script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Ir2153 с защитой по току

Схемы импульсных блоков питания на микросхемах IR2153
с устройством мягкого пуска и защитой от токовых перегрузок и КЗ. Двуполярный ИБП для питания усилителей, а так же лабораторный с регулируемым выходным напряжением.

— Интересно, а что можно увидеть, если низе́нько пролететь над глухим бурятским селением тарбагатайского района, вооружившись комплексом радиолокационного наблюдения?
— Что, что? Узкораспахнутые глаза нескольких офонаревших финно-угров, а так же электромагнитную мешанину помех в полосе частот 1. 100 МГц.
Железный конь пришёл на смену крестьянской лошадке! Энергосберегающие лампы, телевизоры, компьютеры, зарядные устройства и прочий хай-тек с импульсными источниками питания — на смену лампочке Ильича!
Вот и приходится бедолаге-радиолюбителю уживаться с разномастными ИБП, излучающими в эфир интенсивный высокочастотный шлак во всех КВ-диапазонах.
А что тут попишешь? Прогресс как-никак. технологичность, блин. массогабариты, мать их за ногу.

И чтобы не застрять на обочине инновационного пути, поклонимся и припадём к импульсным блокам питания и мы. А начнём с двуполярного импульсного источника для мощного усилителя мощности.

Что нужно правильному ИПБ для комфортного выполнения своих непосредственных обязанностей?

1. Мягкий, он же плавный, пуск при включении импульсного блока питания, предотвращающий превышение допустимых токов полупроводников от работы на фактически короткозамкнутую нагрузку, образующуюся вследствие мгновенного заряда ёмкостей выпрямителя.
Часто используемые для этих целей термисторы не так уж и хороши, в силу инерционной зависимости изменения сопротивления от температуры. Результат — кирдык блоку питания из-за того, что просто выключили и тут же включили БП тумблером.

2. Правильная и быстрая защита ИБП от токовых перегрузок и КЗ, полностью отключающая устройство от сети при возникновении нештатных ситуаций.
Распространённое шунтирование на землю точки питания микросхемы-драйвера, управляющего ключевыми транзисторами, может выручить далеко не во всех ситуациях. Слабым звеном здесь оказывается наличие электролитического конденсатора в цепи питания, приводящего к существенной задержке такого обесточивания микросхемы со всеми вытекающими невесёлыми последствиями.

3. Наличие входных и выходных LC-фильтров для предотвращения проникновения импульсных помех в сеть и нагрузку.

4. Компактность, надёжность и радующая глаз простота исполнения.

Тезисы оформлены без нарушений требований, переходим к схеме электрической принципиальной импульсного блока питания.

Начнём со схемы (Рис.1), обеспечивающей мягкий и плавный пуск ИБП. Она же является устройством защиты импульсного блока питания от токовых перегрузок и КЗ, она же содержит элементы, предотвращающие проникновение импульсных помех в питающую сеть, она же формирует необходимые постоянные напряжения, необходимые для работы драйвера и ключевых транзисторов.

— Так, а что там, собственно-то, осталось? С гулькин хрен! Надо ж было сразу всё рисовать, а не размножать всякие писульки! — резонно зафиксирует мысль подготовленный радиолюбитель.

Торопиться не надо!
Во-первых, приведённая схема сгодится не только для преобразователей, собранных на IR2153, но и для любых других устройств, независимо от используемой элементной базы. Низковольтное напряжение (15В) может быть выбрано любой величины, посредством замены D2 на стабилитрон с соответствующим напряжением пробоя.

Во-вторых, даже при изготовлении источника питания на заявленной в заголовке микросхеме IR2153, имеет серьёзный резон сначала собрать приблуду, приведённую на Рис.1, десяток раз проверить соответствие принципиальной схеме, прозвонить тестером на отсутствие КЗ между дорожками платы, далее, подключившись к сети, убедиться в наличии работоспособности, а затем уже продолжать все дальнейшие манипуляции.
Настройки схема не требует, при отсутствии ошибок сразу запашет как зверь!

А вот теперь можно повеселиться по полной программе! Любые дефективные двигания шаловливыми ручонками при сборке преобразователя, ключевых транзисторов и импульсного трансформатора будут моментально зафиксированы устройством защиты и не приведут к каким-либо серьёзным последствиям для элементов схемы. Ручонки могут пострадать, элементы — вряд ли!

Как это всё работает?

Переключатель S1 — это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп — 2.
В момент перевода тумблера в состояние «вкл» через сопротивление R1 и двухполупериодный выпрямитель Br1 начинается заряд входного сглаживающего конденсатора C3.
Номинал резистора выбран такой величины, чтобы максимальный импульсный ток, протекающий через элементы в начальный момент включения, не превышал 10А.

По мере заряда конденсатора увеличивается и ток через последовательную цепочку R2, LED1, Ref1, D2. Через несколько десятков миллисекунд этот ток достигает значения, достаточного для включения реле Ref1. После включения реле, его контакты К1 замыкают и R1, и контакты тумблера. Всё — плавный пуск импульсного блока питания завершён, светодиод горит, можно отпускать пипку переключателя.

Выключение блока питания у нас завязано на схеме защиты, реализованной на транзисторах Т1, Т2, включённых по схеме эквивалента тиристора. Какой должна быть эта схема для предотвращения ложных срабатываний, мы подробно рассмотрели на странице Ссылка на страницу .

Схема обладает небольшим и предсказуемым током включения (около 100мкА), что позволяет отказаться от построечных резисторов при выборе необходимого порога срабатывания. Величина сопротивления R=R6IIR7 выбирается исходя из формулы R=0,77/Iср, т.е. в нашем случае Iср=0,77/0,5=1,54А.

Механизмы выключения ИБП — что при нажатии кнопки S1 в положение «выкл», что при срабатывании защиты абсолютно идентичны. Под воздействием напряжения, превышающем пороговый уровень на переходе база-эмиттер транзистора Т1, аналог тиристора переходит в проводящее состояние, верхний вывод реле замыкается на нулевую точку, реле отщёлкивается, блок питания от сети полностью отключается.

П-образный фильтр С1, Др1, С2 служит для предотвращения проникновения импульсных помех в сеть. Я использовал готовый 2х2.2мГн, 2A фирмы Epcos, позволяющий работать с мощностями до 600Вт. Если не влом заняться самообразованием, то можно намотать и самостоятельно на Amidon-овских кольцах их карбонильного железа марок: 26, 38, 40, 45, 52. Всю необходимую информацию можно найти на сайте производителя.

Диодный мост должен быть рассчитан на постоянное обратное напряжение не менее 400В, у меня под рукой оказалась радиодеталь с большим запасом по мощности — BR1004 на 10А.

Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания не должен превышать 20мА, как правило в документации такие реле называются — High Sensitive. У меня выбор пал на NRP05-A-12D, 12V / 5A, 250VAC.

Ограничений по максимальной мощности импульсного блока питания у приведённой схемы защиты и плавного пуска — нет. Естественным образом следует озаботиться выбором элементов Др1 и Br1, соответствующих максимальным токам, гуляющим по высоковольтным цепях устройства.

Принято считать, что минимальная величина ёмкости электролитического конденсатора С3 должна составлять 100МкФ на каждые 100Вт мощности. Увеличение этого значения в 1,5 — 2 раза, пойдёт только на пользу характеристикам ИБП, хотя и излишний фанатизм не приветствуется во избежание чрезмерного увеличения массогабаритных характеристик.

Стабилитрон D1 я пририсовал на схеме на всякий пожарный уже в процессе написания статьи для исключения возможного включения реле обратным напряжением, накопленным на С4 в момент срабатывания транзисторной защёлки. В оригинале всё прекрасно работает и без него!

Что-то, как-то слишком многословно получилось.
«Краткость есть душа ума. ». Ну да ладно, продолжим разговор на следующей странице.

Источник

Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт

Ну, наконец, после небольшого перерыва выкладываю новую статью по сборке импульсного источника двухполярного питания на ir2153 для усилителя низкой частоты. Данный ИИП мощностью 300 Вт может питать такие усилители как “Ланзар” или усилитель на TDA7294 и др., требующие двухполярное питание.

Рассматриваемый блок питания я буду задействовать для питания своего будущего усилителя “Ланзар”. Мощность источника питания 300-400 Вт будет достаточной для двух каналов усилителя по 100Вт с КПД=55%.

Читайте также:  Тепловое действие постоянного тока это

Схема была найдена на просторах интернета, собрана, отработана мною и выложена в виде данной статьи, как проверенная схема, чтобы вы могли без проблем повторить её. Вы же меня понимаете друзья, как редко найденная в интернете схема запускается и работает с первого раза.

На самом деле, схема не сложна, но я с ней помучился и попробую вам объяснить некоторые моменты настройки защиты.

Данный импульсный блок питания имеет защиту от перегрузки. Блок питания нестабилизированный.

Мощный преобразователь напряжения

Схема ИИП на ir2153 для усилителя низкой частоты.

Импульсный источник питания 300Вт

Данный источник питания не имеет стабилизации, поэтому в выходном каскаде отсутствуют дроссели.

Напряжение планировал +-45Вольт, но расчеты не точны вследствие неизвестного материала сердечника трансформатора, в итоге +-50Вольт при токе 3.5А. Сердечник импортный. Ну, я не огорчился, нормальное напряжение +-50Вольт, в самый раз для моего будущего усилителя.

DSC06665

Опишу немного работу схемы.

Все, что зеленым цветом является плавным запуском. Плавный запуск в данной схеме служит для гашения больших токов при включении источника питания в сеть. При включении в сеть, начинается зарядка большой емкости электролитического конденсатора С10, а так же электролитов в выходном каскаде C13-C16. Суть работы плавного запуска следующая, при включении источника питания в сеть, весь ток протекает через резистор R6, тем самым рассеивая излишки в виде тепла в атмосферу. Как только все емкости зарядились (прошли переходные процессы), замыкаются контакты реле K1, и весь ток начинает течь не через резистор R6 а через замкнутые контакты реле K1. Временная задержка срабатывания реле задается времязадающей емкостью С7. VDS1 является выпрямительным мостом для питания плавного запуска. VD1 стабилитрон на 13 Вольт для питания реле К1.

Перейдем к самому источнику питания. Резистор R2 ограничивает ток питания самого драйвера ir2153, то есть через него запитан драйвер. VD2 является однополупериодным выпрямителем питания драйвера.

Емкость С6 и резистор R4 задают частоту генерации драйвера ir2153. Под статьей можете скачать программу расчета номиналов данных элементов по частоте. Номиналы C6 и R4 указанные на схеме способствуют генерации прямоугольных импульсов с частотой 43-44кГц. Я убавил номинал резистора R4 до 13кОм, тем самым повысил частоту до 50кГц, трансформатор стал греться меньше, но и поднялось напряжение на нагрузке, было +-48 Вольт при токе 3А, стало +-50Вольт, но это только мне на руку.

На транзисторах VT1,VT2,R1,R3 собран “икающий” триггер защиты. R11 является датчиком тока. На нем совсем небольшое падение напряжения, и при увеличении тока во вторичной обмотке, ток первичной обмотки тоже увеличивается, увеличивается и падение напряжения на резисторе R11. Через подстроечный резистор R10 ток поступает на базу транзистора VT1, и при достижении определенного напряжения база-эмиттер примерно 0,6 Вольт транзистор открывается. Через открытый транзистор VT1 и резистор R1 начинает протекать небольшой ток, который открывает транзистор VT2, через данный транзистор и резистор R3 питание драйвера зашунтируется. Драйвер прекращает работу, ток падает в обмотках трансформатора, транзистор VT1 закрывается. Питание на драйвер вновь появляется, так как закрыт транзистор VT1, а следовательно и VT2, и питание драйвера уже не зашунтировано.

Далее цикл повторяется, пока в первичной обмотке трансформатора не ослабится ток. Визуально это все наблюдается миганием светодиода, эффект “икания”. Подстройка защиты ведется подстроечным резистором R10, но о настройке защиты чуть ниже.

На выходе стоят диоды типа “Шоттки”, позволяющие выпрямить высокочастотный ток. Ну и в каждом из плеч выходного каскада стоят электролиты по 2000мкФ на плечо. Данных баночек вполне достаточно для импульсного источника питания мощностью до 500Вт, используемого под усилитель низкой частоты.

Варистор VDR1 защищает схему от скачков напряжения. При скачке напряжения (напряжение срабатывания MYG14-431 составляет 430В при токе 1мА) сопротивление варистора мгновенно уменьшается, выкорачивая цепь питания схемы, перегорает предохранитель, обрывая сетевое питание.

Дроссель T1 служит для подавления высокочастотных помех на входе.

Детали для сборки импульсного источника питания на ir2153

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
Драйвер питания IR2153 1
VT1 Биполярный транзистор 2n5551 1
VT2 Биполярный транзистор 2n5401 1
VT3 Биполярный транзистор BC517 1 Составной транзистор
VT4,VT5 MOSFET — транзистор IRF740 2 Полевой транзистор
VD1 Стабилитрон 1n4743A 1 13В 1.3Вт
VD2,VD4 Выпрямительный диод HER108 2 Другой быстрый диод
VD3 Выпрямительный диод 1n4148 1
VD5,VD6 Диод Шоттки MBR20100 2 20А 100В
VDS1 Выпрямительный диод 1n4007 4
VDS2 Диодный мост RS607 1 6А 1000В
VDR1 Варистор MYG14-431 1
HL1 Светодиод Красный 1
K1 Реле HK3FF-DC12V-SH 1 Обмотка на 12В 400 Ом
R1 Резистор 0,25Вт 8,2кОм 1
R2 Резистор 2Вт 18кОм 1
R3 Резистор 0,25Вт 100 Ом 1
R5 Резистор 0,25Вт 47кОм 1
R6 Резистор 5Вт 22 Ом 1
R4,R7 Резистор 0,25Вт 15кОм 2
R8,R9 Резистор 0,25Вт 33 Ом 2
R10 Резистор подстр. 330 Ом 1 Однооборотный
R11,R11 Резистор 2Вт 0,2 Ом 2
C1,C3,C17,C18 Конденсатор неполярный 100нФ 400В 4 Пленка
C2 Конденсатор неполярный 470нФ 400В 1 Пленка
C4,C5,C7 Электролит 220мкФ 16В 3
C6,C8 Конденсатор неполярный 1нФ 2 Керамика любое напряж.
C9 Конденсатор неполярный 680нФ 1 Керамика любое напряж.
C10 Электролит 330мкФ 400В 1
C11,C12 Конденсатор неполярный 1мкФ 400В 2 Пленка
C13-C16 Электролит 1000мкФ 63В 4

Дроссель Т1 можете выдрать из любого импульсного блока питания ПК, как это сделал я.
Скачать список компонентов для ИИП на ir2153 в файле PDF.

Трансформатор намотан на кольце марки 2000НМ, размеры 40-24-20 мм. Первичная обмотка содержит 33 витка проводом диаметра 0,85мм в две жилы (перестраховался).

Вторичная обмотка ложится в два слоя. Диаметр провода вторичной обмотки 0,85мм и имеет 13+13 витков (то есть с отводом от середины, всего 26 витков), второй слой аналогичен первому (13+13 витков). Между слоями лежит диэлектрик.

Более подробную инструкцию о расчете и намотке трансформатора читайте в статье «Расчет и намотка импульсного трансформатора», также рекомендую прочитать статью «Как перемотать трансформатор из блока питания ПК».

Печатная плата для Блока питания усилителя НЧ DSC05900

Данный импульсный источник питания на ir2153 можно пересчитать под любое напряжение, достаточно перемотать трансформатор.

Если надумаете собирать данный блок питания напряжением более +-50В, то следует заменить выходные емкости С13-С16 на более высоковольтные, например на 100В., а также заменить Шоттки, например, на MBR20200.

Импульсник на ir 2153 DSC06646

Пару слов о защите.

Может сложиться так, что после сборки ИИП описанного в этой статье, при запуске будет срабатывать защита. И регулировка подстроечного резистора не даст никакого результата. Тогда следует уменьшить номинал резистора R11 до 0,07 Ом. У меня так и сделано, параллельно зацеплены три резистора по 0,2 Ом.

Суть ребята такая, если номинал резистора R11 большой, например 0,2 Ом, то на нем будет падение напряжения больше чем нужно, и при работе ИИП постоянно будет большое напряжение на базе транзистора VT1, защита будет срабатывать.

Может случиться так, что при испытании на довольно большой нагрузке защита не срабатывает, то можно попробовать увеличить номинал R11, например до 0,15 Ом. Либо попробовать увеличить номинал подстроечного резистора R10, например до 3,3 кОм. Так как, R10 и R11 соединены параллельно, и R11 на два порядка меньше, то увеличение R10 приведет к очень малому (несколько тысячных-сотых долей) изменению эквивалентного соединения.

В общем, повозитесь с настройкой защиты и все поймете. Хотя если все номиналы будут соответствовать схеме, и мотать трансформатор будете на кольце, даже рассчитанном на другое напряжение, у вас все заработает с первого раза. От вас требуется внимательность, и аккуратность.

Читайте также:  Способы измерения малых токов

Замечу, что на плате стоят два резистора R11 сопротивлением 0,22 Ома, соединенных между собой параллельно, в результате R11 равен 0,11 Ом (по правилу двух параллельно соединенных проводников). У меня на плате три резистора R11 по 0,22 Ома (параллельно соединенных), что дает в результате 0,07 Ом.

Датчик тока DSC06654

Первый запуск и настройка защиты.

Первый запуск всегда делайте через лампу. Что это значит? Это значит, что от сети подключаем не напрямую питание, а в разрыв одного из двух проводов подсоединяем лампу 220 Вольт.

Через лампу

Что нам даст лампа? Лампа – это тот же резистор, в котором визуально можно наблюдать рассеивание лишней мощности в виде света (тепла соответственно тоже), а также предотвратит перегорание элементов при неисправности в блоке питания.

Если в вашем собранном блоке питания на ir2153 будет присутствовать короткое замыкание (КЗ), чего я вам не желаю, то при подключении через лампу, последняя будет гореть в полный накал и возможно ничего больше не сгорит, так как лампа рассеет всю мощность. Это очевидно, так как схема примет вид:

Через лампу1

Если в блоке питания будет обрыв, то лампа не загорится.

При нормальном запуске ИИП наблюдается следующая картина, лампа должна вспыхнуть и погаснуть. Вспыхивает лампа в момент зарядки всех емкостей. Если емкости не разрядить, то второй запуск пройдет без вспыхивания лампы.

Для настройки защиты лампу исключите из цепи, иначе лампа будет рассеивать мощность и не позволит вам, как следует нагрузить ваш ИИП.

Для проверки защиты нужно нагрузить наш ИИП на ir2153. Нагружать будем мощными резисторами. Для этого их нужно рассчитать. Расчет производим с помощью закона Ома. На выходе у меня +-50В, если я замерю не относительно ноля, а на плечах, то получу напряжение +100В. Я хочу выжать из моего блока питания ток 3А, это 300Вт (мощность = ток*напряжение). Теперь 100В/3А=33,3 Ом.

Я нашел несколько 25Вт резисторов и собрал из них 33 Ом. Наливаете в тазик воды и опускаете в него подключенные резисторы . В разрыв амперметр, чтобы замерить ток.

Ток потребления 3 Ампера.

DSC06720

Напряжение на плечах 102 Вольта.

DSC06725

Далее плавным вращением подстроечного резистора R10, добиваемся загорания светодиода, который должен начать мигать. После того, как поймали место, где срабатывает защита, крутим подстроечный резистор R10 в обратном направлении, пока защита перестанет срабатывать. В этом положении оставляем R10. Все, защита настроена, при перегрузке более 300Вт в моем случае, сработает защита.

DSC06652 DSC06649

Несколько советов.

После пайки обязательно сотрите остатки канифоли спиртом или ацетоном. Посадите ключи и Шоттки на радиаторы, через диэлектрические прокладки. После настройки защиты погоняйте ваш блок питания сначала минут 15, потом можете час. После 1 часа работы, трансформатор нагрелся до 64 градусов и рост температуры остановился. Это нормально. Ключи IRF740 работают до 150 градусов, и соответственно будут нагреваться.

Замеры температуры при работе схемы:

Температура трансформатора DSC06708

При желании и наличии осциллографа, можете пересчитать R4 и С6, для оптимальной настройки частоты. Уменьшив R4 до 13кОм, я увеличил частоту до 50кГц, что сразу сказалось на работе моего блока питания, повысился КПД, а следовательно и уменьшилось выделение тепла.

DSC06688

Печатная плата для ИИП на ir2153 СКАЧАТЬ

Список компонентов для сборки ИИП на ir2153 (PDF) СКАЧАТЬ

Программа расчета частоты драйвера ir2153 по R4 и C6 СКАЧАТЬ

Статья по расчету и намотке импульсного трансформатора ПЕРЕЙТИ

Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.

Источник

Простой импульсный блок питания на IR2153

Выбор силовых ключей импульсного БП

Силовые ключи — на максимальное напряжение сток-исток не менее 400В, максимальный прямой ток от 4А, однако гнаться за большим запасом по току не нужно (в этих схемах ключи либо почти холодные, либо сразу горят в дым), поскольку более мощные мосфеты обладают бОльшей емкостью затвор-исток, и соответственно требуют бОльший заряд для переключения. А так как время переключения исчисляется наносекундами — «тяжелый» затвор требует больших мгновенных токов на переключение. Микросхема же ограничивает выходные токи максимум 500мА (в новых микросхемах) и 250мА (для верхнего ключа) в старых. Погоня за ненужным запасом по току приведет к замедленному открыванию и закрыванию ключей (заметные потери в ключах, микросхема на пределе), а там и до сквозного тока (с дымом и огнем) недалеко. Производитель нормирует выходные параметры для входной емкости ключа 1400пФ, однако все популярные ключи имеют этот параметр от 2000пФ до 3500пФ, что уже предел. Наиболее точным будет параметр ключа, называемый полным зарядом на переключение, обозначается в наноКулонах.

Ключи с этим параметром более 65нК — не подходят для прямого управления микросхемой без дополнительных драйверов. Однако для наших обычных 200-300Вт более чем достаточно распространенных irf840, 740, (02…08)N40(60) и прочих подобных дешевых полевиков. Следует обратить внимание на наличие в транзисторе встроенного быстрого обратного диода, время восстановления должно быть не более 100нс, лучше меньше. Если диод медленный или его (редко) нет вовсе — надо защитить транзисторы, подключив параллельно каждому быстрый диод средней мощности на обратное напряжение от 400В. Скорость желательна в пределах 35.100нс. При прочих равных предпочтение следует отдать транзисторам с меньшим полным зарядом на переключение (есть в документации производителя).

Защита от КЗ и перегрузки блока питания на ir2153

Обязательно всплывет вопрос по-поводу стабилизации и защиты от КЗ и перегрузки. Как я уже говорил, для источников питания с этими фичами лучше взять намного более подходящую специализированную микросхему, их сотни. Усложнится схема, плата, цена — это уже совсем другая песня… не укладывается в концепцию «просто, дешево, сердито». «Ирка» — ir2153 — не ШИМ-контроллер, управления длительностью импульсов у нее нет, соответственно полноценная стабилизация и защита невозможна. Встречаются схемы с пороговым элементом, отключающим питание по выводу 1 — это безграмотный колхоз, который может сработать, а может и привести к выгоранию всей схемы, т. к. становятся возможны фатальные комбинации состояний микросхемы при резко меняющемся силовом напряжении. Датчиком тока ставят низкоомный резистор в исток нижнего ключа или в первичную «землю» (плохо, контролируется только более надежный нижний ключ), более грамотные используют трансформатор тока в цепи первичной обмотки силового трансформатора. В любом случае контролируется только средний ток, эта цепь по определению должна быть медленной, чтобы а)не срабатывать при включении (мягкого старта у «ирки» нет) и б) накопить достаточно энергии на включение исполнительного элемента (обычно биполярный или полевой транзистор).

Таким образом, неизвестно что произойдет раньше при КЗ — либо выгорит все (ведь полумост окажется нагружен на ничтожную индуктивность рассеяния силового трансформатора и ток при открытии ключа будет огромным и очень резко нарастающим), либо защита таки успеет «рубануть питало» микросхеме. Кстати, если уж рубить — то делать это правильно, замыкая вывод 3 на общий. Это тоже медленный, но хотя-бы документированный производителем метод выключения (shutdown) микросхемы — много ниже вероятность «схватить сквозняк», нежели при внезапном отключении питания микросхемы. Существует еще вариант защиты с «датчиком» в виде пикового детектора напряжения на выводе 6, но т. к. исполнительный механизм не меняется — принципиальной разницы нет. Так что защита эта лишь расслабляет, полагаться на нее все равно не стоит. Вдобавок усложняется схема, появляется процедура настройки защиты, что тоже выходит за рамки исходной концепции. Правильно собранный простой блок питания на ir2153 очень надежен и неприхотлив к нагрузке, поэтому отлично подходит для УМЗЧ, паяльников и прочих подобных дел (как почти любой «прямоход»).

Читайте также:  Правила построения векторных диаграмм токов

печатная плата блока питания на ir2153

Печатная плата простого блока питания на ir2153

Источник



Импульсный блок питания на IR2153 с защитой

Главным компонентом рассматриваемого источника питания является микросхема (драйвер) IR2153. Данный драйвер выпускается в двух исполнениях — IR2153 и IR2153D. Буква D обозначает, что микросхема оснащена диодом, предназначенным для питания каскада управления верхнего ключа. Таким образом, если в схеме применить драйвер IR2153D, то диод D2 устанавливать не требуется. Частота генерации данного источника питания задается резистором R4 и конденсатором C6 подключенным к выводам микросхемы RT (ножка 2) и CT (ножка 3). Оптимальной частотой генерации микросхемы является частота в 40 – 70 кГц, именно под данный диапазон подобран сердечник трансформатора Tr1. Особенностью микросхемы является способность остановки генерации путем закорачивания вывода CT на минус. Этот принцип применен для организации защиты микросхемы от короткого замыкания на выходе данного источника питания.

импульсный источник питания на ir2153

Схема электрическая принципиальная импульсного блока питания на IR2153

Принцип работы источника питания

Входной фильтр представлен элементами С1, Др1, С2, R2 – он предназначен для защиты блока питания от высокочастотных помех и пульсаций присущих в сети. Резистор R2 выполняет функцию разряда конденсаторов С1, С2 после выключения источника питания. Конденсаторы С1, С2 должны выдерживать действующее напряжение сети (311 В), то есть необходимо применить конденсаторы выдерживающие напряжение 400 В типа Х2.
При включении источника питания в сеть ток проходит через фильтр, диодный мост и начинает заряжать конденсатор С3. При этом ток заряда конденсатора достаточно велик и грозит пробою диодного моста Br1. Для ограничения тока заряда при старте БП применен резистор R1. Вместо резистора R1 можно применить термистор номиналом от 3,3 – 4,7 Ом. Диодный мост Br1 должен быть рассчитан на приложенное к нему обратное напряжение не менее 400 В, в данном случае подойдут диодные мосты типа RS406, RS407. Конденсатор С3 должен быть рассчитан также на напряжение в 400 В, при этом его емкость подбирается из расчета 1 мкФ на 1 Вт выходной мощности.
Для организации питания микросхемы IR2153 применяется цепочка R3, D1. Сопротивлением R3 в диапазоне от 5,1 кОм до 20 кОм добиваются потребления тока микросхемой от 5 мА – 20 мА. Оптимальный номинал резистора R3 подбирается исходя из замера напряжения на выводах 1, 4 микросхемы IR2153 – данное напряжение должно составлять не менее 14,5 В. Резистор R3 должен быть рассчитан на рассеиваемую мощность в 2 Вт.
Питание каскадов управления выходных транзисторов микросхемы осуществляется цепочкой D2, С7. Если в схеме применена микросхема IR2153D, то диод D2 не устанавливается. Емкость С7 – 0,22мкФ напряжением не менее 25 В.
Мощность данного блока питания задается выходными полевыми транзисторами Т2, Т3, которые представлены транзисторами типа IRF830. Данные транзисторы способны отдать мощность в 100 Вт. Однако если применить в качестве Т2, Т3 транзисторы типа IRF840 то можно добиться выходной мощности до 250 Вт.
Конденсатор С11 предназначен для гашения помех, передаваемых трансформатором Tr1. Конденсаторы С8, С9 – служат для подавления ВЧ помех, а R8, R9 – для их разрядки. R7, C10 – подавляет паразитные колебания присутствующие во время работы Tr1.
Выходные выпрямительные диоды должны выдерживать обратное напряжение более 100 В (при условии выходного напряжения в 18 В) т.е не менее чем в 5 раз. Время обратного восстановления диодов – не менее 100 наносекунд.
Защита от короткого замыкания на выходе ИП представлена транзистором Т1, светодиодом LED1, диодом D7, резисторами R10-R13 и конденсатором С16. Принцип работы заключается в следующем: при увеличении тока потребления проходящего через резистор R10 на нем увеличивается падение напряжения, которого хватает для открытия транзистора Т1. Когда Т1 открывается, то через диод D7 вывод микросхемы IR2153 оказывается на земле, что приводит к отключению генерации микросхемы. Далее падение напряжения на R10 исчезает и ИП вновь возобновляет работу. Таким образом, мы имеем «икающую» защиту.
Трансформатор Tr1 представляет собой ферритовое кольцо проницаемостью в 2000НМ, типоразмером 32х20х6. Первичная обмотка I содержит 161 виток намотанного скруткой в три провода ПЭЛ диаметром 0,25 мм. Вторичная обмотка имеет по 21 витку намотанного скруткой в три провода ПЭЛ диаметром 0,4 мм.
Для однополярного питания вторичная обмотка наматывается без отвода.
Для того, чтобы получить на выходе блока питания напряжение выше или ниже 18 В, необходимо пропорционально увеличить или уменьшить количество витков вторичной обмотки трансформатора Tr1.

Источник

Простой ИБП на IR2153 с защитой от перегрузки и КЗ (300Вт)

Внимание! Данная схема не рекомендуется к сборке! Есть более совершенная и надежная схема: Импульсный источник питания для УМЗЧ на IR2161 [2017]​

Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153.

Схема импульсного блока питания представляет собой стандартную схему из даташита. Отличие схемы от даташитной лишь в оригинальном способе запитки драйвера и простой, высокоэффективной защите от короткого замыкания и перегрузок.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

Защита от перегрузок и КЗ выполнена на паре транзисторов 2N5551/5401. В качестве датчика тока в данной схеме используются резисторы включенные в исток нижнего плеча преобразователя. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. С помощью R6 настраивается порог срабатывания защиты.

При КЗ или перегрузке, когда падение напряжения на R10 R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 — 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме. Светодиод HL1 сигнализирует о срабатывании защиты.

Защита настраивается так. К выходу каждого плеча блока питания подключаются мощные 10 Ом’ные резисторы. Включается блок питания в сеть. Вращением движка R6 добиваемся того чтобы HL1 погас, а затем выставляем движок в такое положение, чтобы HL1 еще не горел, но при минимальном повороте движка в сторону уменьшения тока срабатывания защиты, светодиод загорался. При такой настройке защиты, она будет срабатывать при выходной мощности приблизительно 300Вт. Такой режим работы безопасен для данных ключей (IRF740) и драйвера.

Трансформатор намотан на сердечнике ER35/21/11. Первичная обмотка намотана в два провода 0,63мм2 и содержит 33 витка. Вторичная обмотка состоит из двух половинок, намотанных в три провода 0,63мм2 и каждая половинка содержит по 9 витков.

Печатная плата выполнена в формате Sprint-Layout. Распечатке на лазерном принтере зеркалить ее не нужно.

Источник