электронных трансформаторов (ЭТ) переменного тока, предназначенных для питания так называемых «галогенок». В общем-то спорность этого утверждения наверняка бросается в глаза любому специалисту (а равно и «неспециалисту»), понимающему, что светодиод, хоть и излучает свет, есть прежде всего – ДИОД. А это значит, что излучать под воздействием переменного напряжения он все же будет, но только в свой полупериод.

По сути, нам необходимо будет последовательно ответить на три вопроса:

1) Сможет ли ЭТ «запуститься» при подключении нагрузки в виде полупроводниковых диодов;
2) Если ЭТ запустится, не превысит ли импульсное «переменное» электрическое воздействие допустимых параметров отдельных СД в лент. Если все же превысит, то как долго протянет СД в таких условиях;
3) Какова экономическая эффективность от использования ЭТ в конструкциях освещения на светодиодных лентах.

Итак, полгода назад у меня как раз подвернулся удобный для экспериментов случай.

Мне нужно было осветить пространство в ящиках и тумбах столов моей мастерской. После оборудования кухни в моем распоряжении осталось 1,2 метра одноцветной СД ленты общей мощностью около 17 Вт (Aztech 14Ватт/метр) и один электронный трансформатор от «галогенок» — EAC 12V 20-60Вт, самый распространенный и дешевый, купленный за 74 рубля в декабре 2014 года. Для начала, чтобы запустить ЭТ, я нагрузил его обыкновенной галогеновой лампой 20 Вт и затем параллельно подключил все 1,2 метра ленты (Рис. 1). Как и ожидалось, лента зажглась. При этом свечение ленты было равномерным, средней яркости, без какого либо заметного глазу мерцания, что неудивительно, т.к. выходной меандр ЭТ промодулирован по амплитуде малозаметной глазу частой 100Гц. В ходе эксперимента отключение лампы в такой схеме тут же приводило к прекращению свечения СД ленты, что говорило о невозможности запуска ЭТ на одной полуволне напряжения. Тогда я разбил ленту на два участка и включил их встречно-параллельно (Рис.2), что по замыслу должно было обеспечить работу выходного каскада ЭТ на обоих полупериодах. При этом, что бы исключить перекос токов противоположного направления и перегрев выходной обмотки ЭТ от появление постоянной составляющей, я обеспечил равенство (по 8 Вт) количества СД в обоих плечах нагрузки. Сразу после подключения по такой схеме (Рис.2) трансформатор благополучно вышел на режим генерации, а обе светодиодные ленты равномерно зажглись и были оставлены на 1 час, за который ни они, ни сам ЭТ совершенно не нагрелись, что свидетельствовало скорее о вполне нормальных электрических режимах, чем нет.

Светодиоды, ленты и их питание от ЭТ переменного тока

Итак, ответ на первый вопрос, — запустится ли ЭТ при замене галогеновых ламп на светодиод – положительный. Да, запустится! Если обеспечить встречно-параллельное включение лент как на Рисунке 2.

Идем дальше. Теперь пробуем найти ответ на второй вопрос нашего исследования. Но сейчас нам одних опытов мало, потребуется знание из ТЭРЦиЭ (Теории электро-радиоцепей и элементов), которое в итоге позволит нам предположить: можно ли долговременно питать СД ленты в таком режиме без серьезного ущерба для их долговечности, если вообще рассуждать об ущербе?

Начнем с устройства СД ленты. Лента состоит из соединенных параллельно рабочих участков (Рис.3) из трех излучателей ( обозначены на схеме — E) представляющих собой три отдельных светодиода под общим слоем люминофора. Каждый диод (на схеме — D) излучателя последовательно соединен в триады с диодами из других излучателей и резистором, устанавливающим расчетную рабочую точку диодов (См. Рис. 4).

Светодиоды, ленты и их питание от ЭТ переменного тока

Резистор в триаде подобран таким образом, что бы при питании от 12 В и расчетной рабочей точке диода Uпр =3,3 В, Iпр = 14 мА на нем гасился избыток напряжения около 2 Вольт.

Покопавшись у производителей SMD светодиодов несложно найти и электрические параметры примененных СД:

Для полноты полученного исследования я дополнительно снял вольтамперную характеристику (ВАХ) рабочего участка ленты (Рис.5), а и путем несложного пересчета получил ВАХ для отдельного СД (Рис.6).

Приведенные на рисунках ВАХ не требуют дополнительных пояснений. Добавлю только, что при напряжении менее 2,35 В на отдельном СД его свечение полностью отсутствует, что соответствует напряжению питания рабочего участка около 7 В., а напряжение питания в 15,5 Вольт на ленте является полностью безопасным, т.к. ток через отдельный светодиод не превышает нормальных эксплуатационных 30 мА.

Однако все эти численные выражения рабочих параметров актуальны только для постоянного тока. Мы собираемся испытывать диод при воздействии переменного напряжения, т.е. импульсного напряжения разных направлений. Однако при таком питании предельно допустимые значения токов и напряжений на диоде могут быть в разы, а то и в десятки раз больше пределов для постоянного тока (это общеизвестно и сомневающиеся менеджеры могут почитать лекции по ТЭРЦ) – все зависит от длительности и периодичности воздействия. Но вот беда: выходное напряжение ЭТ имеет достаточно сложную форму, что не позволяет математически достоверно описать его в пределах данной статьи, а ТТХ на светодиоды не снабжены разделом абсолютных значений для импульсных режимов работы. Хотя там, правда, имеется один параметр (Iпр имп), но для какой длительности импульса он актуален – не ясно, для какой скважности воздействия это применимо, тоже можно только догадываться.

Все дело в том, что p-n переход полупроводника при работе от переменного (импульсного) тока работает с переменной нагрузкой. Токовые периоды, вызывающие нагрев и работу светодиода по излучению световых волн сменяются паузами покоя (при которых ток через переход не течет) и в которых полупроводник остывает. И вопрос здесь уже не столько в абсолютном значении тока через полупроводник, а сколько в том, успеет ли полупроводник в период безтоковой паузы остыть настолько, что бы скомпенсировать нагрев произошедший в токовый период. Т.е. не допустить теплового пробоя.
Здесь, я хочу напомнить «физику» отказа полупроводника. Это нам позволит понять суть происходящих процессов. Она, физика, в общем-то известна, но все же своими словами: долговечность любого прибора определяется его отказоустойчивостью. Отказы диодов при штатной эксплуатации происходят в случае теплового, либо электрического пробоя.

Электрический пробой, как правило, возникает при превышении допустимого обратного напряжения (Uобр). При этом диод теряет свойство односторенней проводимости и начинает проводить в обе стороны. В большинстве случаев электрический пробой обратим и работоспособность прибора восстанавливается.

А вот тепловой пробой, напротив, необратим и возникает при избыточном токе прямого (реже обратного, возникшего уже после электрического пробоя) направления и влечет за собой разрушительного изменения в кристалле полупроводника в результате сильного локального перегрева p-n перехода, неспособного пропустить через себя большое количество заряженных частиц.

Суть здесь такова, что пока не созданы условия для возникновения теплового пробоя – полупроводник работает. Повторюсь, что в общем то не важно какое абсолютное значение имеет ток через него протекающий. Он может быть очень большим! Главное, что бы наш диод не успел перегреться. В паспорте на любой диод указываются два максимально допустимых параметра: Максимальный прямой ток Iпр mzx и Максмальное обратное напряжение U обр макс, для длительного воздействия постоянным током, которые при стандартных условиях эксплуатации гарантированно не приведут ни к электрическому, ни к тепловому пробою.

Поэтому для исследования степени воздействия переменного напряжения ЭТ на светодиоды мы оттолкнемся от постулата, что любое длительное импульсное воздействие тока можно привести к такому значению постоянного тока, при котором работа, совершаемая светодиодом под воздействием импульсного тока, будет идентична работе при постоянно токе.

Как же мы оценим производимую светодиодом работу? Да очень просто. Светодиод под действием протекающего через него тока совершает работу по выделению световой энергии и тепловой. А эти два параметра мы как раз очень легко можем замерить и сравнить для обоих видов тока, а значит определить, как сильно нагружает светодиод выходное напряжение ЭТ по сравнению со стандартным 12 В стабилизатором.

Для оценки световой энергии излучаемой отдельным рабочим участком СД ленты я снял зависимость освещенности от напряжения питания. Освещенность замерялась на расстоянии 10 см от излучателей (Рис 7).

Таким образом, на данном этапе, у нас все готово для того, что бы получить ответ на второй и третий вопросы нашего исследования.
Приступим.

Для начала исследуем выходное напряжение нашего ЭТ:

Светодиоды, ленты и их питание от ЭТ переменного тока
Рис.8

Сразу скажу, что использовать бытовой электронный тестер-ампервольтметр для измерения амплитуды напряжения такой формы нельзя. Он рассчитан на измерение строго гармонического колебаний, а в нашем случае он будет очень сильно врать, ибо мы имеем дело с переменным импульсным напряжением промодулированным по амплитуде удвоенной частотой промышленной частоты. Частота модуляции 100 Гц, частота заполнения: 10КГц – двунаправленный меандр, амплитуда сигнала Uа = 18 Вольт. Отдельных выбросов амплитудой более 18 В осциллограф не зафиксировал. Так как заполнение меандр, то действующее значение напряжения будет целиком подчиняться закону модулирующего сигнала, а поэтому в нашем случае Uдейст =Uа/?2= 18/1,41 = 12,7В. Именно поэтому в паспорте на ЭТ указано, что выходное напряжение составляет

Читайте также:  Замкнутая электрическая цепь состоит из источника тока с эдс

Глядя на эпюры и сопоставляя их с ТТХ и ВАХ становится ясно, что при действии прямого тока на СД, мы едва ли выйдем за пределы допустимых параметров. Заявленный предельный прямой импульсный ток для одиночного СД в 60 мА достижим только при Uпр > 3,9 В, т.е. при напряжении питания на ленте более 20 В (см. вольт-амперные характеристики), но таких значений мы, как видим все равно не достигаем. С другой стороны, легко видно, что длительность воздействия напряжения свыше упомянутых и совершено безопасных 15,5 В (при которых ток через СД не более 30 мА) составляет не более 8% от общего времени питания от рассматриваемого ЭТ. Думаю едвали это опасно для СД. Ок. Запомним. Проверим чуть позже.
Теперь прикинем, не выйдем ли мы за пределы допустимого обратного напряжения и при воздействии обратного полупериода напряжения. В этом случае сопротивлением R в триаде можно пренебречь, Uа (18В) равномерно распределится по СД в триаде, и амплитудное значение напряжения на диода составит 6 В, что больше заявленных 5В. Но, длительность превышения опять не превысит 8% от общего времени работы СД, и второе, что меня очень сильно смутило, это то, что допустимое обратное напряжение, во всех даташитах как то уж очень подозрительно одинаково для разных серий светодиодов. Оно всегда равно 5В. Ок. Запомним и это и начнем подводить первые итоги.

Итак, теоретически, при прямом полупериоде мы не должны превысить прямых токов для СД, а при обратном полупериоде, превышение заявленного допустимого обратного напряжения мало, — как по продолжительности воздействия, так и по абсолютному значению.

Ну что, же теперь пора проверить наши выводы на практике. Давайте практически оценим световую и тепловую отдачу. Если свет и тепло выделяемые лентой не превысят тех, что выделяются при питании от стандартного источника питания для СД лент, то значит наш положительный теоретический вывод будет подтвержден.

Запитав ленту от ЭТ встречно параллельно измеряем светоотдачу единичного рабочего участка ленты из трех излучаетелей и сравниваем значения с характеристикой на Рис. 7. Люксметр фиксирует значения на уровне 970-990 люкс, что соответствует питанию ленты от источника напряжения чуть ниже 10 В. Нагрев ленты оказался ничтожны и через 1 час работы не превысил 35 градусов Цельсия, при температуре окружающего воздуха 25°C. В аналогичных условиях, но при питании постоянным током Uпр=12В, лента нагревалас до 49°C, а создаваемая освещенность составляла около 2000 Люкс. Эти результаты совершенно однозначно говорят о том, что несмотря на все маркетологические увещевания, полупроводник при питании от ЭТ работает в недогруженном режиме и ожидать его скорой смерти едва ли приходится. Кстати, посмотрев на Рис. 9, и произведя замеры площадей фигур светло синего и кирпичного цветов можно понять, почему именно СД светятся так, будто питаются от 10В. Дело в том, что светло-синяя фигура характеризует условия, при которых СД лента совершает полезную работу (помним, что это происходит при Uпит > 7 Вольт). Светло-коричневая фигура за вычетом светло-синей – это условия, при которых СД лента простаивает – не работает! Соотношение их площадей как раз 10 к 8. Все сходится, однако, хе-хе.

Светодиоды, ленты и их питание от ЭТ переменного тока
Рис.9

И тем не менее, на фоне положительного ответа второй вопрос нашего исследования, мысль о пусть и незначительном, но все же превышении допустимого обратного напряжения мне не давала покоя. Короче, я решил по жесткому: подключил ленту к источнику постоянного тока и плавно увеличивая обратное напряжение стал ожидать, когда же милливольтметр зафиксирует электрический пробой. Доведя обратное напряжение на отдельном светодиоде почти до 20 Вольт я так и не добился пробоя. Обратный ток при этом не превышал 15 мкА. Оставив все это дело почти на сутки – я убедился, что ничего с излучателями не случилось, а уж видимо от коротких импульсных воздействий 6В против 5В и подавно ничего не должно произойти в обозримой перспективе.

Выводы и ответ на третий вопрос

Использовать ЭТ от галогенок для питания светодиодных лент можно и похоже это вовсе не скажется на долговечности работы СД лент и источников света. Скорее даже наоборот скажется, но служить они будут дольше. Наверное. Пока получается, что так. Незабудьте только про встречно параллельное включение и равенство плеч.

Теперь главный вопрос не в том, что — можно ли? Вопрос в том, — А стоит ли?
Ответ следующий – если вы собираете смонтировать систему освещения с нови, то наверное не стоит. Так дешевизна ЭТ будет перекрыта покупкой большего количества, либо большей мощности светодиодов, ведь при 10 В световой поток создаваемый СД лентой в два раза меньше того, что имеем при 12В (см. Рис. 7)

Питание от ЭТ оправдано в случаях, когда:

  • — у вас уже есть действующее световое решение на галогенках, и вам хотелось бы без дополнительных затрат на БП и лишних проводов поставить еще и светодиоды. У меня, например, так на кухне сделано;
  • — у вас остались незадействованные ЭТ (коих сейчас будет высвобождаться все больше и больше), а требования к мощности планируемого освещения не велики;
  • — когда у вас созрело решение заменить галогеновые лампы на светодиодные, а изменения в проводку внести по каким то соображениям не получается.

Источник

Можно ли подключить светодиодную ленту к переменному напряжению 12 Вольт?

Светодиодную ленту нельзя подключать к источнику переменного тока, гореть она не будет, проверял лично. Придётся либо покупать специализированный блок питания для ленты, там на выходе 12 вольт постоянного тока, либо самому паять мостик из диодов и подключать к вашему источнику переменного тока.

Блок питания для светодиодной ленты 12 V постоянного тока

Это стандартный блок питания для светодиодной ленты

А это схема самодельного выпрямителя с диодным мостом:

Ленту из светодиодов подключать к переменному току нельзя она просто не будет работать. Светодиодная лента работает только от постоянного тока. Есть стандартные выпрямители переменного тока Вам стоит его приобрести блок питания преобразует переменный ток в постоянный 12В. В интернете Вы можете подыскать себе соответствующий. Если лента более 5 метров Вам придется покупать два источника питания. Монтажный провод должен быть ПуГВ его следует брать с разноцветной изоляцией красного и черного цветов. Сечение также 1,5мм2

Светодиоды — приборы постоянного тока. У них имеется полярность и её следует неукоснительно соблюдать. У источника питания переменного тока полярности на выходе нет.

Поэтому выхода из ситуации два:

  1. Сменить источник на такой же, но с постоянкой на выходе.
  2. Выпрямить переменный ток имеющегося источника при помощи диодного моста (и сгладить пульсации, вызванные процессом преобразования конденсатором электролитическим).

От переменного напряжения в 12В светодиодная лента работать не будет! Мало того, есть вероятность повреждения ленты.

Стандартная светодиодная лента рассчитана на питание постоянным напряжением 12В. Кроме того, необходим расчёт необходимой мощности источника питания исходя из длины светодиодной ленты, которую планируется подключать.

В характеристиках каждой светодиодной ленты есть параметр — потребление мощности(Вт) на 1 метр ленты. Обозначается Вт/м.

Исходя из этого считаем сколько метров ленты нам нужно подключить, умножаем на потребление одного метра и подбираем по мощности соответствующий блок питания с запасом в большую сторону не менее 20%.

Источник



SavePearlHarbor

Ещё одна копия хабора

Светодиоды, ленты и их питание от ЭТ переменного тока

Наверное, не ошибусь, если скажу, что более 90% жителей России знающих, что такое светодиодные ленты, на вопрос «можно ли трансформаторы от „галогенок“ использовать для питания светодиодных лент?» ответят «нет, нельзя!». Самым распространенным объяснением станет банальное «электронный трансформатор – это переменный ток, а светодиодам нужен постоянный». Именно так нам говорят в магазинах, именно такой лейтмотив имеют подавляющее большинство «профессиональных» статей на эту тему, чем, в общем-то, и приучили людей тратить заметно больше денег.

Всегда ли это оправдано и как на самом деле ведут себя светодиоды в самых распространенных СД лентах при питании переменным током мы и попробуем узнать в процессе изложения чтения этой статьи.

Сразу оговорюсь, что для обозначения «светодиод» я и далее буду применять само собой напрашивающееся и вполне естественное сокращение СД и намеренно не буду использовать для этого понятия английскую техническую аббревиатуру LED (Light Emitting Diode). В нашей нынешней стране отсутствие какой либо должной технической подготовки менеджеров и продавцов в магазинах уже привело к замусориванию и появлению таких неестественных для технического языка, юродивых для слуха и ужасных в написании буквосочетаний «леды», «led’ы», «ледовые», или как недавно увидел бегущей строкой — «LEDовые светодиоды». Мало того, что «масло – масляное», я просто вторить и плодить это «словомутие» не хочу…

Её идейным источником стало давнее желание опровергнуть необоснованные и безаппеляционные утверждения подавляющего большинства продавцов электротехники в России о недопустимости питания светодиодных лент (СД лент) от 12-ти вольтовых электронных трансформаторов (ЭТ) переменного тока, предназначенных для питания так называемых «галогенок». В общем-то спорность этого утверждения наверняка бросается в глаза любому специалисту (а равно и «неспециалисту»), понимающему, что светодиод, хоть и излучает свет, есть прежде всего – ДИОД. А это значит, что излучать под воздействием переменного напряжения он все же будет, но только в свой полупериод.

По сути, нам необходимо будет последовательно ответить на три вопроса:
1) Сможет ли ЭТ «запуститься» при подключении нагрузки в виде полупроводниковых диодов;
2) Если ЭТ запустится, не превысит ли импульсное «переменное» электрическое воздействие допустимых параметров отдельных СД в лент. Если все же превысит, то как долго протянет СД в таких условиях;
3) Какова экономическая эффективность от использования ЭТ в конструкциях освещения на светодиодных лентах.

Итак, полгода назад у меня как раз подвернулся удобный для экспериментов случай.
Мне нужно было осветить пространство в ящиках и тумбах столов моей мастерской. После оборудования кухни в моем распоряжении осталось 1,2 метра одноцветной СД ленты общей мощностью около 17 Вт (Aztech 14Ватт/метр) и один электронный трансформатор от «галогенок» — EAC 12V 20-60Вт, самый распространенный и дешевый, купленный за 74 рубля в декабре 2014 года. Для начала, чтобы запустить ЭТ, я нагрузил его обыкновенной галогеновой лампой 20 Вт и затем параллельно подключил все 1,2 метра ленты (Рис. 1). Как и ожидалось, лента зажглась. При этом свечение ленты было равномерным, средней яркости, без какого либо заметного глазу мерцания, что неудивительно, т.к. выходной меандр ЭТ промодулирован по амплитуде малозаметной глазу частой 100Гц. В ходе эксперимента отключение лампы в такой схеме тут же приводило к прекращению свечения СД ленты, что говорило о невозможности запуска ЭТ на одной полуволне напряжения. Тогда я разбил ленту на два участка и включил их встречно-параллельно (Рис.2), что по замыслу должно было обеспечить работу выходного каскада ЭТ на обоих полупериодах. При этом, что бы исключить перекос токов противоположного направления и перегрев выходной обмотки ЭТ от появление постоянной составляющей, я обеспечил равенство (по 8 Вт) количества СД в обоих плечах нагрузки. Сразу после подключения по такой схеме (Рис.2) трансформатор благополучно вышел на режим генерации, а обе светодиодные ленты равномерно зажглись и были оставлены на 1 час, за который ни они, ни сам ЭТ совершенно не нагрелись, что свидетельствовало скорее о вполне нормальных электрических режимах, чем нет.

Читайте также:  Как определить токи в цепи со смешанным сопротивлением

Итак, ответ на первый вопрос, — запустится ли ЭТ при замене галогеновых ламп на светодиод – положительный. Да, запустится! Если обеспечить встречно-параллельное включение лент как на Рисунке 2.

И забегая вперед …Забегая вперед, скажу, что как показал дальнейший эксперимент, ЭТ с паспортной минимальной мощностью запуска в 20 Вт, благополучно запускался даже при 10 Вт суммарной светодиодной нагрузки (по 5 Вт в каждом плече).

Идем дальше. Теперь пробуем найти ответ на второй вопрос нашего исследования. Но сейчас нам одних опытов мало, потребуется знание из ТЭРЦиЭ (Теории электро-радиоцепей и элементов), которое в итоге позволит нам предположить: можно ли долговременно питать СД ленты в таком режиме без серьезного ущерба для их долговечности, если вообще рассуждать об ущербе?

Начнем с устройства СД ленты. Лента состоит из соединенных параллельно рабочих участков (Рис.3) из трех излучателей ( обозначены на схеме — E) представляющих собой три отдельных светодиода под общим слоем люминофора. Каждый диод (на схеме — D) излучателя последовательно соединен в триады с диодами из других излучателей и резистором, устанавливающим расчетную рабочую точку диодов (См. Рис. 4).

Резистор в триаде подобран таким образом, что бы при питании от 12 В и расчетной рабочей точке диода Uпр =3,3 В, Iпр = 14 мА на нем гасился избыток напряжения около 2 Вольт.

Между прочим, интересно…Такая компоновка триады надежна и практична, ибо в случае выхода из строя одиночного СД в триаде, ни один из излучателей полностью не отключится, а продолжит гореть, хоть и с меньшей на треть яркостью. Можно конечно создать триаду на базе одиночного излучателя (и такие ленты встречаются в продаже). В них, рабочим участком определяющим её нарезку будет фрагмент с одиночным излучателем и резистором, но в таком случае, выход из строя одиночного СД в триаде приведет к потере свечения целым излучателем, что будет сразу заметно в любом светильнике.

Покопавшись у производителей SMD светодиодов несложно найти и электрические параметры примененных СД:

Для полноты полученного исследования я дополнительно снял вольтамперную характеристику (ВАХ) рабочего участка ленты (Рис.5), а и путем несложного пересчета получил ВАХ для отдельного СД (Рис.6).

Надеюсь вы…Надеюсь вы не сомневаетесь, что это можно было сделать и физически, и результаты бы совпали.

Приведенные на рисунках ВАХ не требуют дополнительных пояснений. Добавлю только, что при напряжении менее 2,35 В на отдельном СД его свечение полностью отсутствует, что соответствует напряжению питания рабочего участка около 7 В., а напряжение питания в 15,5 Вольт на ленте является полностью безопасным, т.к. ток через отдельный светодиод не превышает нормальных эксплуатационных 30 мА.

Однако все эти численные выражения рабочих параметров актуальны только для постоянного тока. Мы собираемся испытывать диод при воздействии переменного напряжения, т.е. импульсного напряжения разных направлений. Однако при таком питании предельно допустимые значения токов и напряжений на диоде могут быть в разы, а то и в десятки раз больше пределов для постоянного тока (это общеизвестно и сомневающиеся менеджеры могут почитать лекции по ТЭРЦ) – все зависит от длительности и периодичности воздействия. Но вот беда: выходное напряжение ЭТ имеет достаточно сложную форму, что не позволяет математически достоверно описать его в пределах данной статьи, а ТТХ на светодиоды не снабжены разделом абсолютных значений для импульсных режимов работы. Хотя там, правда, имеется один параметр (Iпр имп), но для какой длительности импульса он актуален – не ясно, для какой скважности воздействия это применимо, тоже можно только догадываться.

Все дело в том….Все дело в том, что p-n переход полупроводника при работе от переменного (импульсного) тока работает с переменной нагрузкой. Токовые периоды, вызывающие нагрев и работу светодиода по излучению световых волн сменяются паузами покоя (при которых ток через переход не течет) и в которых полупроводник остывает. И вопрос здесь уже не столько в абсолютном значении тока через полупроводник, а сколько в том, успеет ли полупроводник в период безтоковой паузы остыть настолько, что бы скомпенсировать нагрев произошедший в токовый период. Т.е. не допустить теплового пробоя.
Здесь, я хочу напомнить «физику» отказа полупроводника. Это нам позволит понять суть происходящих процессов. Она, физика, в общем-то известна, но все же своими словами: долговечность любого прибора определяется его отказоустойчивостью. Отказы диодов при штатной эксплуатации происходят в случае теплового, либо электрического пробоя.

Электрический пробой, как правило, возникает при превышении допустимого обратного напряжения (Uобр). При этом диод теряет свойство односторенней проводимости и начинает проводить в обе стороны. В большинстве случаев электрический пробой обратим и работоспособность прибора восстанавливается.

А вот тепловой пробой, напротив, необратим и возникает при избыточном токе прямого (реже обратного, возникшего уже после электрического пробоя) направления и влечет за собой разрушительного изменения в кристалле полупроводника в результате сильного локального перегрева p-n перехода, неспособного пропустить через себя большое количество заряженных частиц.

Суть здесь такова, что пока не созданы условия для возникновения теплового пробоя – полупроводник работает. Повторюсь, что в общем то не важно какое абсолютное значение имеет ток через него протекающий. Он может быть очень большим! Главное, что бы наш диод не успел перегреться. В паспорте на любой диод указываются два максимально допустимых параметра: Максимальный прямой ток Iпр mzx и Максмальное обратное напряжение U обр макс, для длительного воздействия постоянным током, которые при стандартных условиях эксплуатации гарантированно не приведут ни к электрическому, ни к тепловому пробою.

Поэтому для исследования степени воздействия переменного напряжения ЭТ на светодиоды мы оттолкнемся от постулата, что любое длительное импульсное воздействие тока можно привести к такому значению постоянного тока, при котором работа, совершаемая светодиодом под воздействием импульсного тока, будет идентична работе при постоянно токе.

Как же мы оценим производимую светодиодом работу? Да очень просто. Светодиод под действием протекающего через него тока совершает работу по выделению световой энергии и тепловой. А эти два параметра мы как раз очень легко можем замерить и сравнить для обоих видов тока, а значит определить, как сильно нагружает светодиод выходное напряжение ЭТ по сравнению со стандартным 12 В стабилизатором.

Для оценки световой энергии излучаемой отдельным рабочим участком СД ленты я снял зависимость освещенности от напряжения питания. Освещенность замерялась на расстоянии 10 см от излучателей (Рис 7).

Таким образом, на данном этапе, у нас все готово для того, что бы получить ответ на второй и третий вопросы нашего исследования.
Приступим.
Для начала исследуем выходное напряжение нашего ЭТ:

Сразу скажу, что использовать бытовой электронный тестер-ампервольтметр для измерения амплитуды напряжения такой формы нельзя. Он рассчитан на измерение строго гармонического колебаний, а в нашем случае он будет очень сильно врать, ибо мы имеем дело с переменным импульсным напряжением промодулированным по амплитуде удвоенной частотой промышленной частоты. Частота модуляции 100 Гц, частота заполнения: 10КГц – двунаправленный меандр, амплитуда сигнала Uа = 18 Вольт. Отдельных выбросов амплитудой более 18 В осциллограф не зафиксировал. Так как заполнение меандр, то действующее значение напряжения будет целиком подчиняться закону модулирующего сигнала, а поэтому в нашем случае Uдейст =Uа/√2= 18/1,41 = 12,7В. Именно поэтому в паспорте на ЭТ указано, что выходное напряжение составляет

Глядя на эпюры и сопоставляя их с ТТХ и ВАХ становится ясно, что при действии прямого тока на СД, мы едва ли выйдем за пределы допустимых параметров. Заявленный предельный прямой импульсный ток для одиночного СД в 60 мА достижим только при Uпр > 3,9 В, т.е. при напряжении питания на ленте более 20 В (см. вольт-амперные характеристики), но таких значений мы, как видим все равно не достигаем. С другой стороны, легко видно, что длительность воздействия напряжения свыше упомянутых и совершено безопасных 15,5 В (при которых ток через СД не более 30 мА) составляет не более 8% от общего времени питания от рассматриваемого ЭТ. Думаю едвали это опасно для СД. Ок. Запомним. Проверим чуть позже.
Теперь прикинем, не выйдем ли мы за пределы допустимого обратного напряжения и при воздействии обратного полупериода напряжения. В этом случае сопротивлением R в триаде можно пренебречь, Uа (18В) равномерно распределится по СД в триаде, и амплитудное значение напряжения на диода составит 6 В, что больше заявленных 5В. Но, длительность превышения опять не превысит 8% от общего времени работы СД, и второе, что меня очень сильно смутило, это то, что допустимое обратное напряжение, во всех даташитах как то уж очень подозрительно одинаково для разных серий светодиодов. Оно всегда равно 5В. Ок. Запомним и это и начнем подводить первые итоги.

Итак, теоретически, при прямом полупериоде мы не должны превысить прямых токов для СД, а при обратном полупериоде, превышение заявленного допустимого обратного напряжения мало, — как по продолжительности воздействия, так и по абсолютному значению.

Ну что, же теперь пора проверить наши выводы на практике. Давайте практически оценим световую и тепловую отдачу. Если свет и тепло выделяемые лентой не превысят тех, что выделяются при питании от стандартного источника питания для СД лент, то значит наш положительный теоретический вывод будет подтвержден.

Запитав ленту от ЭТ встречно параллельно измеряем светоотдачу единичного рабочего участка ленты из трех излучаетелей и сравниваем значения с характеристикой на Рис. 7. Люксметр фиксирует значения на уровне 970-990 люкс, что соответствует питанию ленты от источника напряжения чуть ниже 10 В. Нагрев ленты оказался ничтожны и через 1 час работы не превысил 35 градусов Цельсия, при температуре окружающего воздуха 25°C. В аналогичных условиях, но при питании постоянным током Uпр=12В, лента нагревалас до 49°C, а создаваемая освещенность составляла около 2000 Люкс. Эти результаты совершенно однозначно говорят о том, что несмотря на все маркетологические увещевания, полупроводник при питании от ЭТ работает в недогруженном режиме и ожидать его скорой смерти едва ли приходится. Кстати, посмотрев на Рис. 9, и произведя замеры площадей фигур светло синего и кирпичного цветов можно понять, почему именно СД светятся так, будто питаются от 10В. Дело в том, что светло-синяя фигура характеризует условия, при которых СД лента совершает полезную работу (помним, что это происходит при Uпит > 7 Вольт). Светло-коричневая фигура за вычетом светло-синей – это условия, при которых СД лента простаивает – не работает! Соотношение их площадей как раз 10 к 8. Все сходится, однако, хе-хе.

Читайте также:  При изменениях силы тока в катушке по гармоническому закону

И тем не менее, на фоне положительного ответа второй вопрос нашего исследования, мысль о пусть и незначительном, но все же превышении допустимого обратного напряжения мне не давала покоя. Короче, я решил по жесткому: подключил ленту к источнику постоянного тока и плавно увеличивая обратное напряжение стал ожидать, когда же милливольтметр зафиксирует электрический пробой. Доведя обратное напряжение на отдельном светодиоде почти до 20 Вольт я так и не добился пробоя. Обратный ток при этом не превышал 15 мкА. Оставив все это дело почти на сутки – я убедился, что ничего с излучателями не случилось, а уж видимо от коротких импульсных воздействий 6В против 5В и подавно ничего не должно произойти в обозримой перспективе.

Конечно, надо признать….Конечно, я признаю, что это, пожалуй, самый спорный момент в моём исследовании, но практический результат, есть опыт более ценный, чем математические расчеты. Ведь опыт есть отражение сути, а теория это всего лишь попытка эту суть просчитать в мозгах.

Выводы и ответ на третий вопрос
Использовать ЭТ от галогенок для питания светодиодных лент можно и похоже это вовсе не скажется на долговечности работы СД лент и источников света. Скорее даже наоборот скажется, но служить они будут дольше. Наверное. Пока получается, что так. Незабудьте только про встречно параллельное включение и равенство плеч.

Теперь главный вопрос не в том, что — можно ли? Вопрос в том, — А стоит ли?
Ответ следующий – если вы собираете смонтировать систему освещения с нови, то наверное не стоит. Так дешевизна ЭТ будет перекрыта покупкой большего количества, либо большей мощности светодиодов, ведь при 10 В световой поток создаваемый СД лентой в два раза меньше того, что имеем при 12В (см. Рис. 7)

Питание от ЭТ оправдано в случаях, когда:
— у вас уже есть действующее световое решение на галогенках, и вам хотелось бы без дополнительных затрат на БП и лишних проводов поставить еще и светодиоды. У меня, например, так на кухне сделано; — у вас остались незадействованные ЭТ (коих сейчас будет высвобождаться все больше и больше), а требования к мощности планируемого освещения не велики; — когда у вас созрело решение заменить галогеновые лампы на светодиодные, а изменения в проводку внести по каким то соображениям не получается.

Источник

Светодиоды: виды и схема подключения

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).

Содержание статьи

  • Устройство светодиода
  • Как работает светодиод?
  • Виды и основные параметры светодиодов
  • Применение светодиодов
  • Основные правила подключения светодиодов
  • Основные характеристики светодиодов
  • Способы подключения
  • Как подключить светодиоды к сети переменного тока 220 В через блок питания
  • Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

Устройство светодиода

Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.

Устройство светодиода

Как работает светодиод?

Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.

Виды и основные параметры светодиодов

На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.

По назначению светодиоды разделяют на два вида – индикаторные и осветительные.

  • светодиоды SMD;
  • сверхъяркие Super Flux “Piranha”;
  • DIP светодиоды (Direct In-line Package);
  • Straw Hat («соломенная шляпа»).
  • COB (Chip On Board) светодиоды;
  • SMD LED;
  • филаментные (Filament LED).

Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:

  • DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
  • «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
  • «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
  • SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.

Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:

  • cool white – холодный;
  • warm white – теплый.

Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.

Применение светодиодов

Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.

  • значительная длительность эксплуатации;
  • экологическая безопасность;
  • высокая надежность и безотказность;
  • экономия электроэнергии;
  • высокое качество освещения;
  • низкие эксплуатационные расходы.

Основные правила подключения светодиодов

Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:

  • По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
  • С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.

Основные характеристики светодиодов

Две главные характеристики, указываемы в паспорте светоизлучающего прибора:

  • Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
  • Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.

Способы подключения

Простейший вариант – подключение к низковольтному источнику постоянного тока.

Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.

Светодиоды: виды и схема подключения

Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:

R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:

  • Uпитания – напряжение электропитания, В;
  • Uпаспорт. – падение напряжения, паспортное значение, В;
  • Iном. – номинальный ток.

Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.

P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.

Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.

Как подключить светодиоды к сети переменного тока 220 В через блок питания

Существует несколько типов блоков питания:

  • Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
  • Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.

Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.

Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.

Минусы последовательного соединения:

  • При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
  • При выходе из строя одного LED-диода перестает работать вся цепь.

В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.

При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.

Минусы параллельного подключения:

  • большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
  • существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).

Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.

Источник