script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Электромагнитные катушки которые не создают ток

Практическое руководство по катушкам индуктивности

Катушки индуктивности (индукторы)

Большинство проводящих материалов (металлов) является парамагнитными или ферромагнитными, в то время как большинство непроводящих материалов (неметаллов) является диамагнитными. Любой проводник обладает некоторой индуктивностью в ответ на изменение величины или направления протекания тока. Даже обычный прямой провод имеет индуктивность, хотя она достаточно мала, чтобы пренебрегать ею. Если провод свернуть в петлю — его индуктивность увеличится. Чем больше сделать таких одинаковых витков, тем большая индуктивность будет присуща проводу. Индуктивность одиночной петли или катушки из провода может быть многократно увеличена с помощью подходящего ферромагнитного сердечника.

Простейшими катушками индуктивности являются катушки с воздушным сердечником (рисунок 1). Они сделаны путем намотки провода вокруг пластмассового, деревянного или любого не ферромагнитного сердечника. Индуктивность катушки зависит от числа витков, радиуса и общей формы, также она пропорциональна числу витков и диаметру катушки. Индуктивность обратно пропорциональна длине провода для заданного диаметра катушки и числу витков. Итак, чем ближе будут витки, тем больше будет индуктивность. Электропроводность катушек индуктивности зависит от материала и толщины провода. Потери (в виде тепла) в значительной степени зависят от материала, используемого в качестве сердечника.

Пример катушки индуктивности с воздушным сердечником

Рис. 1. Пример катушки индуктивности с воздушным сердечником

Катушки с воздушным сердечником имеют небольшую индуктивность, которая может составлять максимум 1 мГн. Катушки с воздушным сердечником могут быть рассчитаны так, что будут пропускать через себя ток практически неограниченной величины при условии использования проводника большой длины, смотанного в катушку большого радиуса. Такие катушки индуктивности практически не вносят потерь, так как воздух не рассеивает много энергии в виде тепла. Чем выше частота переменного тока, тем меньше индуктивность, необходимая для получения значительных эффектов. Таким образом, катушки индуктивности с воздушным сердечником вполне подходят для применения в высокочастотных цепях переменного тока благодаря отсутствию потерь, способности пропускать через себя большие токи и достаточным значениям индуктивности.

При использовании железных или ферритовых сердечников индуктивность может быть значительно увеличена. Однако порошкообразный, железный или ферритовый сердечник вносит значительные потери электрической энергии в виде тепла. Использование ферромагнитных сердечников также ограничивает максимальную величину рабочего тока катушек индуктивности. В ферромагнитных сердечниках насыщение происходит при протекании максимального рабочего тока. При увеличении тока сверх этого критического значения индуктивность может начать уменьшаться. При больших токах ферромагнитные сердечники могут достаточно сильно нагреваться, что может привести к их разрушению и необратимому существенному изменению номинальной индуктивности катушки.

Соленоид против катушек индуктивности

Соленоиды часто путают с катушками индуктивности. Соленоиды — это катушки проводов, которые предназначены для использования в качестве электромагнитов. Многие индукторы также являются катушками проводов, но они предназначены для обеспечения индуктивности в электрической цепи. Катушки индуктивности цилиндрической формы также называют соленоидными катушками, но только из-за их конструкции, схожей с конструкцией соленоида. Тем не менее, они не предназначены для использования в качестве электромагнита. Соленоиды специально используются в качестве электромагнитов и обычно имеют подвижный или статический сердечник. Обычно соленоиды используются в качестве электромагнитов в электрических звонках, электродвигателях, работающих на постоянном токе, и в реле.

Соленоидные катушки как индуктивности

Простейшими и наиболее распространенными индуктивностями являются соленоидные катушки. Эти индуктивности представляют собой цилиндрические катушки, намотанные вокруг диамагнитного или ферромагнитного сердечника. Они являются самыми простыми с точки зрения проектирования и изготовления.

Соленоидная, или цилиндрическая катушка может быть легко использована для подстройки величины индуктивности, если в конструкцию интегрировать механизм перемещения ферромагнитного сердечника катушки внутрь и наружу. Путем перемещения сердечника внутрь катушки и обратно можно изменять ее эффективную магнитную проницаемость и, следовательно, величину индуктивности. Это называется настройкой магнитной проницаемости и используется для подстройки частот в радиочастотных схемах.

Сердечник можно сделать подвижным, прикрепив его к винтовому валу и закрепив гайкой на другом конце катушки. Когда вал винта вращается по часовой стрелке — сердечник перемещается внутрь катушки, увеличивая эффективную магнитную проницаемость и, следовательно, величину индуктивности. Когда вал винта вращается против часовой стрелки — сердечник выдвигается, уменьшая эффективную магнитную проницаемость и, следовательно, величину индуктивности.

Тороиды как катушки индуктивности

Сегодня еще одной наиболее распространенной формой катушек индуктивности является тороид. Тороиды имеют кольцевой ферромагнитный сердечник, на который намотан провод. Тороиды нуждаются в меньшем числе витков и физически меньше при той же величине индуктивности и рабочей величине тока, по сравнению с соленоидными катушками (рисунок 2). Другим важным преимуществом тороидов является то, что магнитный поток находится внутри сердечника, что позволяет избежать нежелательной взаимной индуктивности.

Сильноточные тороидальные катушки индуктивности

Рис. 2. Сильноточные тороидальные катушки индуктивности

Однако намотать провод на тороид сложно. Регулировать магнитную проницаемость тороида еще сложнее. Проектирование катушек с тороидальным сердечником и переменной величиной индуктивности требует реализации громоздкой и сложной конструкции. В цепях, где требуется взаимная индуктивность, катушки должны быть намотаны на один и тот же сердечник в случае, если тороид используется в качестве катушки индуктивности.

Индуктивности на основе чашеобразных Р-сердечников*

В типичных катушках индуктивности — соленоидных и тороидных — провод намотан вокруг ферромагнитного сердечника. Катушки индуктивности на основе чашеобразных сердечников – это другой тип индуктивностей, в котором обмотка катушки находится внутри ферромагнитного сердечника. Чашеобразный ферромагнитный сердечник имеет форму двух половин в виде чаш со специальным цилиндрическим выступом (керном) на дне одной из половин, на котором размещается обмотка. Обе половины имеют отверстия, из которых извлекается провод катушки. Вся сборка скрепляется болтом и гайкой.

Катушки данного типа, как и тороиды, обладают большой индуктивностью и электропроводностью при небольших габаритах и меньшем числе витков. Магнитный поток, как и в случае с тороидами, остается внутри. Таким образом, нет нежелательной взаимной индуктивности с сердечниками. Опять же, как и в случае с тороидами, очень трудно варьировать величину индуктивности катушек данного типа. Изменять величину индуктивности в катушках индуктивности на основе Р-сердечников возможно только путем изменения числа витков и при использовании отводов в разных точках катушки.

*- В литературе также встречается термин “Р-сердечник закрытого типа”. В ГОСТ 19197-73 данному типу сердечников присвоено название – “броневой”.

Линия передачи как индуктивность

В цепях постоянного тока катушки индуктивности ведут себя почти так же, как и обычный провод, обладая незначительным сопротивлением, но не более того. Таким образом, они находят применение преимущественно в электрических цепях переменного тока. В аудиосхемах в качестве индуктивностей обычно используются тороиды, катушки на основе круглых чашеобразных сердечников или аудиотрансформаторы. Номинал индуктивности, применяемый в таких электрических цепях, варьируется от нескольких мГн до 1 Гн. Катушки индуктивности вместе с конденсаторами используются в аудиосхемах для подстройки. В настоящее время микросхемы практически полностью вытеснили катушки индуктивности и конденсаторы в аудиосистемах и других подобных областях применения.

При увеличении частоты должны использоваться индуктивности с сердечниками меньшей проницаемости. На нижнем конце радиочастотного спектра используются те же катушки индуктивности, что и в аудиоприложениях. На частотах до нескольких МГц весьма распространены катушки индуктивности с тороидальным сердечником. Для частот 30…100 МГц предпочтительны катушки с воздушным сердечником. Для частот более 100 МГц в линии передачи используются высокочастотные индуктивности и специальные трансформаторы. Линии передачи малой длины (четверть длины волны сигнала или меньше) сами могут быть использованы в качестве индуктивности для подстройки частоты радиосигналов. Линия передачи, используемая в качестве подобной индуктивности, обычно представляет собой коаксиальный кабель.

Индуктивности в цепях постоянного тока

Катушки индуктивности практически бесполезны в цепях постоянного тока. Однако можно предположить, что катушка индуктивности, подключенная к цепи постоянного тока, может быть полезна для понимания принципов ее работы и особенностей поведения пульсирующих напряжений постоянного тока. Предположим, что обычная катушка индуктивности подключена к источнику напряжения через ключ. При замыкании ключа на индуктивность подается напряжение, вызывающее быстрое изменение протекающего через нее тока. Когда приложенное напряжение увеличивается от нуля до пикового значения (за короткое время), индуктивность противодействует изменяющемуся через нее току, индуцируя напряжение, противоположное по полярности приложенному напряжению. Индуцированное напряжение при подаче питания на катушку индуктивности называется обратной ЭДС и определяется по формуле 1:

  • VL – напряжение (обратная ЭДС), индуцированная на катушке;
  • L – индуктивность катушки;
  • di/dt – скорость изменения тока во времени.

Согласно приведенной формуле 1, внезапное изменение тока через катушку индуктивности дает бесконечное напряжение, что физически невозможно. Таким образом, ток через катушку индуктивности не может измениться мгновенно. Ток сталкивается с влиянием индуктивности при каждом небольшом изменении его величины и медленно возрастает до своего пикового постоянного значения. Итак, в начальный момент времени катушка индуктивности представляет собой разрыв цепи, когда переключатель замкнут. Обратная ЭДС наводится на катушку индуктивности до тех пор, пока изменяется значение протекающего через нее тока. Индуцированная обратная ЭДС всегда остается равной и противоположной возрастающему приложенному напряжению. Когда напряжение и ток от источника приближаются к постоянному значению, обратная ЭДС падает до нуля, а катушка индуктивности начинает вести себя как обычный провод. При подаче напряжения на катушку индуктивности мощность, запасенная ею, определяется по формуле 2:

P = V * I = L*i*di/dt, (2)

  • P – электрическая мощность, запасенная в катушке;
  • V – величина пикового напряжения на катушке индуктивности;
  • I – величина пикового тока, протекающего через катушку индуктивности.

Энергия, запасенная индуктивностью при подаче напряжения, определяется по формуле 3:

W = ∫P.dt = ∫L*i*(di/dt)dt = (1/2)LI 2 , (3)

  • W – электрическая энергия, запасенная в катушке индуктивности в виде магнитного поля;
  • I – максимальное значение тока, протекающего через катушку.

Когда происходит отключение источника напряжения (путем размыкания ключа), напряжение на индуктивности падает с постоянного пикового значения до нуля. В отличие от конденсаторов, при отключении источника напряжения напряжение на индуктивности не поддерживается. Фактически оно уже упало до нуля, тогда как ток, проходящий через него стал постоянным. Теперь, когда приложенное напряжение падает от пикового постоянного значения до нуля, ток, протекающий через катушку индуктивности, также падает с постоянного пикового значения до нуля. Катушка противодействует падению тока, вызывая прямую ЭДС в направлении приложенного напряжения. Из-за индуцированной прямой ЭДС ток, проходящий через катушку индуктивности, падает до нуля с более медленной скоростью. Как только ток уменьшается до нуля, прямая ЭДС также падает до нуля.

Таким образом, при подаче напряжения питания электрическая энергия преобразовывалась в магнитное поле в катушке индуктивности, что было очевидно по обратной ЭДС, индуцированной на ней. При отключении напряжения питания та же самая электрическая энергия возвращается индуктором в цепь в форме прямой ЭДС. Всякий раз, когда напряжение на катушке индуктивности увеличивается, возникает обратная ЭДС, а всякий раз, когда напряжение на катушке уменьшается, возникает прямая ЭДС.

На практике обратная или прямая ЭДС, которая наводится на катушке индуктивности, во много раз больше приложенного напряжения. Если источник индуктивности подключен к источнику напряжения или катушка индуктивности подключена к цепи постоянного тока без какой-либо защиты, электрическая энергия, возвращаемая при размыкании переключателя, выделяется в виде скачка напряжения или искры на контактах переключателя. Если индуктивность или ток в цепи достигают достаточно больших значений, то энергия выделяется в форме дуги или искры на контакте переключателя и может даже сжечь или расплавить его. Этого можно избежать, используя резистор и конденсатор, соединенные в RC-цепь и включенные последовательно с контактом переключателя. Такая RC-цепь называется снабберной и позволяет электрической энергии, выделяемой катушкой индуктивности, заряжать и разряжать конденсатор, поэтому она не повреждает другие компоненты. Во многих электрических цепях для сохранения компонентов схемы от обратной или прямой ЭДС катушек индуктивности или соленоидов используются защитные диоды.

Катушка индуктивности в цепи переменного тока

Катушка индуктивности противодействует любому изменению тока, который протекает через нее, а переменный ток, в свою очередь, отстает на 90° от напряжения. В начальный момент времени, когда напряжение источника подается на катушку, ток через нее протекает максимальный, но в противоположном направлении. При подаче напряжения ток протекает через катушку индуктивности из-за индуцированной обратной ЭДС, которая противоположна приложенному напряжению. Индуцированное на катушке напряжение всегда равно и противоположно по знаку приложенному напряжению в любой момент времени. Когда приложенное напряжение возрастает от нуля до пикового значения, ток через катушку падает от максимума до нуля.

Читайте также:  Сила тока в автомобильной фаре

Когда прикладываемое напряжение падает от максимального значения до нуля, то на катушке индуцируется прямая ЭДС, заставляя ток противоположного направления расти от нуля до пикового значения. Когда приложенное напряжение меняет полярность и возрастает до пикового значения, ЭДС снова индуцируется на катушке, вызывая падение обратного тока от пикового значения до нуля. Когда приложенное напряжение снова падает до нуля в обратном направлении, в катушке индуцируется прямая ЭДС, заставляющая ток снова расти от нуля до максимального значения в противоположном направлении. Это продолжается для каждого цикла протекания переменного тока.

Индуктивное сопротивление

Противодействие протекающему току из-за наличия индуктивности называется индуктивным сопротивлением. Амплитуда тока через катушку индуктивности обратно пропорциональна частоте приложенного напряжения. Поскольку напряжение на катушке (обратная или прямая ЭДС) пропорционально индуктивности, то амплитуда тока также обратно пропорциональна величине индуктивности. Итак, противодействие току из-за наличия индуктивности в виде индуктивного сопротивления определяется по формуле 4:

Соответственно, пиковая амплитуда тока, проходящего через катушку индуктивности, определяется по формуле 5:

  • Ipeak – пиковое значение переменного тока, протекающего через катушку индуктивности;
  • Vpeak – пиковое значение переменного напряжения, приложенного к катушке;
  • XL – индуктивное сопротивление.

Как резистивное и емкостное сопротивление, так и единица индуктивного сопротивления измеряется в омах. Следует отметить, что в электрических цепях нет потерь энергии из-за наличия емкостного или индуктивного сопротивления, что нельзя сказать об обычном резистивном сопротивлении. Тем не менее, реактивное сопротивление может ограничивать уровни тока через конденсатор или катушку индуктивности.

Применение катушек индуктивности

Катушки индуктивности используются в электрических цепях переменного тока. Они обычно применяются в аналоговых схемах, схемах обработки сигналов и в системах телекоммуникаций, а также используются вместе с конденсаторами для создания фильтров различных топологий. В телекоммуникационных системах индуктивности применяются в составе специальных фильтров, которые нужны для подавления возможных бросков напряжения и предотвращения утечки информации через линии системы электропитания.

Трансформаторы, которые используются для повышения или понижения напряжения переменного тока, состоят из двух катушек индуктивности, объединенных в единую конструкцию определенным образом. Индуктивности также используются для временного хранения электрической энергии в цепях выборки-хранения и источниках бесперебойного питания. В цепях электропитания катушки индуктивности (где они называются фильтрующими дросселями) используются для сглаживания пульсирующих токов.

Поведение индуктивности при прохождении через нее сигнала можно определить следующим образом:

  • Всякий раз, когда приложенное к катушке индуктивности напряжение увеличивается, катушка генерирует обратную ЭДС, в результате чего ток через нее падает с максимального значения до нуля или даже ниже этого уровня. Всякий раз, когда прикладываемое напряжение уменьшается, катушка создает прямую ЭДС, в результате чего ток через нее повышается с нуля или текущего уровня до максимального значения или даже до более высокого.
  • Обратная или прямая ЭДС сохраняется на катушке индуктивности до тех пор, пока приложенное напряжение, а следовательно и ток через нее изменяются. Когда приложенное напряжение достигает определенного постоянного значения, обратная или прямая ЭДС падает до нуля, и постоянный ток протекает через катушку индуктивности без какого-либо противодействия, как в обычном соединительном проводе.
  • Из-за наличия индуктивности скорость изменения тока в цепи замедляется. Если сигнал переменный, то ток всегда будет отставать от напряжения на 90° из-за наличия индуктивности.
  • Благодаря индуктивному или емкостному сопротивлению потери энергии отсутствуют. Энергия, запасенная катушкой индуктивности в форме магнитного поля или конденсатором в форме электростатического поля, возвращается обратно в цепь, как только приложенное напряжение падает до нуля или меняет полярность. Однако из-за реактивного сопротивления пиковый уровень тока (амплитуда сигнала) ограничен.

Источник

Катушка индуктивности

Что такое катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

линии магнитного поля

В – магнитное поле, Вб

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

катушка индуктивности магнитное поле

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

I – сила тока в катушке , А

U – напряжение в катушке, В

R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

LC-метр и катушка индуктивности

Имеется ферритовый сердечник

Катушка индуктивности

Начинаю вводить катушку в сердечник на самый край

катушка индуктивности измеряем индуктивность

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

Катушка индуктивности

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

Катушка индуктивности

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Катушка индуктивности

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

Катушка индуктивности

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Катушка индуктивности

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

тороидальная катушка индуктивности

Катушка индуктивности

Отдалим витки катушки друг от друга

Катушка индуктивности

Катушка индуктивности

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Катушка индуктивности

Катушка индуктивности

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Читайте также:  Максимальный ток для дорожки платы

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Источник



Что такое электромагнитная катушка?

Электромагнитные катушки

Электромагнитная катушка представляет собой электрический проводник, как правило провод, в форме катушки или другой подобной форме. Большинство этих катушек намотано на сердечник из железного материала.

Этот простой компонент может использоваться во множестве устройств, во многом благодаря уникальному взаимодействию между магнитными полями и электрическим током.

В системах обогрева устройство может представлять собой электромагнитную катушку, генерирующую тепло за счет индукции, или простой резистивный нагревательный элемент в форме катушки.

Назначение электромагнитных катушек

Чтобы соответствовать широкому спектру применений, существует множество типов электромагнитных катушек, различающихся по сечению, длине, диаметру катушки и материалам, на которые наматывается провод. Все разновидности электрических катушек могут быть адаптированы для удовлетворения конкретных требований.

Кроме того, помимо передачи тепла, звука или электричества, электрические катушки должны выполнять несколько различных функций. Например, электроника, автомобилестроение, медицина, компьютерная промышленность, бытовая техника и телекоммуникации в значительной степени полагаются на электрические катушки для обеспечения движения, регулирования потока и / или преобразования электрических токов.

Хотя это может показаться очень разными функциями, основные электромеханические принципы, используемые во всех электрических катушках, в целом одинаковы: проводящий металлический провод наматывается на изолятор, который может быть таким простым материалом, как картон, пластик или даже воздух.

схема электромагнитной катушки

Два конца провода обычно превращаются в электрические соединительные клеммы, называемые «ответвителями», которые затем подключаются к электрическому току. Когда ток проходит по спиральным проводам, сама катушка намагничивается (хотя в некоторых случаях она может размагничиваться).

Сила, создаваемая этим явлением, используется, в частности, такими компаниями, как производители электромагнитных клапанов, производители электродвигателей и поставщики аппаратов МРТ.

Применение электромагнитных катушек

Электромагнитные катушки используются в электротехнике в бесчисленных отраслях промышленности и в конкретных приложениях из-за важности взаимодействия между электрическими токами и магнитными полями во многих электрических устройствах.

Соответственно, электрические катушки встречаются почти во всех отраслях промышленности. В любой отрасли, использующей электричество, вероятно, есть по крайней мере несколько приложений, использующих электрические катушки, хотя они могут быть встроены в готовое оборудование и не являются предметом особой озабоченности компаний в каждой отрасли.

Отрасли с особыми сферами применения и уникальной потребностью в производстве обмоток электрических катушек или сборки катушек включают, но не ограничиваются:

  • Выработка энергии. Ключевой компонент при производстве любого электрического генератора или электродвигателя.
  • Тяжелая индустрия. Используется для различных двигателей и устройств управления, работающих в тяжелых условиях, а также в специальных электромагнитных устройствах.
  • Телекоммуникации. Используются как антенны, реле и т. д.
  • Медицина. Используется в различных устройствах формирования электромагнитных изображений и для определенных приложений, таких как биофильтры.
  • Компьютеры. Используется в магнитных запоминающих устройствах.
  • Бытовая техника. Многие нагревательные катушки используют одни и те же принципы электромагнитной индукции; там, где тепло было бы нежелательным побочным эффектом в других приложениях, это основная цель в различных домашних устройствах, таких как тепловые насосы или индукционные электрические плиты.
  • Автомобильная промышленность. Применяется для различных двигателей, генераторов. В частности, узел катушки, то есть катушки зажигания, катушка соленоида или реле стартера.
  • Контроль мощности. Используется в автоматических выключателях, контакторах, катушечных переключателях реле и различных других механизмах управления мощностью.

История

История электромагнитной катушки — это история электромагнитной науки в целом, так как именно с катушкой из проволоки и магнитом Майкл Фарадей впервые определил, что электрический ток может генерироваться с помощью магнитных сил. За прошедшие с тех пор годы практическое применение этих знаний проявилось во многих формах, хотя самым непосредственным ранним применением, конечно же, был электрический генератор Грамма в 1871 году.

электрический генератор Грамма

По мере того, как наше понимание и использование электромагнитных сил продвигалось вперед, появились и электромагнитные катушки. Для каждого потенциального применения бесчисленное количество раз изобретались, совершенствовались и модернизировались одна или несколько катушек с индивидуальными требованиями. Природа электрических катушек такова, что инновации в конструкции катушек присущи практически любому применению.

Конструкция электромагнитной катушки

Базовая конструкция электрической катушки может легко усложниться с добавлением дополнительных обмоток. Обмотка определяется как полный узел катушки с отводами и другими элементами. В то время как в где то может использоваться одна обмотка, то другие требуют добавления вторичных и даже третичных обмоток.

Электрический трансформатор, например, представляет собой электромагнитный компонент, который состоит из первичной и вторичной обмоток, что позволяет ему передавать электрическую энергию от одной электрической цепи к другой электрической цепи посредством магнитной муфты без движущихся частей.

электромагнитная катушка

Определенные как точки в проволочной катушке, которая состоит из открытого проводящего участка, отводы катушки могут различаться в основном по размеру, так же как и диаметр самой катушки. Когда катушка имеет большой диаметр, степень самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

В результате для многослойных электрических катушек спиральная форма является наиболее практичной формой. Величина самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

  • Проводящие материалы

Основа любой электрической катушки, включая простые резистивные нагревательные элементы — это проводящий материал, имеющий форму катушки. Чаще всего это медная проволока, но для этой роли можно использовать любой токопроводящий материал. Алюминий — популярная альтернатива.

  • Основные материалы

Для большинства электромагнитных катушек также необходимо учитывать материал сердечника. Обычно это какой-нибудь ферромагнитный материал, например, железо. Сердечник может представлять собой сплошной кусок, пучок проводов или любое количество других конфигураций.

Типы и формы электромагнитных катушек

В зависимости от используемого приложения, вы обычно будете довольно ограничены в общем стиле электрической катушки. Устройству, который требует статора, совместимого с постоянным током, не нужна катушка для электродвигателя переменного тока, так как ваши возможности, таким образом, будут довольно ограничены.

формы электромагнитных катушек

Специфика конструкции электрических катушек означает, что каждый небольшой аспект конфигурации может сильно повлиять на производительность конечного продукта. Например, на индуктивные свойства простой электромагнитной катушки напрямую влияют эти и многие другие факторы:

  • Количество обертываний
  • Площадь катушки
  • Длина катушки
  • Материал сердечника
  • Материал катушки

Несмотря на то, что в конструкции электрических катушек есть основное сходство, есть много способов, которыми каждая катушка может быть разработана специально для ее применения. Например, некоторые электрические катушки требуют защиты от суровых условий окружающей среды, таких как влажность, соль, масло и вибрация.

Чтобы защитить хрупкие катушки от агрессивных элементов, поскольку при длительном воздействии можно легко потерять проводимость, электрические катушки можно формовать или герметизировать.

В то время как формованные катушки заключены в пластиковые покрытия, которые герметизируют весь блок катушек, герметизированные катушки сделаны из проволоки, которая сама залита полимерно- эпоксидной смолой.

Другие типы электрических катушек, такие как катушки тороидального трансформатора, намотаны вокруг ферритовых колец и обернуты герметизирующей лентой для защиты окружающей среды.

катушки тороидального трансформатора

Один из наиболее распространенных типов электрических катушек, соленоидные катушки, иногда просто называют соленоидами. Часто используемые в качестве удаленного переключателя, соленоиды представляют собой катушки с током, которые становятся магнитными, когда ток проходит через катушку, которая обычно наматывается на железный сердечник.

Другие типы электромагнитных катушек включают:

катушки Роговского

  • катушки Гарретта, используемые в металлоискателях
  • катушки Роговского, используемые для измерения переменного тока (AC)
  • катушки Удина, которые являются катушками с разрушающим зарядом
  • катушки Браунбека, используемые в геомагнитных исследованиях.

Катушка Роговского

Оптимизация производительности электромагнитных катушек

Поскольку работа электрической катушки в конечном итоге очень проста, оптимизация производительности обычно сводится к точному согласованию конструкции катушки с применением. Это означает, что необходимо убедиться, что все совпадает, эффективно подходит и течет чисто, без потерь тепла, движения и т. д.

В зависимости от конкретного применения повышение производительности может означать замену катушки на лучшую конструкцию или замену компонентов, чтобы они лучше соответствовали вашей конструкции. катушка. Вам нужно будет решить, исходя из того, что вы пытаетесь сделать.

Конечно, чтобы сделать что-либо из этого, требуется понимание того, как работает ваша система, что делает аналитические инструменты и программное обеспечение идеальными для всех, кто пытается добиться максимальной производительности.

Вы можете обнаружить несколько поверхностных проблем без надлежащего оборудования, но для всего, что приближается к максимальной производительности, вам понадобится современное оборудование.

При выборе конструкции для вашей электрической катушки есть несколько других факторов, которые вы можете рассмотреть, прежде чем обращаться к компании, производящей обмотки. Если вы не уверены в чем-либо из них, не стесняйтесь спросить совета у любой компании, производящей обмотки, или спросите своего инженера-электрика.

Виды электромагнитных катушек

  • Катушки с воздушным сердечником (самонесущие катушки) — электромагнитные катушки, которые намотаны «вокруг воздуха» без сердечника, отсюда термины «воздушные катушки» и «самоподдерживаемые катушки».
  • Катушки с намоткой на шпульку — электромагнитный провод, намотанный на пластиковый сердечник или «шпульку». Пластиковые сердечники бывают разных размеров, а катушки, намотанные на бобину, могут быть пропитаны, отформованы или заклеены лентой, чтобы соответствовать различным медицинским устройствам, датчикам, реле и автомобилям.
  • Дроссельные катушки — представляют собой электрические катушки с низким сопротивлением и высокой индуктивностью, которые используются для блокировки высокочастотных переменных токов (AC) электричества, позволяя проходить низкочастотным постоянным токам (DC).

Дроссельные катушки

Катушка Тесла

  • Электрические катушки — альтернативное название электрических катушек, состоят из серии петель, изготовленных из токопроводящей металлической проволоки и намотанных на ферромагнитный сердечник.
  • Инкапсулированные катушки — это электрические катушки, заключенные в силиконовый, полиэфирный, жидкий или термоформованный эпоксидный кожух.
  • Катушки высокого напряжения — это электрические катушки, в которых используется напряжение выше, чем обычно считается безопасным.
  • Катушки зажигания — это электрические индукционные катушки, которые используются для преобразования более низких напряжений мощности в более высокие напряжения мощности, необходимые для зажигания свечей зажигания системы.
  • Пропитанные катушки — катушки, которые были сначала погружены в эпоксидную смолу или подвергнуты совместной экструзии перед намоткой. Ламинирующая эпоксидная смола изолирует проводящий электромагнитный провод от элементов, создавая блок, который эффективно защищен от погодных условий и грязи без затрат на инструменты, связанные с формованными катушками
  • Индукционные катушки — распространенный синоним электрических катушек, электромагнитные катушки используются для создания электродвижущей силы путем активации на магнетизм посредством электрических токов.
  • Магнитные катушки — которые также могут называться электромагнитными катушками или просто катушками, включают все типы электрических катушек, которые работают по принципу индукции.
  • Литые катушки — электромагнитные катушки, заключенные в термоформованные или отлитые под давлением пластиковые корпуса, защищающие катушку от погодных условий, грязи и вибрации.
  • Электромагнитные катушки — также называемые соленоидами, представляют собой трехмерные петли или катушки из проволоки, которые намотаны вокруг металлического сердечника и служат для создания магнитного поля при прохождении электрического тока через катушку.
  • Катушки, обмотанные лентой — катушки, обычно намотанные на сердечник, которые заключены в герметизирующую ленту для защиты электромагнитной катушки от погодных условий, грязи и вибрации. Бухты, намотанные лентой, не так эффективны в блокировании этих вредных элементов, как пропитанные или формованные бухты, но затраты на производство катушек, намотанных лентой, намного ниже
  • Катушка Тесла — электрическое устройство, которое генерирует чрезвычайно высокое напряжение, обычно с целью создания электрических дуг и эффектов молнии или для получения рентгеновских лучей.
Читайте также:  Чему равна суммарная плотность тока при несимметричном p n переходе

Катушка Тесла

  • Тороиды / тороидальные катушки — медный провод, намотанный на ферритовое или железное кольцо в форме пончика. Ферритовый сердечник усиливает индуктивность катушки и может использоваться в транспортных средствах, аудио и источниках питания.
  • Катушки трансформатора — электромагнитные катушки, обычно пропитанные или ламинированные, которые используются для изменения напряжения входящего электрического тока, подавая ток обратно с той же частотой, но с другим напряжением.
  • Звуковые катушки — звуковая катушка, состоящая из обмотки, воротника и бобины, представляет собой своего рода электрическую катушку. Он прикрепляется к вершине диффузора громкоговорителя, где его цель — помочь усилить звук.

Электромагнитные катушки термины

  • Шпулька — пластиковый сердечник, вокруг которого часто наматываются электрические катушки.
  • Обмотка катушки — процесс наматывания электромагнитного провода вокруг сердечника или в самонесущую «воздушную» катушку; катушки могут быть однослойными или состоять из множества слоев. Для точных технических катушек часто требуется «прецизионная намотка».

Проводник — материал, часто металл (например, медь), который пропускает электрические токи за счет движения свободных электронов.

Электрический ток — Поток электрически заряженных электронов или ионов к положительному полюсу, вызванный путем введения электрического энергетического поля

  • Электромагнетизм — магнетизм, который создается электрическим током и зависит от него.
  • Поле катушки — представляет собой электромагнит используется для создания магнитного поля в электромагнитной машине, правило вращающейся электрической машины такой как двигатель или генератор. Он состоит из проволочной катушки, по которой течет ток.
  • Индуктивность — Электродвижущая сила или сила электромагнитной катушки (или цепи), создаваемая воздействием на катушку электрического тока.

    Преобразователь — электрическое устройство, преобразующее энергию из одной формы в другую.

  • Обороты — количество раз, когда электромагнитная катушка наматывается либо на ее сердечник, либо, в случае воздушных катушек, количество раз, когда катушка полностью закручивается
  • Источник

    Катушки индуктивности и магнитные поля. Часть 2. Электромагнитная индукция и индуктивность

    Взаимосвязь электрических и магнитных полей

    Электромагнитная индукция и индуктивностьЭлектрические и магнитные явления изучались давно, вот только никому не приходило в голову каким-то образом связать эти исследования между собой. И только в 1820 году было обнаружено, что проводник с током действует на стрелку компаса. Это открытие принадлежало датскому физику Хансу Кристиану Эрстеду. Впоследствии его именем была названа единица измерения напряженности магнитного поля в системе СГС: русское обозначение Э (Эрстед), англоязычное – Oe. Такую напряженность магнитное поле имеет в вакууме при индукции в 1 Гаусс.

    Это открытие наводило на мысль о том, что из электрического тока можно получить магнитное поле. Но вместе с тем возникали мысли и по поводу обратного преобразования, а именно, как из магнитного поля получить электрический ток. Ведь многие процессы в природе обратимы: из воды получается лед, который можно снова растопить в воду.

    На изучение этого очевидного сейчас закона физики после открытия Эрстеда ушло целых двадцать два года. Получением электричества из магнитного поля занимался английский ученый Майкл Фарадей. Делались различной формы и размеров проводники и магниты, искались варианты их взаимного расположения. И только, видимо, случайно ученый обнаружил, что для получения на концах проводника ЭДС необходимо еще одно слагаемое – движение магнита, т.е. магнитное поле должно быть обязательно переменным.

    Сейчас это никого уже не удивляет. Именно так работают все электрические генераторы, — пока его чем-то вращают, электроэнергия вырабатывается, лампочка светит. Остановили, перестали вращать, и лампочка погасла.

    Электромагнитная индукция

    Таким образом, ЭДС на концах проводника возникает лишь в том случае, если его определенным образом перемещать в магнитном поле. Или, точнее говоря, магнитное поле обязательно должно изменяться, быть переменным. Это явление получило название электромагнитной индукции, по-русски электромагнитное наведение: в этом случае говорят, что в проводнике наводится ЭДС. Если к такому источнику ЭДС подключить нагрузку, то в цепи будет протекать ток.

    Величина наведенной ЭДС зависит от нескольких факторов: длины проводника, индукции магнитного поля B, и в немалой степени от скорости перемещения проводника в магнитном поле. Чем быстрее вращать ротор генератора, тем напряжение на его выходе выше.

    Замечание: электромагнитную индукцию (явление возникновение ЭДС на концах проводника в переменном магнитном поле) не следует путать с магнитной индукцией – векторной физической величиной характеризующей собственно магнитное поле.

    Три способа получения ЭДС

    Индукция

    Этот способ был рассмотрен в первой части статьи. Достаточно перемещать проводник в магнитном поле постоянного магнита, или наоборот перемещать (практически всегда вращением) магнит около проводника. Оба варианта однозначно позволят получить переменное магнитное поле. В этом случае способ получения ЭДС называется индукцией. Именно индукция используется для получения ЭДС в различных генераторах. В опытах Фарадея в 1831 году магнит поступательно перемещался внутри катушки провода.

    Взаимоиндукция

    Это название говорит о том, что в этом явлении принимают участие два проводника. В одном из них протекает изменяющийся ток, который создает вокруг него переменное магнитное поле. Если рядом находится еще один проводник, то на его концах возникает переменная же ЭДС.

    Такой способ получения ЭДС называется взаимоиндукцией. Именно по принципу взаимоиндукции работают все трансформаторы, только проводники у них выполнены в виде катушек, а для усиления магнитной индукции применяются сердечники из ферромагнитных материалов.

    Если ток в первом проводнике прекратится (обрыв цепи), или станет пусть даже очень сильным, но постоянным (нет никаких изменений), то на концах второго проводника никакой ЭДС получить не удастся. Вот почему трансформаторы работают только на переменном токе: если к первичной обмотке подключить гальваническую батарейку, то на выходе вторичной обмотки никакого напряжения однозначно не будет.

    ЭДС во вторичной обмотке наводится только при изменении магнитного поля. Причем, чем сильнее скорость изменения, именно скорость, а не абсолютная величина, тем больше будет наведенная ЭДС.

    Три способа получения ЭДС

    Самоиндукция

    Если убрать второй проводник, то магнитное поле в первом проводнике будет пронизывать не только окружающее пространство, но и сам проводник. Таким образом, под воздействием своего поля в проводнике наводится ЭДС, которая называется ЭДС самоиндукции.

    Явления самоиндукции в 1833 году изучал русский ученый Ленц. На основании этих опытов удалось выяснить интересную закономерность: ЭДС самоиндукции всегда противодействует, компенсирует внешнее переменное магнитное поле, которое вызывает эту ЭДС. Эта зависимость называется правилом Ленца (не путать с законом Джоуля — Ленца).

    Знак «минус» в формуле как раз и говорит о противодействии ЭДС самоиндукции причинам ее породившим. Если катушку подключить к источнику постоянного тока, ток будет возрастать достаточно медленно. Это очень заметно при «прозвонке» первичной обмотки трансформатора стрелочным омметром: скорость движения стрелки в сторону нулевого деления шкалы заметно меньше, чем при проверке резисторов.

    При отключении катушки от источника тока ЭДС самоиндукции вызывает искрение контактов реле. В случае, когда катушка управляется транзистором, например катушка реле, то параллельно ей ставится диод в обратном направлении по отношению к источнику питания. Это делается для того, чтобы защитить полупроводниковые элементы от воздействия ЭДС самоиндукции, которая может в десятки и даже сотни раз превышать напряжение источника питания.

    Для проведения опытов Ленц сконструировал интересный прибор. На концах алюминиевого коромысла закреплены два алюминиевых же кольца. Одно кольцо сплошное, а в другом был сделан пропил. Коромысло свободно вращалось на иголке.

    cамоиндукция

    При введении постоянного магнита в сплошное кольцо оно «убегало» от магнита, а при выведении магнита стремилось за ним. Те же самые действия с разрезанным кольцом никаких движений не вызывали. Это объясняется тем, что в сплошном кольце под воздействием переменного магнитного поля возникает ток, который создает магнитное поле. А в разомкнутом кольце тока нет, следовательно, нет и магнитного поля.

    Немаловажная деталь этого опыта в том, что если магнит будет введен в кольцо и останется неподвижным, то никакой реакции алюминиевого кольца на присутствие магнита не наблюдается. Это лишний раз подтверждает, что ЭДС индукции возникает только в случае изменения магнитного поля, причем величина ЭДС зависит от скорости изменения. В данном случае просто от скорости перемещения магнита.

    То же можно сказать и о взаимоиндукции и самоиндукции, только изменение напряженности магнитного поля, точнее скорость его изменения зависит от скорости изменения тока. Для иллюстрации этого явления можно привести такой пример.

    Пусть через две достаточно большие одинаковые катушки проходят большие токи: через первую катушку 10А, а через вторую целых 1000, причем в обеих катушках токи линейно возрастают. Предположим, что за одну секунду ток в первой катушке изменился с 10 до 15А, а во второй с 1000 до 1001А, что вызвало появление ЭДС самоиндукции в обеих катушках.

    Но, несмотря на такое огромное значение тока во второй катушке, ЭДС самоиндукции будет больше в первой, поскольку там скорость изменения тока 5А/сек, а во второй всего 1А/сек. Ведь ЭДС самоиндукции зависит от скорости возрастания тока (читай магнитного поля), а не от его абсолютной величины.

    Индуктивность

    Магнитные свойства катушки с током зависят от количества витков, геометрических размеров. Значительного усиления магнитного поля можно добиться введением в катушку ферромагнитного сердечника. О магнитных свойствах катушки с достаточной точностью можно судить по величине ЭДС индукции, взаимоиндукции или самоиндукции. Все эти явления были рассмотрены выше.

    Характеристика катушки, которая рассказывает об этом, называется коэффициентом индуктивности (самоиндукции) или просто индуктивностью. В формулах индуктивность обозначается буквой L, а на схемах этой же буквой обозначаются катушки индуктивности.

    Единица измерения индуктивности – генри (Гн). Индуктивностью 1Гн обладает катушка, в которой при изменении тока на 1А в секунду вырабатывается ЭДС 1В. Это величина достаточно большая: индуктивностью в один и более Гн обладают сетевые обмотки достаточно мощных трансформаторов.

    Поэтому достаточно часто пользуются величинами меньшего порядка, а именно милли и микро генри (мГн и мкГн). Такие катушки применяются в электронных схемах. Одно из применений катушек – колебательные контура в радиоустройствах.

    Также катушки используются в качестве дросселей, основное назначение которых пропустить без потерь постоянный ток при этом ослабив переменный (фильтры в источниках питания). Как правило, чем выше рабочая частота, тем меньшей индуктивности требуются катушки.

    Индуктивное сопротивление

    Если взять достаточно мощный сетевой трансформатор и померить мультиметром сопротивление первичной обмотки, то окажется, что оно всего несколько Ом, и даже близко к нулю. Выходит, что ток через такую обмотку будет очень большим, и даже стремиться к бесконечности. Кажется, короткое замыкание просто неизбежно! Так почему же его нет?

    Одним из основных свойств катушек индуктивности является индуктивное сопротивление, которое зависит от индуктивности и от частоты переменного тока, который подведен к катушке.

    Нетрудно видеть, что с увеличением частоты и индуктивности индуктивное сопротивление увеличивается, а на постоянном токе вообще становится равным нулю. Поэтому при измерении сопротивления катушек мультиметром измеряется только активное сопротивление провода.

    Конструкция катушек индуктивности весьма разнообразна и зависит от частот, на которых работает катушка. Например, для работы в дециметровом диапазоне радиоволн достаточно часто используются катушки, выполненные печатным монтажом. При массовом производстве такой способ очень удобен.

    Индуктивность катушки зависит от ее геометрических размеров, сердечника, количества слоев и формы. В настоящее время выпускается достаточное количество стандартных катушек индуктивности похожих на обычные резисторы с выводами. Маркировка таких катушек выполняется цветными кольцами. Также существуют катушки для поверхностного монтажа, применяемые в качестве дросселей. Индуктивность таких катушек составляет несколько миллигенри.

    Источник