script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Электрический ток полупроводника конспект

Электрический ток в полупроводниках

Урок 75. Физика 10 класс

Доступ к видеоуроку ограничен

Конспект урока «Электрический ток в полупроводниках»

Совсем недавно мы говорили об электронной проводимости металлов и выяснили, что их сопротивление линейно растет с увеличением температуры.

Так вот, пожалуй, главное отличие полупроводников от проводников — это совсем иная зависимость сопротивления от температуры. Если в металлических проводниках, сопротивление линейно растет с увеличением температуры, то в полупроводниках, сопротивление с увеличением температуры резко падает.

Как видно из графика, при очень низких температурах, удельное сопротивление полупроводников настолько велико, что они ведут себя как диэлектрики. И, наоборот, при очень высоких температурах, сопротивление полупроводников очень резко уменьшается. К полупроводникам относятся такие вещества, как германий, кремний, селен, мышьяк, фосфор, сера и некоторые другие вещества. Для того, чтобы понять, от чего зависит проводимость полупроводников, нам нужно рассмотреть их строение. Мы рассмотрим наиболее распространенный элемент среди полупроводников — кремний. Обратившись к таблице Менделеева, можно убедиться, что кремний находится в четвертой группе. То есть, атом кремния обладает четырьмя валентными электронами. Если мы рассмотрим кристаллическую решетку кремния, то убедимся, что взаимодействие атомов осуществляется посредством ковалентной связи.

На нашем рисунке электроны обозначены черточками, поскольку именно они образуют связи между атомами. При такой структуре, каждый валентный электрон атома кремния участвует в связях между атомами, которые очень прочны при низких температурах. Это говорит нам о том, что при низких температурах в кристаллах кремния нет свободных электронов, которые могли бы обеспечить электронную проводимость. Следовательно, ток проходить через кремний не будет. Но, как вы знаете, высокие температуры способны разрушить химические связи. Именно это и происходит при нагревании полупроводников. Электроны покидают свои места и становятся свободными, точно так же, как электроны в металле.

Это обеспечивает электронную проводимость в полупроводниках при высоких температурах. Но, надо сказать, что проводимость в полупроводниках обусловлена не только электронной проводимостью. Дело в том, что на месте, которое покинул электрон, образуется избыточный положительный заряд. Такое место называется дыркой.

Поскольку дырка обладает избыточным положительным зарядом, электроны, обеспечивающие связь с соседними атомами, могут покинуть свое место и занять место дырки. Таким образом, получается, что положение дырок не является постоянным, и можно с уверенностью сказать, что они двигаются. Это явление называется дырочной проводимостью. Итак, полупроводники обладают электронно-дырочной проводимостью, то есть ток проводят два типа зарядов. В чистых полупроводниках электронно-дырочную проводимость называют собственной проводимостью полупроводника.

Существует также понятие примесной проводимости. То есть, при наличии различных примесей в полупроводниках возникает дополнительная проводимость. Если мы будем изменять концентрацию примесей, то это может существенно изменить число носителей заряда. Примесная проводимость разделяется на два вида: донорная и акцепторная. Донорные примеси легко отдают электроны, тем самым увеличивая электронную проводимость. Акцепторные примеси — наоборот образуют дырки, тем самым увеличивая дырочную проводимость.

Примером донорной примеси является мышьяк. Атомы мышьяка имеют пять валентных электронов, а для образования ковалентных связей с атомами кремния нужно только четыре электрона. В результате, оставшийся электрон очень слабо связан с атомом мышьяка и легко покидает его, то есть становится свободным.

Полупроводники с донорными примесями называются проводниками n-типа. В таких полупроводниках электроны являются основными носителями заряда.

В качестве примера акцепторной примеси, рассмотрим примесь индия.

Атомы индия имеют три валентных электрона, а для образования ковалентных связей с атомами кремния нужно четыре электрона. В результате, атому индия не хватает одного электрона, и на месте этого электрона образуется дырка. В этом случае, дырочная проводимость преобладает над электронной, то есть дырки становятся основными носителями заряда. Полупроводники с акцепторными примесями называются полупроводниками р-типа.

А теперь давайте рассмотрим, что будет при контакте полупроводников обоих типов.

При образовании контакта этих полупроводников, между полупроводниками разных типов образуется так называемая зона перехода. Такой контакт полупроводников называется рп или п-р переходом. При таком контакте электроны и дырки начинают диффундировать, то есть часть электронов переходят в полупроводник р-типа, а дырки — наоборот переходят в полупроводник п-типа. Таким образом, полупроводник п-типа заряжается положительно, а полупроводник р-типа — отрицательно.

Однако, диффузия со временем прекращается. Дело в том, что в зоне перехода возникает электрическое поле, которое становится достаточно сильным, чтобы помешать перемещению дырок и электронов.

Ну а теперь, давайте рассмотрим, как это все можно использовать. Подключим полупроводник с р-п переходом к источнику тока таким образом, что бы положительный полюс источника тока соединяется с полупроводником р-типа, а отрицательный полюс источника тока — с полупроводником п-типа.

Как вы понимаете, в этом случае ток будет обусловлен движением основных носителей. То есть из области п в область р будут перемещаться электроны, а из области р в область п — дырки. Этот переход называется прямым переходом. Надо сказать, что проводимость при прямом переходе довольно велика, а вот, сопротивление — наоборот, мало.

Если же теперь мы подключим батарею наоборот (то есть сменим полярность), то будет наблюдаться другая картина. Теперь электроны, наоборот идут из области р в область п, а дырки — из области п в область р. Вы, наверное, догадались, что в этом случае, ток будет значительно меньше. Действительно, ведь теперь ток обусловлен значительно меньшим количеством носителей заряда. Этот вид перехода называется обратным переходом.

Мы можем изобразить графически вольт-амперные характеристики прямого и обратного перехода.

На графике синей кривой обозначена вольт-амперная характеристика прямого перехода. Конечно, нужно понимать, что на графике изображена вольт-амперная характеристика одного и того же полупроводника, и мы условно разделили ее на две кривые только для наглядности. Как вы видите, сила тока очень быстро растет с увеличением напряжения из-за маленького сопротивления. Если же мы рассмотрим красную кривую, которой обозначена вольт-амперная характеристика обратного перехода, то убедимся, что такой переход обладает незначительной проводимостью. Действительно, сопротивление при этом достаточно велико, и даже при высоком напряжении ток остается слабым. На графике сила тока и напряжение при обратном переходе обозначены за отрицательные, поскольку мы сменили полярность батареи, и, тем самым, изменили направление тока на противоположное.

Читайте также:  Что такое регулятор напряжения переменного тока

Итак, используя р-п переход, можно выпрямлять переменный ток. Устройство для подобных целей называется полупроводниковым диодом. Полупроводниковый диод проводит ток только в одном направлении, при этом, не давая протекать току в обратном направлении. Это и есть процесс выпрямления тока, то есть преобразование переменного тока в постоянный.

Источник

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 33. Электрический ток в полупроводниках

Перечень вопросов, рассматриваемых на уроке:

1) собственная и примесная проводимость;

3) электрический ток в полупроводниках;

4) зависимость тока от напряжения;

5) зависимость силы тока от внешних условий.

Глоссарий по теме:

Полупроводник — вещество, занимающее промежуточное положение в электропроводности между проводниками и диэлектриками.

Собственная проводимость — проводимость чистых полупроводников

Примесная проводимость — проводимость, вызванная введением примесей.

Полупроводниковый диод представляет собой устройство, содержащее p-n-соединение и способное передавать ток только в одном направлении.

Транзистор представляет собой устройство, содержащее два p-n переходов, прямые направления которых противоположны.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Соцкий Н. Н. Физика. 10 класс. Учебник для образовательных организаций М.: Просвещение, 2017. С. 362-371.

2. Рымкевич А.П. Сборник задач физики. 10-11 класс М.: Дрофа, 2009.

3. Зегря Г.Г. Перел В.И. Основы физики полупроводников. М.: Физматлит, 2009.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

В полупроводниках атомы связаны ковалентными (попарно электронными) связями, которые сильны при низких температурах и освещенности. С ростом температуры и освещенности эти связи могут разрушаться, образуя свободный электрон и «дырку».

Реальные частицы — это только электроны. Электронная проводимость обусловлена движением свободных электронов. Дырочная проводимость вызвана движением связанных электронов, которые переходят от одного атома к другому, поочередно заменяя друг друга, что эквивалентно движению «дырок» в противоположном направлении. «Дырке» условно приписывают «+» заряд.

В чистых полупроводниках концентрация свободных электронов и «дырок» одинакова.

Примеси, которые легко отдают электроны, называются донорными. Если мы их добавим, мы получим полупроводник n-типа с электронной проводимостью.

Примеси, которые легко принимают электроны, называются акцепторными. Если мы их добавим, мы получим полупроводник р-типа с дырочной проводимостью.

Когда два полупроводника с разными типами проводимости входят в контакт, образуется так называемый p-n-переход. Он имеет одностороннюю проводимость. При контакте полупроводников p- и n-типа в результате диффузии электронов в полупроводник р-типа и дырок в полупроводник n-типа образуется контактное электрическое поле. Для основных носителей заряда создан барьерный слой.

При включении в цепь p-n-перехода, когда область с электронной проводимостью связана с отрицательным полюсом источника тока, а область с дырочной проводимостью с положительным полюсом, внешнее электрическое поле ослабляет контактное поле и обеспечивает ток значительной силы, называемый прямым и обусловленным движением основных носителей заряда.

Когда переход включён обратном направлении, внешнее поле усиливает контактное поле, а пограничный слой обеднен основными носителями заряда. Очень малый ток течёт из-за движения через р-п-переход неосновных носителей заряда, которых очень мало.

Полупроводниковый диод представляет собой устройство, содержащее p-n-переход и способное пропускать ток в одном направлении и не передавать его в противоположном направлении.

Транзистор или триод полупроводника — это устройство, содержащее два p-n-перехода, прямые направления которых противоположны.

Современная электроника основана на микросхемах и микропроцессорах, которые включают в себя огромное количество транзисторов. Транзисторы стали широко распространены в современных технологиях. Они заменили электронные лампы в электрических цепях научной, промышленной и бытовой техники

Примеры и разбор решения заданий

1. Выберите правильный ответ на вопрос: «Почему сопротивление полупроводников уменьшается с ростом температуры?»

1) концентрация свободных носителей заряда уменьшается;

2) концентрация свободных носителей заряда увеличивается;

3) скорость электронов увеличивается.

Правильный вариант: 2) концентрация свободных носителей заряда увеличивается.

Подсказка: обратите внимание, что при нагревании полупроводников в них образуется больше свободных носителей заряда.

2. Решите задачу: Концентрация электронов проводимости в германии при комнатной температуре n = 3·10 19 м -3 . Плотность германия ρ = 5400 кг/м 3 , молярная масса германия μ = 0,073 кг/моль. Каково отношение числа электронов проводимости к общему числу атомов?

Источник



ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Человек, который никогда не ошибался, никогда не пробовал сделать что-нибудь новое.

Читайте также:  Жесткие внешние характеристики сварочного тока

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 32. Лекция 32-1. Электрический ток в полупроводниках.

По значению удельного электрического сопротивления полупроводники занимают промежуточное место между проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.


Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T.

Полупроводниками называются вещевтва, удельное сопротивление которых убывает с повышением температуры.

Такой ход зависимости ρ( T ) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Объяснение явлений, наблюдаемых в проводниках, возможно на основе законов квантовой механики. Рассмотрим качественно механизм электрического тока в полупроводниках на примере германия (Ge).

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, то есть осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.

Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит. При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами.

Вакансии, которые не заняты электронами получили название дырок.

Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар.

В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией.

Рекомбинация – восстановление электронной связи между атомами.

Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения.

В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов: I = In + Ip

Электрическим током в полупроводниках называется направленное движение электронов к положительному полюсу, а дырок к отрицательному .

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Собственной электрической проводимостью полупроводников называется электронно-дырочный механизм проводимости, который проявляется только у чистых (то есть без примесей) полупроводников.

При наличии примесей электропроводимость полупроводников сильно изменяется.

Примесной проводимостью называется проводимость полупроводников при наличии примесей.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Различают два типа примесной проводимости – электронную и дырочную проводимости.

  1. Электронная проводимость возникает, когда в кристалл полупроводника вводится примесь с большей валентностью.

Например, вкристалл германия с четырехвалентными атомами введены пятивалентные атомы мышьяка, As.

На рисунке показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался лишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Донорской примесью – называется примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла.

В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле nn >> np.

Проводимость, при которой основными носителями свободного заряда являются электроны называется электронной.

Полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

  1. Дырочная проводимость возникает, когда в кристалл полупроводника введена примесь с меньшей валентностью.

Например, в кристалл германия введены трехвалентные атомы In.

На рисунке показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Акцепторной примесью – называется примесь из атомов с валентностью меньшей, чем валентность основных атомов полупроводникового кристалла , способных захватывать электроны.

В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Читайте также:  Блок питания переменного тока с регулировкой

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np >> nn.

Проводимость, при которой основными носителями свободного заряда являются дырки, называется дырочной проводимостью.

Полупроводник с дырочной проводимостью называется полупроводником p-типа.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Зависимость электропроводимости полупроводников от температуры и освещенности

  1. У полупроводников с ростом температуры подвижность электронов и дырок падает, но это не играет заметной роли, так как при нагревании полупроводника кинетическая энергия валентных электронов возрастает и наступает разрыв отдельных связей, что приводит к увеличению числа свободных электронов, т. е. росту электропроводимости .
  1. При освещенииполупроводника в нем появляются дополнительные носите­ли, что приводит к повышению его электропроводности. Это возникает в резуль­тате того, что свет вырывает электроны из атома и при этом одновременно возрастает число электронов и дырок.

О том, какие процессы происходят при соприкосновении полупроводников p- n-типов и где используются полупроводники читайте в продолжении лекции 32 » Полупроводниковый диод. Полупроводниковые приборы»

Источник

Электрический ток в полупроводниках

Зависимость проводимости полупроводников от температуры и освещенности

Полупроводники – это вещества, сопротивление которых убывает с повышением температуры, изменения освещенности, наличия примесей.

При нагревании полупроводникового термистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

зависимость сопротивления полупроводников от температуры

При освещении полупроводникового фоторезистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

Типичными полупроводниками являются кристаллы германия (Ge) и кремния (Si).

Собственная проводимость полупроводников

В идеальном кристалле германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется свободное вакантное место – положительная дырка.

В идеальном кристалле четырехвалентного германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. Четыре валентных электрона связаны с четырьмя соседними атомами. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется положительная дырка.

В чистом полупроводнике электрический ток создается равным количеством электронов и дырок. Такой тип проводимости называется собственной проводимостью полупроводников.

Примесная проводимость полупроводников

При внесении примеси электрическая проводимость полупроводников увеличивается. Такой полупроводник обладает примесной проводимостью.

При добавлении донорной примеси (с большей валентностью) в полупроводнике образуются лишние электроны. Например, если в четырехвалентный кристалл германия добавить пятивалентный мышьяк, то четыре электрона мышьяка образуют ковалентные связи, а пятый остается свободным. Проводимость становится электронной, а полупроводник называют полупроводником n-типа.

При добавлении акцепторной примеси (с меньшей валентностью) в полупроводнике образуются лишние дырки. Например, если в четырехвалентный кристалл германия ввести трехвалентный индий, то одна ковалентная связь останется незавершенной. Проводимость становится дырочной, а полупроводник называют полупроводником p-типа.

Электронно-дырочный переход

В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой, называемый p-n-переходом. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Полупроводниковые приборы и их применение

Полупроводниковый диод

Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.

Электрический ток через контакт полупроводников p-n-типа:

прямой ток через диод

Идет значительный ток.

обратный ток через диод

Ток практически отсутствует.

вольт-амперная характеристика диода

Вольт-амперная характеристика p-n-перехода.

Правая часть графика соответствует прямому направлению тока, а левая – обратному.

Полупроводниковый диод используется как выпрямитель переменного тока.

полупроводниковый диод

Транзистор

Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.

транзистор

Интегральные схемы

На основе полупроводниковых кристаллов создаются интегральные схемы, в которых сотни тысяч элементов соединяются в единую электрическую цепь.

интегральная схема

Полупроводники используются при создании:

фоторезисторов , которые находят применение в автоматических выключателях света, индикаторах на ИСЗ;

термисторах , используемых для измерения температуры, в пожарной сигнализации, реле времени;

фотоэлементах , используемых в солнечных батареях;

фотодиодах , используемых для измерения интенсивности света;

фототранзисторах , используемых в различных датчиках;

светодиодах , используемых в качестве источника инфракрасного излучения, знаковых индикаторах, полупроводниковых лазерах.

Подведем итог

Полупроводники по электропроводности занимают промежуточное положение между диэлектриками и проводниками. К полупроводникам относится большая группа веществ (Si, Ge и др.). В отличие от металлов с ростом температуры удельное сопротивление полупроводников уменьшается.

Проводимость полупроводников обусловлена наличием свободных электронов и дырок. В чистом кристалле электроны и дырки присутствуют в равном количестве. Такой полупроводник обладает собственной проводимостью.

При наличии примесей в полупроводниках возникает примесная проводимость. При добавлении донорной примеси с валентностью на единицу больше, чем у полупроводника, один электрон остается свободным. Получается полупроводник n-типа.

Если же добавить акцепторную примесь с валентностью на единицу меньше, чем у полупроводника, то в таком полупроводнике концентрация дырок превышает концентрацию электронов. Получается полупроводник p-типа.

Область контакта полупроводников двух типов называется p-n-переходом. Важным свойством p-n-перехода является его односторонняя проводимость. Данное свойство используется в работе полупроводникового диода.

Полупроводники используются при создании транзисторов, термисторов, светодиодов, фотоэлементов, интегральных схем.

В настоящее время полупроводниковые приборы находят широкое применение в радиотехнике, автоматике, вычислительной технике, телемеханике.

Источник