Меню

Как определить полярность трансформатора тока

Описание и проверка полярности трансформатора тока, техника безопасности

В трехфазных сетях из-за значительных токовых нагрузок для приведения измеряемого сигнала к приемлемому уровню применяются трансформаторы тока или ТТ. При монтаже этих приборов должна соблюдаться полярность, зависящая от направления, выбранного при намотке катушек, а также от их взаимного положения на самом сердечнике. Определение одноименных выводов, указывающих на правильную полярность данного трансформатора тока, является обязательной процедурой, предшествующей его монтажу.

Что это такое?

Под полярностью ТТ понимается определенный порядок расположения выводов его вторичной обмотки, обеспечивающий условия для передачи токового сигнала в нужной фазе. Имеющаяся на корпусе маркировка указывает на выводы, в которых выходной И1-И2 и входной Л1-Л2 сигналы действуют синфазно (имеют одну и ту же полярность). То есть они в этих точках должны достигать своих максимумов и минимумов одновременно.

Трансформаторы тока

Важно! От правильности включения катушек зависит корректность показаний подключенного к вторичной обмотке измерителя (счетчика электроэнергии, в частности).

При нарушении этого порядка они будут сильно отличаться от реальных значений.

Для чего проверяется полярность обмоток трансформатора тока

Несмотря на то, что на промышленных образцах ТТ полярность вторичной катушки указывается на самом изделии – возможны следующие непредвиденные ситуации:

  • Эти обозначения по каким-либо причинам отсутствуют (стерлись, например).
  • На корпусе ТТ и на встроенной в него катушке маркировки не совпадают.

Если спутан порядок включения вторичной (понижающей) катушки – в ней будет наводиться смещенный на 180 градусов переменный сигнал. В этом случае подключенный к ней электрический счетчик начнет учитывать реактивную нагрузку, а его показания будут заниженными. Любой представитель энергосетей в данной ситуации имеет право применить к нарушителю штрафные санкции.

Трансформатор тока

Как проверить полярность?

Для проверки синфазности включения обмоток ТТ в измерительную цепь могут применяться как простейшие способы с использованием миллиамперметра и батарейки, так и профессиональные методы, основанные на применении специальных измерительных приборов.

С помощью батарейки и миллиамперметра

В ней источником является элемент питания с заявленным напряжением от 2-х до 6 Вольт. Типовая батарейка типа 3R12 на 4,5 Вольта с подпаянными к клеммам проводами вполне сгодится для этого.

Функцию измерителя выполняет миллиамперметр, имеющий пределы от 10-ти до 100 мА.

Обратите внимание: Следует выбрать индикатор с нулем по центру шкалы, что позволит отслеживать изменения любой полярности.

В начале измерений за правильную маркировку силовой обмотки принимается обозначение, указанное на рисунке (Л1 – справа, а Л2 – слева). Подсоединив «+» батарейки к началу Л1, а минус – к ее концу Л2 и замкнув тумблер, обнаружим, что стрелка индикатора на мгновение отклонилась вправо. Это значит, что изменение токов в обеих катушках происходит синфазно и что они включены правильно.

Если же стрелка при измерении отклонилась влево – это означает противоположность процессов. Когда в первичной обмотке ток возрастает, то одновременно во вторичной его значение уменьшается. В данной ситуации контакты И1и И2 следует поменять местами.

С помощью РЕТОМ-21

Выход прибора со звездочкой подключается к началу катушки Л1, а без обозначения – к ее концу Л2.

В меню прибора РЕТОМ-21 выбирается значение параметра первичной обмотки, а ток во вторичной цепи измеряется встроенным модулем РА. При этом на дисплее регистрируются его значение и фазный сдвиг. Если прибор показывает нулевую разницу фаз – катушки включены правильно (синфазно). В противном случае он будет показывать значение, близкое к 180-ти градусам.

Ретом-21

С использованием ВАФ

Измерение этим прибором аналогично уже описанному выше способу, согласно которому в первичную обмотку поступает токовый импульс заданной величины. Вместе с тем на дисплее индицируется значение вторичного тока и его фаза по отношению к первичному. При нулевых фазных показаниях следует считать, что катушки включены правильно. В противном случае (разница фаз – 180 градусов) контакты второй обмотки придется поменять местами.

Техника безопасности

При проведении измерений специальными приборами должны соблюдаться следующие меры предосторожности:

  • К работе допускаются лица, освоившие правила работы с измерительным оборудованием.
  • Они должны пройти обязательный инструктаж, касающийся безопасных приемов работы с ТТ.
  • При определении полярности вторичной обмотки измеритель присоединяется к ее зажимам до момента подачи импульса в первичную цепь.

Лишь при условии соблюдения указанных правил удается обезопасить себя от потенциальных угроз.

Источник

Как проверить полярность трансформатора тока

Проверка трансформатора тока, как и когда она должна проводиться, какие должны быть показатели обязательно проверены.

  1. Перечень возможных неисправностей
  2. Что это такое?
  3. Автотрансформатор
  4. Внешний визуальный осмотр
  5. Для чего проверяется полярность обмоток трансформатора тока
  6. Проверка изоляции
  7. Испытания изоляции
  8. Как проверить полярность?
  9. С помощью батарейки и миллиамперметра
  10. С помощью РЕТОМ-21
  11. С использованием ВАФ
  12. Проверка состояния изоляции
  13. 1. Прямой метод проверки
  14. Техника безопасности
  15. Поломки трансформаторов

Перечень возможных неисправностей

Ниже приведены наиболее распространённые причины неисправностей ТТ:

  • механические повреждения магнитопровода;
  • повреждения изоляции корпуса;
  • механические повреждения обмоток:
  • обрывы обмоток;
  • снижение изоляции проводников обмотки, создающее межвитковые замыкания;
  • механический износ выводов обмотки и контактов.

Для оценки работоспособности трансформатора проводится внешний визуальный осмотр и проверка электрических характеристик.

Что это такое?

Под полярностью ТТ понимается определенный порядок расположения выводов его вторичной обмотки, обеспечивающий условия для передачи токового сигнала в нужной фазе. Имеющаяся на корпусе маркировка указывает на выводы, в которых выходной И1-И2 и входной Л1-Л2 сигналы действуют синфазно (имеют одну и ту же полярность). То есть они в этих точках должны достигать своих максимумов и минимумов одновременно.

Трансформаторы тока

Важно! От правильности включения катушек зависит корректность показаний подключенного к вторичной обмотке измерителя (счетчика электроэнергии, в частности).

При нарушении этого порядка они будут сильно отличаться от реальных значений.

Автотрансформатор

Это один из видов преобразователей низкой частоты, в которых выводная катушка является частью вводной или наоборот. В таком преобразователе катушки связываются не только магнитным способом, но и электрическим. Несколько выводов отходят от одной катушки и позволяют с одной единственной обмотки выводить разное напряжение.

Из преимуществ, это стоимость, которая намного меньше, а вот недостатком является отсутствие на катушках гальванической развязки. Их используют в различных приборах автоматического управления и сетях высокого напряжения.

Внешний визуальный осмотр

С него начинается каждая проверка, и она позволяет оценить:

  • состояние внешних поверхностей деталей;
  • наличие сколов и трещин на изоляции;
  • состояние клеммных или болтовых соединений;
  • наличие видимых дефектов.

Для чего проверяется полярность обмоток трансформатора тока

Несмотря на то, что на промышленных образцах ТТ полярность вторичной катушки указывается на самом изделии – возможны следующие непредвиденные ситуации:

  • Эти обозначения по каким-либо причинам отсутствуют (стерлись, например).
  • На корпусе ТТ и на встроенной в него катушке маркировки не совпадают.

Если спутан порядок включения вторичной (понижающей) катушки – в ней будет наводиться смещенный на 180 градусов переменный сигнал. В этом случае подключенный к ней электрический счетчик начнет учитывать реактивную нагрузку, а его показания будут заниженными. Любой представитель энергосетей в данной ситуации имеет право применить к нарушителю штрафные санкции.

Трансформатор тока

Проверка изоляции

Испытания изоляции

В случае установки в составе высоковольтного оборудования трансформатор тока смонтирован в линии нагрузки, при этом он входит в линию конструктивно, и в таком случае испытания изоляции проводятся при проведении совместных высоковольтных испытаний отходящей линии сотрудниками службы изоляции. По результатам проведенных испытаний оборудование может быть допущено в эксплуатацию.

Читайте также:  Прочитайте перечень понятий с которыми вы встречались в курсе физики объем диффузия сила тока

Как проверить полярность?

Для проверки синфазности включения обмоток ТТ в измерительную цепь могут применяться как простейшие способы с использованием миллиамперметра и батарейки, так и профессиональные методы, основанные на применении специальных измерительных приборов.

С помощью батарейки и миллиамперметра

В ней источником является элемент питания с заявленным напряжением от 2-х до 6 Вольт. Типовая батарейка типа 3R12 на 4,5 Вольта с подпаянными к клеммам проводами вполне сгодится для этого.

Функцию измерителя выполняет миллиамперметр, имеющий пределы от 10-ти до 100 мА.

Обратите внимание: Следует выбрать индикатор с нулем по центру шкалы, что позволит отслеживать изменения любой полярности.

В начале измерений за правильную маркировку силовой обмотки принимается обозначение, указанное на рисунке (Л1 – справа, а Л2 – слева). Подсоединив «+» батарейки к началу Л1, а минус – к ее концу Л2 и замкнув тумблер, обнаружим, что стрелка индикатора на мгновение отклонилась вправо. Это значит, что изменение токов в обеих катушках происходит синфазно и что они включены правильно.

Если же стрелка при измерении отклонилась влево – это означает противоположность процессов. Когда в первичной обмотке ток возрастает, то одновременно во вторичной его значение уменьшается. В данной ситуации контакты И1и И2 следует поменять местами.

С помощью РЕТОМ-21

Выход прибора со звездочкой подключается к началу катушки Л1, а без обозначения – к ее концу Л2.

В меню прибора РЕТОМ-21 выбирается значение параметра первичной обмотки, а ток во вторичной цепи измеряется встроенным модулем РА. При этом на дисплее регистрируются его значение и фазный сдвиг. Если прибор показывает нулевую разницу фаз – катушки включены правильно (синфазно). В противном случае он будет показывать значение, близкое к 180-ти градусам.

Ретом-21

С использованием ВАФ

Измерение этим прибором аналогично уже описанному выше способу, согласно которому в первичную обмотку поступает токовый импульс заданной величины. Вместе с тем на дисплее индицируется значение вторичного тока и его фаза по отношению к первичному. При нулевых фазных показаниях следует считать, что катушки включены правильно. В противном случае (разница фаз – 180 градусов) контакты второй обмотки придется поменять местами.

Проверка состояния изоляции

Для проведения измерения сопротивления изоляции следует использовать мегомметр с Uвых соответствующий требованиям техдокументации на ТТ. Для большинства существующих высоковольтных устройств проверку сопротивления изоляции следует проводить прибором с Uвых в 1 Кв.

Мегомметром проводят измерения сопротивление изоляции между:

  • корпусом и обмотками (каждой из обмоток);
  • каждой из обмоток и всеми остальными.

К эксплуатации могут быть допущены собранные токовые цепи с величиной сопротивления изоляции не менее 1 мОм.

1. Прямой метод проверки

Прямая проверка — наиболее проверенный способ, также называемый проверкой схемы под нагрузкой.

Для проведения следует использовать штатную цепь включения трансформатора в цепи первичного и вторичного оборудования или же, собрать новую цепь для проверки, при которой ток величиной от 20 до 100 % от номинальной величины проходит по первичной обмотке трансформатора и замеряется во вторичной.

Численное значение замеренного первичного тока нужно разделить на численное значение замеренного тока вторичной обмотки. Полученное значение и будет коэффициентом трансформации, которое следует сравнить с паспортным значением, что позволит судить об исправности трансформатора.

Трансформатор тока может содержать не одну, а несколько вторичных обмоток. До начала испытаний все обмотки должны быть надежно подключены к нагрузке или же закорочены. В противном случае, в разомкнутой вторичной обмотке, при условии появлении тока в первичной обмотке, возникнет напряжение в несколько КВ, опасное для жизни человека и могущее привести к повреждению оборудования.

Магнитопроводы большинства высоковольтных трансформаторов тока нуждаются в заземлении. Для этого в их конструкции предусмотрена специальная клемма, которая маркируется буквой “З”.

На практике очень часто возникают какие-либо ограничения по проверке трансформаторов под нагрузкой, обусловленные особенностями эксплуатации и безопасности испытаний. В связи с этим часто используются иные способы проверки.

Техника безопасности

При проведении измерений специальными приборами должны соблюдаться следующие меры предосторожности:

  • К работе допускаются лица, освоившие правила работы с измерительным оборудованием.
  • Они должны пройти обязательный инструктаж, касающийся безопасных приемов работы с ТТ.
  • При определении полярности вторичной обмотки измеритель присоединяется к ее зажимам до момента подачи импульса в первичную цепь.

Лишь при условии соблюдения указанных правил удается обезопасить себя от потенциальных угроз.

Поломки трансформаторов

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызывает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  • обрыв контура;
  • пробой герметичного корпуса;
  • замыкание между витков;
  • обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники. Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк.

Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Источник



Как проверить трансформатор тока

Устройства, пропорционально преобразующие переменный ток из одной величины в другую на основе принципов электромагнитной индукции, называют трансформаторами тока (ТТ).

Их широко используют в энергетике и изготавливают разными конструкциями от маленьких моделей, размещаемых на электронных платах до метровых сооружений, устанавливаемых на железобетонные опоры.

Цель проверки — выявление работоспособности ТТ без оценки метрологических характеристик, определяющих класс точности и углового сдвига фаз между первичным и вторичными векторами токов.

Возможные неисправности. Трансформаторы выполняются автономными устройствами в изолированном корпусе с выводами для подключения к первичному оборудованию и вторичным устройствам. Ниже приведены основные причины неисправностей:

— повреждение изоляции корпуса; — повреждение магнитопровода; — повреждение обмоток: — обрывы; — ухудшение изоляции проводников, создающее межвитковые замыкания; — механические износы контактов и выводов.

Методы проверок. Для оценки состояния ТТ проводится визуальный осмотр и электрические проверки.

Визуальный внешний осмотр. Проводится в первую очередь и позволяет оценить:

— чистоту внешних поверхностей деталей; — появление сколов на изоляции; — состояние клеммников и болтовых соединений для подключения обмоток; — наличие внешних дефектов.

Проверка изоляции. (эксплуатация ТТ с нарушенной изоляцией не допускается!).

Испытания изоляции. На высоковольтном оборудовании трансформатор тока смонтирован в составе линии нагрузки, входит в нее конструктивно и подвергается совместным высоковольтным испытаниям отходящей линии специалистами службы изоляции. По результатам испытаний оборудование допускается в эксплуатацию.

Проверка состояния изоляции. К эксплуатации допускаются собранные токовые цепи с величиной изоляции 1 мОм.

Для ее замера используется мегаомметр с выходным напряжением, соответствующим требованиям документации на ТТ. Большинство высоковольтных устройств необходимо проверять прибором с выходным напряжением в 1000 вольт.

Читайте также:  Как пропустить ток в одну сторону

Итак, мегаомметром измеряют сопротивление изоляции между:

— корпусом и всеми обмотками; — каждой обмоткой и всеми остальными.

Работоспособность трансформатора тока можно оценить прямыми и косвенными методами.

1. Прямой метод проверки

Это, пожалуй наиболее проверенный способ, который по другому называют проверкой схемы под нагрузкой.

Используется штатная цепь включения ТТ в цепи первичного и вторичного оборудования или собирается новая цепь проверки, при которой ток от (0,2 до 1,0) номинальной величины пропускается по первичной обмотке трансформатора и замеряется во вторичной.

Численное выражение первичного тока делится на замеренный ток во вторичной обмотке. Полученное выражение определяет коэффициент трансформации, сравнивается с паспортными данными, что позволяет судить об исправности оборудования.

ТТ может содержать несколько вторичных обмоток. Все они, до начала испытаний, должны надежно подключаться к нагрузке или закорачиваться. В разомкнутой вторичной обмотке (при токе в первичной) возникает высокое напряжение в несколько киловольт, опасное для человека и оборудования.

Магнитопроводы многих высоковольтных трансформаторов нуждаются в заземлении. Для этого в их клеммной коробке оборудуется специальный зажим с маркировкой буквой “З”.

На практике часто есть ограничения по проверке ТТ под нагрузкой, связанные с условиями эксплуатации и безопасности. Поэтому используются другие способы.

2. Косвенные методы

Каждый из способов предоставляет часть информации о состоянии ТТ. Поэтому следует применять их в комплексе.

Определение достоверности маркировки выводов обмоток. Целостность обмоток и их вывода определяются “прозвонкой” (замером омических активных сопротивлений) с проверкой или нанесением маркировки. Выявление начал и концов обмоток осуществляется способом, позволяющим определить полярность.

Определение полярности выводов обмоток. Вначале ко вторичной обмотке ТТ подсоединяется миллиамперметр или вольтметр магнитоэлектрической системы с определенной полярностью на выводах.

Допускается использовать прибор с нулем в начале шкалы, однако, рекомендкеься посередине. Все остальные вторичные обмотки из соображений безопасности шунтируются.

К первичной обмотке подключается источник постоянного тока с ограничивающим его ток разряда сопротивлением. Обыкновенной батарейки от карманного фонарика с лампочкой накаливания вполне достаточно. Вместо установки выключателя можно просто дотронуться проводом от лампочки до первичной обмотки ТТ и затем отвести его.

При включении выключателя в первичной обмотке формируется импульс тока соответствующей полярности. Действует закон самоиндукции. При совпадении направления навивки в обмотках стрелка движется вправо и возвращается назад. Если прибор подключен с обратной полярностью, то стрелка будет двигаться влево.

При отключении выключателя у однополярных обмоток стрелка двигается импульсом влево, а в противном случае – вправо.

Аналогичным способом проверяется полярность подключения других обмоток.

Снятие характеристики намагничивания. Зависимость напряжения на контактах вторичных обмоток от проходящего по ним тока намагничивания называют вольтамперной характеристикой (ВАХ). Она свидетельствует о работе обмотки и магнитопровода ТТ, позволяет оценить их исправность.

С целью исключения влияния помех со стороны силового оборудования ВАХ снимают при разомкнутой цепи у первичной обмотки.

Для проверки характеристики требуется пропускать переменный ток различной величины через обмотку и замерять напряжение на ее входе. Это можно делать любым проверочным стендом с выходной мощностью, позволяющей нагружать обмотку до насыщения магнитопровода ТТ при котором кривая насыщения переходит в горизонтальное направление.

Данные замеров заносят в таблицу протокола. По ним методом аппроксимации вычерчивают графики.

Перед началом замеров и после них необходимо обязательно проводить размагничивание магнитопровода путем нескольких плавных увеличений токов в обмотке с последующим снижением до нуля.

Для замеров токов и напряжений следует пользоваться приборами электродинамической или электромагнитной систем, воспринимающих действующие значения тока и напряжения.

Появление в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. Поэтому, при первом использовании исправного трансформатора делают замеры и строят график, а при дальнейших проверках через определенное время контролируют состояние выходных параметров.

Источник

Способы проверки полярности трансформаторов тока (миллиамперметр, РЕТОМ-21 и ВАФ)

Июль 9th, 2017 Рубрика: Трансформаторы тока, Электрооборудование

polyarnost_transformatorov_toka

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

На днях столкнулся с одним интересным явлением.

При проведении метрологами поверки трансформаторов тока, на одном из фидеров (присоединении) был забракован трансформатор тока на фазе В.

Остальные трансформаторы тока на этом фидере поверку успешно прошли.

Решено было заменить трансформатор тока только на фазе В, а остальные оставить существующие.

polyarnost_transformatorov_toka_17

Кстати, тип трансформатора тока Вам скорее всего известен — это распространенный для своего времени трансформатор тока Т-0,66 с коэффициентом трансформации 200/5.

polyarnost_transformatorov_toka_1

polyarnost_transformatorov_toka_2

После снятия трансформатора тока обозначение его выводов поставило меня в тупик.

С обозначением вторичных выводов И1 и И2 все было понятно: И1 — начало вторичной обмотки, И2 — конец вторичной обмотки.

polyarnost_transformatorov_toka_3

polyarnost_transformatorov_toka_4

А вот с первичной обмоткой явно была загадка!

Как видите, обозначение первичной обмотки отчетливо видно на корпусе самого трансформатора тока: Л1 — начало первичной обмотки, Л2 — конец первичной обмотки.

polyarnost_transformatorov_toka_5

polyarnost_transformatorov_toka_6

Но не тут то было! Если хорошо приглядеться, то на задней крепежной планке тоже имеется обозначение первичных выводов, но при этом оно в корне противоречит обозначению на корпусе трансформатора тока.

Со стороны начала первичной обмотки Л1 на крепежной планке имеется маркировка Л2, а со стороны конца первичной обмотки Л2 на крепежной планке имеется маркировка Л1.

polyarnost_transformatorov_toka_7

polyarnost_transformatorov_toka_8

В итоге получилось так, что у нового трансформатора тока ТОП-0,66, установленного взамен снятого Т-0,66, за начало первичной обмотки Л1 приняли не правильную сторону и после ввода в эксплуатацию векторная диаграмма имела следующий вид.

polyarnost_transformatorov_toka_18

polyarnost_transformatorov_toka_9

Как видите, зеленый вектор тока развернут на 180°, т.е. ток в фазе В имеет обратное направление. Естественно, что это несоответствие мы быстро устранили, установив трансформатор тока соответствующим образом. Ну а если быть точнее, то просто напросто поменяли местами подключаемые провода с выводов И1 и И2 на вторичной обмотке трансформатора тока фазы В.

Таким образом, векторная диаграмма стала иметь нормальный и правильный вид.

polyarnost_transformatorov_toka_10

У снятого трансформатора тока я решил определить полярность и в данной статье я Вам подробно расскажу какими способами я это буду осуществлять. Приведу в пример 3 способа, правда пользуюсь я только одним из них, и чуть дальше по тексту расскажу каким именно.

Первый способ, это наверное, один из самых распространенных и доступных способов определения полярности трансформаторов тока. Второй и третий способы требуют специального и дорогостоящего оборудования.

Определение полярности ТТ с помощью батарейки и миллиамперметра

Кстати, данный способ еще называют способом гальванометра. Вот, собственно, и схема подключения батарейки (источника постоянного тока) и гальванометра для определения полярности выводов трансформатора тока.

polyarnost_transformatorov_toka_11

В качестве источника постоянного тока можно использовать элементы питания напряжением от 2 (В) до 6 (В). Например, вполне сгодится обычная «плоская» батарейка типа 3R12 напряжением 4,5 (В), к выводам которой необходимо припаять соединительные провода.

polyarnost_transformatorov_toka_12

polyarnost_transformatorov_toka_16

Если в качестве источника постоянного тока Вы планируете использовать аккумулятор, то в цепь следует включить ограничительное сопротивление (резистор). В моем же примере с батарейкой ограничительное сопротивление не требуется.

В качестве измерительного прибора можно применить, либо миллиамперметр, либо милливольтметр, магнитоэлектрической системы. Предел миллиамперметра может находиться в пределах от 10 до 100 (мА), а милливольтметра — не более 3 (В).

Читайте также:  Для определения мощности электрического тока необходимо

Желательно применять прибор с нулем посередине шкалы, так легче и нагляднее определять отклонение стрелки. Если Вы не найдете прибор с нулем по середине, то имейте ввиду то, что стрелка прибора при отклонении влево будет ударяться в упор и есть вероятность ее отскакивания в правую сторону, что может привести в заблуждение и ошибочному проведению измерений.

В своем примере я буду использовать миллиамперметр типа М2001 с пределом 100 (мА) с нулем посередине шкалы. Прибора с меньшим пределом у меня нет в наличии, поэтому если будет проблематично определить сторону отклонения стрелки, то можно увеличить напряжение источника постоянного тока. Но обычно предела 100 (мА) в паре с батарейкой на 4,5 (В) вполне хватает.

polyarnost_transformatorov_toka_14

Полярность выводов миллиамперметра М2001 обозначена на корпусе прибора: слева — плюс, справа — минус.

polyarnost_transformatorov_toka_15

А сейчас я соберу приведенную выше схему для проверки полярности трансформатора тока.

polyarnost_transformatorov_toka_19

Нам необходимо определить, какое из обозначений первичной обмотки ТТ является верным, то, которое указано на корпусе трансформатора тока или, которое указано на его крепежной планке.

Сначала примем за правильное обозначение первичной обмотки обозначение, указанное на корпусе, т.е. вывод Л1 находится справа, а Л2 — слева.

Подключим положительный полюс «+» батарейки к началу первичной обмотки Л1, а отрицательный полюс «-» — к концу первичной обмотки Л2.

polyarnost_transformatorov_toka_21

Теперь кратковременно замкнем первичную цепь через батарейку.

polyarnost_transformatorov_toka_22

Как видите на фотографии выше, стрелка миллиамперметра кратковременно отклонилась влево.

Кстати, при размыкании первичной цепи, стрелка миллиамперметра отклоняется в противоположную сторону, но на это не обращайте внимания, главное — это зафиксировать отклонение стрелки именно в момент замыкания первичной цепи.

Отклонение стрелки миллиамперметра влево говорит о том, что указанная полярность на корпусе трансформатора тока является неверной. А значит, правильная маркировка указана все таки на крепежной планке.

Для меня это кажется немного странным! Я все таки надеялся, что правильная маркировка указана именно на корпусе трансформатора тока.

Тем не менее убедимся в своих убеждениях. Аналогично, подключим положительный полюс «+» источника постоянного тока к началу первичной обмотки Л1, а отрицательный полюс «-» — к концу первичной обмотки Л2. Только сейчас выводы Л1 и Л2 примем наоборот, т.е. Л1 находится слева, а Л2 — справа.

polyarnost_transformatorov_toka_23

polyarnost_transformatorov_toka_24

Как видите, при таком подключении стрелка миллиамперметра кратковременно отклонилась вправо, что говорит о том, что полярность трансформатора тока, указанная на крепежной планке является верной!

Суть первого способа определения полярности ТТ сводится к следующему. Необходимо подобрать такое включение трансформатора тока, чтобы при замыкании первичной цепи стрелка миллиамперметра отклонялась вправо. В таком случае выводы первичной и вторичной обмоток, присоединенные к «+» батарейки и «+» миллиамперметра будут однополярными, т.е. при протекании тока по первичной цепи от Л1 к Л2, ток во вторичной цепи будет протекать от И1 к И2.

Да, совсем забыл сказать, что в основе данного способа лежит явление электромагнитной индукции. Об этом Вы можете прочитать я любом учебнике по физике.

Определение полярности ТТ с помощью РЕТОМ-21

Как я и говорил, то второй способ требует специального оборудования. Для этого в парке приборов нашей электролаборатории (ЭТЛ) имеется многофункциональное испытательное устройство РЕТОМ-21. Я уже Вас подробно знакомил с ним в своих публикациях про прогрузку автоматических выключателей:

Если честно, то первым способом я уже давненько не пользуюсь, а в подобных сомнительных ситуациях при определении полярности трансформаторов тока применяю именно РЕТОМ-21.

Собираем следующую схему.

polyarnost_transformatorov_toka_25

Выход источника первичного тока I5 со звездочкой соединяем с началом первичной обмотки Л1 трансформатора тока, а без звездочки — с концом первичной обмотки Л2.

polyarnost_transformatorov_toka_26

В принципе, я уже определился, что правильная маркировка первичной обмотки ТТ обозначена на крепежной планке, поэтому сейчас я преднамеренно подключил эти вывода наоборот, чтобы показать Вам как РЕТОМ-21 определит и отобразит данное несоответствие.

Начало вторичной обмотки И1 трансформатора тока соединяем с аналоговым входом

РА, обозначенным красным цветом (со звездочкой), а конец вторичной обмотки И2 — с белым входом (без звездочки).

polyarnost_transformatorov_toka_27

polyarnost_transformatorov_toka_28

В меню РЕТОМ-21 выбираем источник первичного тока I5, а для измерения вторичного тока выбираем встроенный прибор РА. В соответствующем поле дисплея выбираем фазу (Φ) для измерения угла между первичным I5 и вторичным РА токами.

Теперь осталось навести ток в первичной цепи не менее 10% от номинального тока трансформатора тока. Я наведу 50 (А), что будет вполне достаточно.

Как видите, на дисплее отображается величина первичного тока 50 (А), вторичного тока 1,3 (А), а также угол 180,6° между токами первичной и вторичной обмоток.

polyarnost_transformatorov_toka_29

Это говорит о том, что выбрана не правильная полярность ТТ, т.е. выводы Л1 и И1 не однополярны.

Поменял местами выводы первичного тока РЕТОМ-21 и снова произвел измерение.

Как видите, угол между токами первичной и вторичной обмоток теперь составил 0,6°.

polyarnost_transformatorov_toka_30

Вот теперь можно с уверенностью сказать, что трансформатор тока подключен совершенно верно, что и требовалось доказать.

Таким образом, с помощью РЕТОМ-21 определить полярность трансформаторов тока вообще не составляет никаких сложностей, все легко, быстро и просто!

Определение полярности ТТ с помощью ВАФ

Помимо вышеприведенных способов можно применить еще более простой способ, правда для этого необходим прибор вольтамперфазометр, или сокращенно ВАФ. В парке приборов нашей ЭТЛ имеется «Парма ВАФ-А(М)», правда на последней поверке его забраковали по входам постоянного и переменного тока, но это уже другая история.

polyarnost_transformatorov_toka_31

polyarnost_transformatorov_toka_32

В первую очередь, трансформатор тока должен быть подключен к источнику первичного тока.

Для измерения угла сдвига между первичным и вторичным токами, т.е. определения полярности первичных и вторичных выводов, необходимо использовать опорные и измерительные клещи.

Опорные клещи необходимо подключить к опорному каналу ВАФа, а затем обхватить проводник первичной цепи (Л1-Л2) трансформатора тока. Измерительные клещи необходимо подключить к измерительному каналу ВАФа, а затем обхватить проводник, накоротко-замкнутой, вторичной цепи (И1-И2). Естественно, что при этом нужно соблюдать полярность самих клещей — на клещах имеется маркировка в виде звездочки или точки, которую и нужно обратить в сторону вхождения тока в обхват клещей.

polyarnost_transformatorov_toka_33

Но в моем комплекте опорные клещи отсутствуют, а имеются только измерительные клещи ИПТ 10 и ИПТ 300.

polyarnost_transformatorov_toka_34

Поэтому проверить полярность трансформатора тока (угол сдвига между первичным и вторичным токами) у меня нет возможности, хотя если дополнительно приобрести опорные клещи, то с помощью ВАФа можно смело определять полярность трансформатора тока.

После произведенных манипуляций ВАФ на своем дисплее отобразит величину тока измерительного канала, т.е. вторичного тока, а также угол сдвига между опорным и измерительным каналами, т.е. между первичным и вторичным токами. По этим данным и можно определить полярность ТТ.

Для наглядности приложил видео по материалам данной статьи:

Помимо рассмотренных примеров, зачастую необходимо определить полярность трансформаторов тока, встраиваемых в вводы выключателей или силовых трансформаторов, причем с разными схемами подключения (звезда с нулем, звезда, треугольник). В рамках данной статьи я об этом рассказывать не буду, если есть вопросы, то пишите в комментариях под данной статьей.

Источник