Меню

Формула тока при параллельном включении

Последовательное и параллельное соединение резисторов.

Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.

Последовательное соединение резисторов.

Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

Последовательное соединение резисторов.

Здесь у нас классический случай последовательного соединения – два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:

В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:

Тогда для вычисления общего напряжения можно будет использовать следующее выражение:

Но для общего напряжение также справедлив закон Ома:

Здесь R_0 – это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:

Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.

Например для следующей цепи:

Пример цепи.

Общее сопротивление будет равно:

Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае 🙂 А если при последовательном соединении все сопротивления равны ( R_1 = R_2 = … = R ), то общее сопротивление цепи составит:

В данной формуле n равно количеству элементов цепи. С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.

Параллельное соединение резисторов.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

А для токов справедливо следующее выражение:

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

Подставим эти выражения в формулу общего тока:

А по закону Ома ток:

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

Данную формулу можно записать и несколько иначе:

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

Пример цепи.

Смешанное соединение резисторов.

Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

Смешанное соединение резисторов.

Давайте рассчитаем общее сопротивление цепи. Начнем с резисторов R_1 и R_2 – они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_ <1-2>:

Теперь у нас образовались две группы последовательно соединенных резисторов:

  • R_ <1-2>и R_3
  • R_4 и R_5

Упрощенная схема.

Заменим эти две группы двумя резисторами, сопротивление которых равно:

Упрощенная схема 2.

Как видите, схема стала уже совсем простой 🙂 Заменим группу параллельно соединенных резисторов R_ <1-2-3>и R_ <4-5>одним резистором R_ <1-2-3-4-5>:

И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

Финальная цепь.

Общее сопротивление цепи получилось равным:

Таким вот образом достаточно большая схема свелась к простейшему последовательному соединению двух резисторов!

Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление – для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте!

Источник

Параллельное и последовательное соединение проводников

Ток в электроцепи проходит по проводникам от источника напряжения к нагрузке, то есть к лампам, приборам. В большинстве случаев в качестве проводника используются медные провода. В цепи может быть предусмотрено несколько элементов с разными сопротивлениями. В схеме приборов проводники могут быть соединены параллельно или последовательно, также могут быть смешанные типы.

mednie provoda

Элемент схемы с сопротивлением называется резистором, напряжение данного элемента является разницей потенциалов между концами резистора. Параллельное и последовательное электрическое соединение проводников характеризуется единым принципом функционирования, согласно которому ток протекает от плюса к минусу, соответственно потенциал уменьшается. На электросхемах сопротивление проводки берется за 0, поскольку оно ничтожно низкое.

Параллельное соединение предполагает, что элементы цепы подсоединены к источнику параллельно и включаются одновременно. Последовательное соединение означает, что проводники сопротивления подключаются в строгой последовательности друг за другом.

При просчете используется метод идеализации, что существенно упрощает понимание. Фактически в электрических цепях потенциал постепенно снижается в процессе перемещения по проводке и элементам, которые входят в параллельное или последовательное соединение.

Последовательное соединение проводников

Схема последовательного соединения подразумевает, что они включаются в определенной последовательности один за другим. Причем сила тока во всех из них равна. Данные элементы создают на участке суммарное напряжение. Заряды не накапливаются в узлах электроцепи, поскольку в противном случае наблюдалось бы изменение напряжения и силы тока. При постоянном напряжении ток определяется значением сопротивления цепи, поэтому при последовательной схеме сопротивление меняется в случае изменения одной нагрузки.

posledovatelnoe soedinenie

Недостатком такой схемы является тот факт, что в случае выхода из строя одного элемента остальные также утрачивают возможность функционировать, поскольку цепь разрывается. Примером может служить гирлянда, которая не работает в случае перегорания одной лампочки. Это является ключевым отличием от параллельного соединения, в котором элементы могут функционировать по отдельности.

Последовательная схема предполагает, что по причине одноуровневого подключения проводников их сопротивление в любой точки сети равно. Общее сопротивление равняется сумме уменьшения напряжений отдельных элементов сети.

При данном типе соединения начало одного проводника подсоединяется к концу другого. Ключевая особенность соединения состоит в том, что все проводники находятся на одном проводе без разветвлений, и через каждый из них протекает один электроток. Однако общее напряжение равно сумме напряжений на каждом. Также можно рассмотреть соединение с другой точки зрения – все проводники заменяются одним эквивалентным резистором, и ток на нем совпадает с общим током, который проходит через все резисторы. Эквивалентное совокупное напряжение является суммой значений напряжения по каждому резистору. Так проявляется разность потенциалов на резисторе.

Использование последовательного подключения целесообразно, когда требуется специально включать и выключать определенное устройство. К примеру, электрозвонок может звенеть только в момент, когда присутствует соединение с источником напряжения и кнопкой. Первое правило гласит, что если тока нет хотя бы на одном из элементов цепи, то и на остальных его не будет. Соответственно при наличии тока в одном проводнике он есть и в остальных. Другим примером может служить фонарик на батарейках, который светит только при наличии батарейки, исправной лампочки и нажатой кнопки.

В некоторых случаях последовательная схема нецелесообразна. В квартире, где система освещения состоит из множества светильников, бра, люстр, не стоит организовывать схему такого типа, поскольку нет необходимости включать и выключать освещение во всех комнатах одновременно. С этой целью лучше использовать параллельное соединение, чтобы иметь возможность включения света в отдельно взятых комнатах.

Параллельное соединение проводников

В параллельной схеме проводники представляют собой набор резисторов, одни концы которых собираются в один узел, а другие – во второй узел. Предполагается, что напряжение в параллельном типе соединения одинаковое на всех участках цепи. Параллельные участки электроцепи носят название ветвей и проходят между двумя соединительными узлами, на них имеется одинаковое напряжение. Такое напряжение равно значению на каждом проводнике. Сумма показателей, обратных сопротивлениям ветвей, является обратной и по отношению к сопротивлению отдельного участка цепи параллельной схемы.

paralelnoe soedinenie

При параллельном и последовательном соединениях отличается система расчета сопротивлений отдельных проводников. В случае параллельной схемы ток уходит по ветвям, что способствует повышению проводимости цепи и уменьшает совокупное сопротивление. При параллельном подключении нескольких резисторов с аналогичными значениями совокупное сопротивление такой электроцепи будет меньше одного резистора число раз, равное числу резисторов в схеме.

В каждой ветви предусмотрено по одному резистору, и электроток при достижении точки разветвления делится и расходится к каждому резистору, его итоговое значение равно сумме токов на всех сопротивлениях. Все резисторы заменяются одним эквивалентным резистором. Применяя закон Ома, становится понятным значение сопротивления – при параллельной схеме суммируются значения, обратные сопротивлениям на резисторах.

При данной схеме значение тока обратно пропорционально значению сопротивления. Токи в резисторах не взаимосвязаны, поэтому при отключении одного из них это никоим образом не отразится на остальных. По этой причине такая схема используется во множестве устройств.

Источник



Параллельное соединение резисторов

Разные виды соединения стандартных пассивных элементов применяют для решения практических задач в электро,- и радиотехнике. С помощью определенных конфигураций схем изменяют напряжение и токи в цепях, создают защитные и управляющие устройства. Ниже представлено параллельное соединение резисторов. Кроме сравнения с другими вариантами, рассмотрены ручные и автоматизированные технологии расчетов с рекомендациями о применении знаний на практике.

Разные виды соединения резисторов

Понятие параллельного подключения резисторов

На рисунке показаны разные варианты соединения элементов, которые применяют на практике. Параллельное включение резисторов подразумевает создание нескольких новых токоведущих цепей. Функциональные компоненты (от 2 и до любого необходимого количества) соединяют в двух точках.

Отличия от последовательного и смешанного подключений

Иные способы соединения понятны из показанных на картинке примеров. Без специальных вычислений понятно, что параллельное включение резисторов создает несколько путей прохождения тока. Следовательно, в отдельных цепях его сила будет меньше, по сравнению с контрольными точками на входе и выходе. Вместе с тем напряжение в отмеченных местах остается неизменным.

Последовательное соединение резисторов увеличивает общее электрическое сопротивление. Ток в этой цепи (по базовым принципам) не будет изменяться. Однако на каждом пассивном элементе можно будет обнаружить измерительным прибором соответствующее падение напряжения.

Смешанный вариант – это объединение представленных выше соединений. Различные комбинации используют для деления напряжения, решения других задач. Для упрощения расчетов суммируют последовательность соединенных сопротивлений в отдельных цепях:

Rобщ = R1 + R2 + … + Rn.

Вне зависимости от сложности схемы, на входе и выходе по первому закону Кирхгофа токи будут одинаковыми.

Формула параллельного соединения резисторов

В этом случае главной особенностью является распределение токов по нескольким цепям. Общее электрическое сопротивление для простейшей схемы из двух компонентов можно выразить формулой:

1/Rобщ = 1/R1 + 1/R2.

Математическим преобразованием для удобства расчетов можно получить следующее выражение:

Rобщ = 1/(1/R1 + 1/R2) = R1*R2/R1 + R2.

Расчет параллельного соединения резисторов

Для лучшего понимания процессов следует подробно рассмотреть представленную ниже схему. В контрольных точках (разрывах цепей) условно показаны измерительные приборы. Аналогичным образом подключают мультиметр для уточнения результатов теоретических вычислений. Чтобы не усложнять объяснение, использован «идеальный» источник постоянного тока. Его сопротивление в расчетах не учитывается. Аналогичным образом игнорированы емкостные (индуктивные) реактивные составляющие, которые способны создать незначительные нелинейные искажения.

Электрическая схема с пояснительными формулами

В рассматриваемом примере ток (I) идет по замкнутому контуру от положительного к отрицательному электроду АКБ. На входе параллельного участка (точка «а») он разделяется на I1 (I2), проходящие через разные ветки с электрическими сопротивлениями R1 (R2), соответственно. В точке «б» происходит объединение токов.

Если присоединить клеммы мультиметра к положительной клемме аккумулятора и входной точке, а после повторить измерение на выходе, будут определены одинаковые значения. Однако в отдельных ветвях токи будут отличаться, если применены разные сопротивления (R1≠R2). Сложение показаний подтвердит равенство суммы полученным ранее результатам измерений на входе (выходе). Промежуточный вывод, подтвержденный экспериментально:

Далее можно проверить разницу потенциалов на клеммах источника питания (Uип), в контрольных точках (Uаб) и на отдельных резисторах (UR1 и UR2). Несложно убедиться в том, что Uип = Uаб = UR1 = UR2. Для отдельных ветвей будут действительны пропорции:

  • UR1 = I1 * R1;
  • UR2 = I2 * R2.

Однако с учетом результатов измерений можно приравнять обе стороны выражений:

UR1 = UR2 = I1 * R1 = I2 * R2.

Простым преобразованием получают соотношение:

На основе этой формулы надо сделать следующий важный вывод: токи обратно пропорциональны электрическим сопротивлениям в соответствующих ветвях параллельной цепи.

Пример с исходными данными:

  • батарейка Uип = 6V;
  • сопротивление параллельных резисторов: R1 = 50 Ом, R2 = 150 Ом.

Расчет:

  • найти ток в первой ветке можно по формуле: I1 = Uип / R1 = 6/50 = 0,12А = 120 мА;
  • аналогичным образом вычисляют: I2 = Uип / R2 = 6/150 = 0,04А = 40 мА;
  • суммарное значение: Iобщ = I1 + I2 = 120 + 40 = 160 мА;
  • соблюдается отмеченный выше принцип пропорциональности: I1/I2 = R2/R1 = 50/150 = 40/120 ≈ 0,333.

Следует отметить разную силу тока в отдельных ветках. Для наглядности можно вспомнить пример с аналогом из водопроводных труб. В разветвленном участке по протоку с крупным диаметром пройдет больше жидкости, по сравнению с другим за контрольный временной интервал. Аналогичным образом действует электрическое сопротивление. При увеличении номинала пассивного элемента создаются дополнительные препятствия прохождению тока.

Для расчета сложных схем используют технологию эквивалентных сопротивлений. Этим термином обозначают расчетную величину (Rэкв), которая равна сумме измеряемых параметров отдельных компонентов на определенном участке цепи. Проще всего сделать вычисления, если соединить резисторы (номиналы из примера) последовательно:

Rэкв = R1 + R2 = 50 + 150 = 200 Ом.

Ниже подробно рассмотрен вариант с параллельной схемой:

  • по закону Ома для всей цепи действительно выражение: Iобщ = Uип/ Rэкв;
  • в отдельных ветках: I1 = U1/ R1 (I2 = U2/ R2);
  • по закону Кирхгофа для каждого провода: I = I1+ I2;
  • преобразование перечисленных соотношений позволяет сделать промежуточный вывод: Uип/ Rэкв = U1/ R1 + U2/ R2;
  • с учетом равенства напряжений: Uип = U1 = U2, можно переделать предыдущую формулу следующим образом: Uип/ Rэкв = Uип / R1 + Uип / R2 = Uип (1/R1 + 1/R2);
  • делением на общий множитель Uип получают итоговое выражение: 1/Rэкв = 1/R1 + 1/R2.

Последняя позиция позволяет сделать несколько важных заключений:

  • общая проводимость (величина, обратная электрическому сопротивлению) равна сумме проводимостей параллельных участков цепи;
  • эквивалентное сопротивление можно вычислить делением единицы на проводимость;
  • Rэкв при параллельном соединении всегда меньше самого меньшего из пассивных компонентов цепи.

Как рассчитать сложные схемы соединения резисторов

Если соединять большее количество элементов, надо в рассмотренные формулы добавить необходимое количество слагаемых.

Исходные данные:

  • источник постоянного тока 12V;
  • сопротивление параллельных резисторов, Ом: 10, 40, 60, 80.

Расчет:

  • основная формула: 1/Rэкв = 1/R1 + 1/R2 + 1/R3 + 1/R4;
  • подставив исходные данные, вычисляют проводимость: G = 1/Rэкв =1/10 + 1/40 + 1/60 +1/80 = 0,1 + 0,025 + 0,0166 +0,0125 = 0,1541;
  • эквивалентное сопротивление: Rэкв = 1/0,1541 ≈ 6,5 Ом;
  • ток в цепи: Iобщ = Uип/ Rэкв = 12/ 6,5 ≈ 1,85 А.

Сложные схемы

По аналогичной технологии делают расчеты более сложных цепей. На рисунке обозначены номиналы сопротивлений. В обоих случаях применяется одинаковый источник питания с Uип = 12V.

Расчет 1 (последовательное и параллельное соединение):

  • для каждого параллельного участка можно использовать формулу: Rобщ = 1/ (1/R1 + 1/R2) = R1*R2/R1 + R2;
  • эквивалентное сопротивление первой части: Rэкв1 = (2*4)/ (2+4) = 1,3 Ом;
  • второй: Rэкв2 = (15*5)/ (15+5) = 3,75 Ом;
  • общее: Rэкв = 1,3 + 10 + 3,75 = 15,05 Ом;
  • Iобщ = Uип/ Rэкв = 12/ 15,05 ≈ 0,8 А.

Расчет 2 (сложное параллельное соединение):

  • в этом варианте сначала вычисляют проводимость части (R3, R4, R5) по формуле: G345 = 1/5 + 1/10 + 1/ 20 =7/20 = 0,35 сим;
  • Rэкв (345) = 1/0,35 ≈ 2,857 Ом;
  • суммарное значение для цепи: R1 + R2 = 20 Ом;
  • по аналогии с предыдущим способом определяют: G12345 = 0,4 сим и Rэкв(12345) = (20*2,857)/ 20 + 2,857) ≈ 2,5 Ом;
  • после добавления последнего элемента (R6=7,5 Ом) получают итоговый результат: Rэкв = 2,5 + 7,5 = 10 Ом;
  • делением определяют силу тока в нагрузке, подключенной к источнику тока 12 V: I = 12/10 = 1,2 А.

В последнем примере применен дополнительный компонент цепи (R6). Соответственно, для этой схемы не будет выполняться рассмотренная выше пропорция равенства напряжений (источника и на подключенной нагрузке).

В этом случае разница потенциалов на шестом резисторе составит:

U6 = I *R6 = 1,2 * 7,5 = 9 В.

Соответственно, изменится напряжение между контрольными точками:

Uав = I * Rэкв(12345) = 1,2*2,5 = 12-9 =3V.

Вторая часть формулы демонстрирует проверку вычитанием напряжений (Uип — U6).

Ток в цепи параллельно соединенных резисторов

В ходе рассмотрения соответствующих участков разветвленных схем необходимо помнить о равенстве токов на входе и выходе из каждого узла, а также до и после группы из параллельных резисторов. Это правило поможет проверить правильность расчетов. Если отмеченное соответствие не соблюдено, устраняют ошибку вычислений.

Сила тока при параллельном соединении

С применением рассмотренных выше исходных данных для двух сложных схем можно сделать расчет для каждой отдельной ветки.

Пример 1:

  • общий ток в цепи составляет 0,8 А;
  • распределение напряжений на отдельных участках несложно определить по рассчитанным эквивалентным сопротивлениям: U12 = I * Rэкв1 = 0,8 * (2*4)/ (2+4) = 0,8 * 1,3 = 1,04 V;
  • по стандартному алгоритму вычисляют значения токов: I1 = U12/R1 = 0,52 А, I2 = U12/R2 = 0,26 А;
  • суммированием проверяют корректность вычислений: I = I1 + I2 = 0,52 + 0,26 ≈ 0,8 А.

Пример 2 (смешанный способ соединения резисторов):

  • ток в этом варианте – 1,2 А;
  • напряжение на участке с группой параллельных резисторов составляет Uав = I * Rэкв(12345) = 1,2*2,5 =3V;
  • по аналогии с предыдущим примером несложно вычислить ток в каждой отдельной ветке: I12 = Uав/(R1 + R2) = 3/ (15 + 5) = 0,15 А;
  • I3 = Uав/ R3 = 3/ 5 = 0,6 А;
  • I4 = Uав/ R4 = 3/ 10 = 0,3 А;
  • I5 = Uав/ R5 = 3/20 = 0,15 А;
  • по правилу равенства токов на входе и выходе из узла проверяют правильность сделанных расчетов: I = I12 + I3 + I4 + I5 = 0,15 + 0,6 + 0,3 + 0,15 = 1,2 А.

Мощность при параллельном соединении

Для правильного выбора резистивных компонентов электрических цепей обязательно следует учитывать мощность рассеивания. Этот параметр (Р) рассчитывают по классической формуле P = U (напряжение на выводах, В) * I (сила тока в цепи, А). Он косвенно определяет энергию, которая расходуется на выделение тепла. Также применяют пропорции:

К сведению. Конструкция каждого элемента рассчитана на определенный рабочий температурный диапазон. Превышение порога способно разрушить деталь, место пайки, соседние компоненты. Следует не забывать об одновременном существенном изменении сопротивления, которое способно нарушить функциональное состояние электрической схемы.

Для расчета выбирают подходящую формулу с учетом известных исходных параметров (данные из примера 2 в предыдущем разделе):

  • ток – 1,2 А;
  • на сопротивлении R6=7,5 Ом мощность рассеивания составит: P6 = I2 *R = 1,44 * 7,5 = 10,8 Вт;
  • найти такой резистор сложно, так как в стандартном ряду предлагаются номиналы от 0,05 до 5Вт;
  • в другой цепи (R5=20 Ом) расчетный ток составит 0,15 А, поэтому P5= 0,0225 * 20 = 0,45 Вт;
  • в этом случае можно выбрать изделие с подходящей мощностью рассеивания в стандартной номенклатуре 0,5 Вт (специалисты рекомендуют делать 1,52 кратный запас, поэтому лучше использовать резистор на 1 Вт).

Стандартные обозначения на электрических схемах и типовые номиналы по мощности

К сведению. При выборе резисторов следует учитывать класс изделия по точности электрического сопротивления. В серийных деталях допустимы отклонения 5-20%.

Как найти сопротивление при параллельном соединении

Для расчета этого параметра применяют формулы:

  • 1/G;
  • U/I;
  • U2/P;
  • P/I2.

Выбирают подходящий вариант (комбинацию) с учетом имеющихся исходных данных. Следует помнить о едином напряжении на входе и выходе и разных токах в отдельных ветках. Технология вычислений рассмотрена в предыдущих разделах.

Онлайн калькулятор для параллельного соединения резисторов

Рассчитать вручную последовательное соединение резисторов нетрудно. Но для параллельных и комбинированных схем удобнее использовать калькулятор. Соответствующие сервисные услуги бесплатно предлагают справочные и тематические сайты.

Специализированное современное программное обеспечение обеспечивает автоматизированное вычисление рабочих параметров сложных схем. Пользователь может:

  • переставлять проводники;
  • устанавливать в нужном месте светодиоды, конденсаторы, другие компоненты;
  • изменять входной сигнал.

Приложение «симулятор» электрических цепей для мобильных устройств на ОС Андроид

Представленная в публикации информация пригодится для самостоятельных расчетов и проверок. Она поможет выбрать в магазине резистор и восстановить работоспособность электротехнического устройства.

Видео

Источник

Параллельное соединение резисторов, а также последовательное

Ни одна электрическая схема не обходится без резисторов. Что это такое, для чего он нужен и какими способами их подключают в электрическую цепь рассмотрим подробно.

Что такое резистор и для чего он нужен

Резистор – пассивный элемент электрической цепи, который поглощает энергию тока и преобразовывает её в тепло за счет сопротивления потоку электронов в цепи.

Зависимость тока от сопротивления описывается законом Ома и рассчитывается по формуле I = U/R.

Свойство резисторов ограничивать ток и снижать напряжение используется во многих электронных устройствах и бытовых приборах.

Справка: Резисторы бывают двух видов – постоянные и переменные, во втором случае сопротивление проводника изменяется механическим путем (вручную).

Последовательное и параллельное соединение резисторов – основные способы соединения резистивных элементов.

Внимание! Резистор не имеет полярности, длина выводов с обоих концов одинакова, поэтому для лучшего понимания сути соединения предлагается называть выводы:

  1. С правого края – правый.
  2. С левого края – левый.

Понятие параллельного подключения резисторов

При параллельном подключении правые выводы всех резисторов соединяются в один узел, левые – во второй узел.

паралельное-соединение-резисторов

При параллельном включении резисторов ток в цепь разветвляется по отдельным ветвям, протекая через каждый элемент – по закону Ома величина тока обратно пропорциональна сопротивлению, напряжение на всех элементах одинаковое.

соединение-резисторов

Справка: Ветвь – фрагмент электрической цепи, содержащий один или несколько последовательно соединенных компонентов от узла до узла.

Последовательное подключение

При последовательном соединении резисторы нужно подключить в цепь друг за другом – правый вывод одного резистора к левому второго, правый второго – к левому третьего и так далее в зависимости от количества соединяемых элементов.

Последовательное подключение резисторов

При последовательном соединении ток, не изменяя своей величины, течет через все резистивные элементы.

Последовательное-подключение-резисторов

Смешанное подключение

При смешанном подключении в одной схеме сочетаются несколько видов соединений – последовательное, параллельное соединение резисторов и их комбинации. Самую сложную электрическую схему, состоящую из источников питания, диодов, транзисторов, конденсаторов и других радиоэлектронных элементов можно заменить резисторами и источниками напряжения, параметры которых изменяются в каждый момент времени. О параллельном соединении резистора и конденсатора читайте тут.

Смешанное подключение-резисторов

Смешанная схема делится на фрагменты, ток и напряжение рассчитывается для каждого отдельно в зависимости от того, как они соединены на выбранном сегменте электрической схемы.

Важно! Для расчета сопротивления резистора в схеме применяют отдельные формулы для каждого конкретного элемента в зависимости от вида соединения.

Что ещё нужно учитывать при подключении резисторов

Важный показатель в работе резистивного элемента мощность рассеивания – переход электрической энергии в тепловую, вызывающую нагрев элемента.

При превышении допустимой мощности рассеивания резисторы будут сильно греться и могут сгореть, поэтому при расчете схем соединения надо учитывать этот параметр – важно знать насколько изменится мощность резистивных элементов при включении в электрическую цепь.

Какая мощность тока при последовательном и параллельном соединении

Определение мощности отдельного резистивного элемента производится по формуле

P = U²/R или P = I²R , которую можно вывести из формулы расчета мощности электрической цепи P = UI по закону Ома.

Мощность при параллельном соединении

Рассчитав сопротивление каждого элемента в отдельности, считаем мощность каждого по формуле P = I²R, где

  • R – не номинальное сопротивление резистивного элемента, а рассчитанное для данной цепи;
  • I – сила тока в цепи.

При параллельном соединении через меньший резистор протекает больший ток – мощность рассеивания на этом резистивном элементе будет больше, чем на остальных.

Важно! При расчете параллельной цепи следует учитывать мощность сопротивления с самым маленьким номиналом.

Мощность при последовательном соединении

Вычислив сопротивление каждого резистивного элемента по отдельности, рассчитываем мощность каждого по формуле P = U²/R, где

  • R – рассчитанное нами сопротивление для определенной схемы;
  • U – падение напряжения на данном резистивном элементе.

Справка: Полную мощность цепи при последовательном и параллельном соединении можно найти, сложив вычисленные мощности отдельных элементов, входящих в цепь Pобщ = P1+P2+P3+…+Pn.

Как правильно рассчитать сопротивление

Применяется закон Ома для участка цепи – расчет сопротивления делается по формуле R = U/I, где

  • U – падение напряжение на конкретном резистивном элементе;
  • I – ток, протекающий через него.

При последовательном соединении

Для двух элементов считаем Rобщ = R1+R2.

Для нескольких сопротивлений разного номинала Rобщ = R1+R2+R3+…+Rn.

При параллельном соединении

Расчет для двух резисторов делаем по формуле Rобщ = (R1×R2)/(R1+R2).

Сопротивление параллельных резисторов с разным номиналом рассчитываем по формуле

Для элементов, соединенных в параллель, суммарное сопротивление всегда ниже наименьшего номинального.

Как рассчитать сложные схемы соединения резисторов

Сложные схемы рассчитываются путем группировки по параллельному и последовательному способу соединения.

Смешанное подключение-резисторов

Перед нами сложная схема – задача рассчитать общее сопротивление:

  1. R2, R3, R4 объединим в последовательную группу – применим формулу R2,3,4 = R2+R3+R4.
  2. R5 и R2,3,4 – параллельно соединенные резисторы, рассчитаем R5,2,3,4 = 1/ (1/R5+1/R2,3,4).
  3. R5,2,3,4, R1, R6 опять объединяем в последовательную группу – суммируя величины, получаем Rобщ = R5,2,3,4+R1+R6.

Для больших схем существуют специальные методы, облегчающие расчет. Один из таких методов – эквивалентное преобразование «треугольника» в «звезду». Такая система расчета применяется в том случае, когда невозможно по схеме определить последовательное или параллельное подключение резисторов.

Преобразование «звезда-треугольник»

Для соединения резистивных элементов, кроме вышеописанных способов, существует несколько других видов соединения:

  • «звезда» – соединение трех ветвей с одним общим узлом;
  • «треугольник» – соединение ветвей схемы в виде треугольника, сторонами которого служат ветви, вершины представляют узлы.

Справка: Узел – точка, в которой соединяются три и более проводника электрической цепи.

Эквивалентность замены предполагает стабильность токов, входящих в каждый узел, при одинаковых напряжения между одноименными узлами «треугольника» и «звезды».

Сопротивление резистора луча «звезды»

Сопротивление резистора луча «звезды» равно произведению сопротивлений резисторов прилегающих сторон «треугольника», деленному на сумму сопротивлений резисторов трех сторон «треугольника».

Сопротивление резисторов сторон «треугольника» равно сумме произведения сопротивлений резисторов двух прилегающих лучей «звезды», деленного на сопротивление третьего луча.

формулы рассчета звезды резисторов

О разнице подключения звезда и треугольник читайте здесь.

Чему равна сила тока в цепи при параллельном соединении резисторов

Согласно правилу Кирхгофа ток, поступающий в узел, равен току, выходящему из узла, – величина тока до группы параллельных резисторов и после нее должна быть неизменной.

Ток в группе параллельных резисторов распределяется по цепи в зависимости от их номинала, после прохождения через сопротивления суммируется в узле и выходит из него неизменным I = I1+I2+I3+…+In.

Как определить величину эквивалентного сопротивления при последовательном соединении резисторов

Справка: Эквивалентом сопротивления называется замена части схемы, состоящей из нескольких резистивных элементов, одним элементом.

Для последовательного соединения эквивалентное сопротивление равно сумме сопротивлений резисторов, включенных в группу, для расчета применяется формула Rэкв = R1+R2+…+Rn.

Например: Нужно посчитать эквивалентное сопротивление данной схемы.

Смешанное подключение-резисторов

Решение задачи производится путем разделения резистивных элементов на системные группы.

Выделяем первую группу из последовательно соединенных элементов – R2, R3, R4.

сложная-схема-подключения-резисторов

Выделяем вторую группу из последовательных элементов R1, R5, R6.

сложная_схема_подключения_резисторов

Получаем величину двух эквивалентных сопротивлений Rобщ1 и Rобщ2, соединенных параллельно.

Делаем расчет всей схемы Rэкв= Rобщ1× Rобш2/ (Rобщ1+ Rобщ2).

Зная способы соединения и формулы расчета можно рассчитать любую сложную схему соединения резистивных элементов, однако существует множество онлайн калькуляторов, которые сделают это быстрей человека, достаточно только ввести нужные параметры компонентов схемы.

Источник

Читайте также:  Схема стабилизатора тока amc7140