script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Как проверить трансформатор тока для счетчика

Как проверить трансформатор при помощи мультиметра


Трансформаторы получили широкое применение в радиоэлектронике. Они являются преобразователями переменного напряжения и, в отличие от других радиоэлементов, выходят из строя редко. Для определения их исправности нужно знать, как проверить трансформатор мультиметром. Этот способ достаточно простой, и необходимо понять принцип работы трансформатора и его основные характеристики.

Поломки трансформаторов

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызывает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  • обрыв контура;
  • пробой герметичного корпуса;
  • замыкание между витков;
  • обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники. Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк.

Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Область применения

По большей части указанные трансформаторы применяются в импульсных устройствах:

  • газовых лазерах;
  • триодных генераторах;
  • дифференцирующих модулях;
  • магнетотронах и др.


Виды трансформаторов
Эти приборы используются в современном радиоэлектронном оборудовании, для источников питания импульсного типа, телевизорах, компьютерах и другой технике.

Ещё одна область использования устройств – в качестве защитных элементов при коротком замыкании в условиях холостого хода, чрезмерной нагрузке или избыточном нагреве.

Проверка на межвитковое замыкание

Начать нужно с внешнего осмотра, особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки. Дело в том, что межвитковое замыкание приводит к сильному нагреву трансформатора. Далее проверяем сопротивление изоляции между обмотками, оно должно составлять не менее 10 Мом. Если есть аналогичный трансформатор, можно сравнить их значение индуктивности. Когда такой возможности нет, можно воспользоваться другим методом, основанном на резонансных свойствах цепи.

От перестраиваемого генератора подаем синусоидальный сигнал поочередно на обмотки через разделительный конденсатор и контролируем форму сигнала во вторичной обмотке.

Если внутри нет межвитковых замыканий, то форма сигнала не должна отличаться от синусоидальной во всем диапазоне частот. Короткозамкнутые витки в катушке приводят к срыву колебаний в LC-контуре на резонансной частоте. У трансформаторов разного назначения рабочий частотный диапазон отличается — это надо учитывать при проверке.

Для импульсного блока питания он составляет — 8-40 кГц, для ТДКС — 13-17 кГц. Импульсные трансформаторы обычно содержат малое число витков. Возможен вариант убедиться в работоспособности трансформатора путем контроля коэффициента трансформации обмоток.

Для этого подключаем обмотку трансформатора с наибольшим числом витков к генератору синусоидального сигнала на частоте 1 кГц. Эта частота не очень высокая и на ней работают все измерительные вольтметры (цифровые и аналоговые), в то же время она позволяет с достаточной точностью определить коэффициент трансформации (такими же они будут и на более высоких рабочих частотах).

Будет интересно➡ Как проверить конденсатор при помощи мультиметра

Измерив напряжение на входе и выходе всех других обмоток трансформатора, легко посчитать соответствующие коэффициенты трансформации. Этот метод вполне реален для тех кто дружит с математикой. По результатам пробных измерений составлена таблица, в которой сопротивлению, указанному в левой колонке, соответствует определенное показание цифрового индикатора.


Замер тока и напряжения мультиметром.

Интересный материал в тему: Что нужно знать о трансформаторах тока.

Конструкция преобразователя

Перед тем как приступить непосредственно к проверке импульсного трансформатора (ИТ), желательно знать, как он устроен, понимать принцип действия и различать существующие виды. Такое импульсное устройство используется не только как часть блока питания, его задействуют при построении защиты от короткого замыкания в режиме холостого хода и в качестве стабилизирующего элемента.

Импульсный трансформатор используется для преобразования величины тока и напряжения без изменения их формы. То есть он может изменить амплитуду и полярность различного рода импульса, согласовать между собой различные электронные каскады, создать надёжную и устойчивую обратную связь. Поэтому главным требованием, предъявляемым к нему, является сохранение формы импульса.

Добиваются этого снижением паразитных величин, таких как межвитковая ёмкость и индуктивность, путём использования небольших сердечников, расположением витков, уменьшением числа обмоток. Основными характеристиками трансформатора являются: мощность и рабочее напряжение. Конструктивно устройство может быть выполнено в следующем виде:

  • стержневом — магнитопровод такого трансформатора выполняется из П-образных пластин, обхваченных обмотками;
  • броневом — используются Ш-образные пластины, а обмотки располагаются в катушках, образуя своеобразную броню;
  • тороидальном — его вид напоминает геометрическую фигуру тор, при этом он не имеет катушек, а обмотка наматывается на сердечник;
  • смешанном (бронестержневом) — собирается из четырёх катушек и магнитопровода совмещённого типа.

Магнитопровод в трансформаторе выполняется из пластин электротехнической стали, кроме тороидальной формы, в которой он сделан из рулонного или ферромагнитного материала. Каркасы катушек размещаются на изоляторах, а провода используются только медные. Толщина пластин подбирается в зависимости от частоты.

Расположение обмоток может быть выполнено спиральным, коническим и цилиндрическим видом. Особенностью первого типа является использование не проволоки, а широкой тонкой фольгированной ленты. Второго — выполняются с различной толщиной изоляции, влияющей на напряжение между первичной и вторичной обмотки. Третьего же типа представляют собой конструкции с намотанной проволокой на стержень по спирали.

Инструкции для тестирования тороидального трансформатора

Тороидальный трансформатор представляет собой высокоэффективный трансформатор, который легче и меньше, чем альтернативные трансформаторы такой же мощности. Тороидальный трансформатор — это плотно обернутые полоски стали в сердцевине, также он состоит из мотка проволоки, который свернут вокруг сердечника. Этот моток называется первичная катушка, а также есть вторая катушка проволоки, которая тоже свернута вокруг сердечника и называется вторичная обмотка.

Проще говоря, электричество проходит через первичную обмотку тороидального трансформатора, тем самым создавая магнитные поля, которые проходят через вторую катушку для получения выходного напряжения.

Трансформаторы используются для повышения или понижения выходного напряжения, тем самым увеличивая или уменьшая напряжение. Для проведения тестирования состояния трансформатора, существует определенный алгоритм действий:

  1. Первый шаг заключается в том, что трансформатор необходимо визуально осмотреть и проверить, нет ли от него запаха.
  2. Перегрев может привести к неисправности трансформатора, если есть следы ожогов или внешняя часть обмотки видна снаружи, трансформатор должен быть заменен и нет никакой необходимости для дальнейших испытаний, которые будут проводиться.
  3. Точно так же, запах гари является свидетельством того, что трансформатор перегревается. Если никаких дополнительных повреждений не видно за исключением запаха, дальнейшие испытания могут быть проведены, чтобы определить, является ли трансформатор в рабочем состоянии или нет.
  4. Информация о входном и выходном напряжении, как правило, четко обозначена на трансформаторе, но самым безопасным вариантом является получение схемы цепи от производителя продукта.

Напряжение, которое подается на первичную обмотку, должно быть четко указано на схеме цепи и корпуса трансформатора. Аналогичным образом, выходное напряжение, подаваемое на вторичной обмотке должно быть четко указано на схеме цепи и корпуса трансформатора. Вы должны знать входное и выходное напряжения для того, чтобы проверить, правильно ли работает трансформатор.

Трансформатор не способен преобразовывать переменное напряжение, в напряжение постоянного тока. Для преобразования напряжения переменного тока используются диоды и конденсаторы. Схема цепи покажет, как выходное напряжение трансформатора преобразуется из переменного тока, в напряжение постоянного тока.

Вам потребуется эта информация, чтобы определить, следует ли завершить измерения, проводимые с помощью мультиметра тестера в режиме переменного тока или в режиме постоянного тока. Начните проведение теста путем подключения питания и коммутации к изделию.


Как проверить тороидальный трансформатор.

Переключите цифровой мультиметр тестер (с экраном) или аналоговый мультиметр тестер в режиме напряжения переменного тока. Для того, чтобы подтвердить правильность входного напряжения для трансформатора, проверьте напряжение, прикоснувшись красный щуп к положительному полюсу, а черный зонда к отрицательной клемме трансформатора основного входа.

Если значения напряжений слишком низкие, значит это может быть из-за проблем с трансформатором или схемами. Необходимо удалить трансформатор от входной цепи и проверить входную мощность, представленную схемой. Если показания находятся в линии, то трансформатор неисправен и если показания остаются неизменными, то схема неисправна.

Чтобы проверить выходное напряжение сначала нужно определить, является ли выходное напряжение в сети переменного или постоянного тока. Установите цифровой или аналоговый мультиметр тестер в нужный режим для проверки.

Если конденсаторы и диоды используются для преобразования выходного напряжения от сети переменного тока в напряжении постоянного тока, то слишком низкое чтение может быть вызвано неисправным трансформатором или неисправными конденсаторами и диодами. Извлеките тороидальный трансформатор с выходной схемой и проверьте выходное напряжение трансформатора. Не забудьте изменить режим мультиметра тестера к напряжению сети переменного тока.

Читайте также:  Как поменять электросчетчик по гарантии

Будет интересно➡ Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Если выходное напряжение в линии, трансформатор работает правильно, то проблема будет тогда с конденсаторами и диодами. Тороидальные трансформаторы, которые излучают постоянный жужжащий звук скоро выйдут из строя и должны быть заменены. Всегда помните об осторожности, не касайтесь схемы при выполнении тестов. Случайный контакт со схемой, которая находится под напряжением может привести к травмам.

Под напряжением

Испытания с поданным питанием проводятся, когда стоит вопрос о том, как проверить трансформатор на межвитковое замыкание. Если мы знаем величину питающего напряжения устройства, для которого предназначен трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные находятся в воздухе.

Если значение напряжения отличается от номинального, то делают выводы о межвитковом замыкании в обмотках. Если при работе устройства слышны треск, искрение, то такой трансформатор лучше сразу выключить. Он неисправен. Существуют допустимые отклонения при измерениях:

  • Для напряжения значения могут отличаться на 20%.
  • Для сопротивления нормой является разброс значений в 50% от паспортных.

Проверка с помощью мультиметра дома

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.

Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.

Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности


Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.

При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.


Порядок проверки трансформатора мультиметром.

Принцип работы устройства

Принцип действия ИТ основан на возникновении электромагнитной индукции. Так, если на первичную обмотку подать напряжение, то по ней начнёт протекать переменный ток. Его появление приведёт к возникновению непостоянного по своей величине магнитного потока. Таким образом, эта катушка является своего рода источником магнитного поля. Этот поток по короткозамкнутому сердечнику передаётся на вторичную обмотку, индуцируя на ней электродвижущую силу (ЭДС).

Величина напряжения на выходе зависит от отношения числа витков между первичной обмоткой и вторичной, а от сечения используемого провода зависит максимальная сила тока. При подключении к выходу мощной нагрузки увеличивается потребление тока, что при малом сечении проволоки приводит трансформатор к перегреву, повреждению изоляции и перегоранию.

Работа ИТ зависит также от частоты сигнала, который подаётся на первичную обмотку. Чем выше будет эта частота, тем меньшие потери будут происходить при трансформации энергии. Поэтому при высокой скорости подаваемых импульсов размеры устройства могут быть меньшими. Достигается это работой магнитопровода в режиме насыщения, а для снижения остаточной индукции используется небольшой воздушный зазор. Этот принцип и используется при построении ИТ, на который подаётся сигнал с длительностью всего в несколько микросекунд.

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Будет интересно➡ Как проверить диод мультиметром?

Существуют и другие поломки. Выявить их можно самостоятельно.

Метод прозвонки

Метод диагностики омметром поможет с вопросом о том, как проверить трансформатор питания. Прозванивать начинают сопротивление между выводами одной обмотки. Так устанавливают целостность проводника. Перед этим проводят осмотр корпуса на отсутствие нагаров, наплывов в результате нагрева оборудования.

Далее замеряют текущие значения в Омах и сравнивают их с паспортными. Если таковых не имеется, то потребуется дополнительная диагностика под напряжением. Прозвонить рекомендуется каждый вывод относительно металлического корпуса устройства, куда подключаются заземление.

Перед проведением замеров следует отключить все концы трансформатора. Отсоединить от цепи их рекомендуется и в целях собственной безопасности. Также проверяют наличие электронной схемы, которая часто присутствует в современных моделях питания. Её также следует выпаять перед проверкой.

Бесконечное сопротивление говорит о целой изоляции. Значения в несколько килоом уже вызывают подозрения о пробое на корпус. Также это может быть за счет скопившейся грязи, пыли или влаги в воздушных зазорах устройства.

Как проверить импульсный трансформатор мультиметром


Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования.

Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

  • Методика проверки аналоговым (стрелочным) измерительным прибором:
  • Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  • После в гнёзда тестера вставляются два провода и перемыкаются накоротко.

Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов


Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация.

Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Читайте также:  Законна ли опломбировка счетчика электроэнергии за деньги

Возможные неполадки

ТТ имеют изолированный корпус и выводы для подключения источника и вторичных устройств. Некоторые устройства можно проверить самостоятельно, для проверки работоспособности других, необходимо иметь квалификацию и соответствующий допуск к высоковольтному оборудованию. Причина неисправности в повреждениях:

  • Корпус;
  • Магнитопровод;
  • Обрыв обмоток;
  • Изоляция обмоток;
  • Износ контактов и выходов.

ПРОБНИК ДЛЯ ПРОВЕРКИ ИМПУЛЬСНЫХ БП

В связи с широким распространением импульсных блоков питания, в различной технике, требуется в случае поломки, уметь самостоятельно выполнять их ремонт. Все это, начиная от маломощных зарядных для смартфона, со стабилизацией напряжения, блоков питания цифровых приставок, ЖК и LED ТВ и мониторов, до тех же самых мощных компьютерных блоков питания, формата ATX, простейшие случаи ремонта которых, мы уже рассматривали ранее, это все будут импульсные блоки питания.

Фото — импульсный блок питания

Также ранее было сказано, что нам для проведения большинства измерений, бывает достаточно обычного цифрового мультиметра. Но здесь есть один важный нюанс: при проверке, например измеряя сопротивление, либо в режиме звуковой прозвонки, мы можем определить только условно не рабочую деталь, по низкому сопротивлению, между ее ножками. Обычно оно составляет где-то от нуля, до 40-50 Ом, либо обрыв, но тогда для этого нужно знать, какое сопротивление должно быть, между ножками у рабочей детали, что не всегда есть возможность проверить. Но в случае проверки работоспособности ШИМ контроллера, этого обычно бывает недостаточно. Нужен либо осциллограф, либо определение его работоспособности, по косвенным признакам.

Мультиметр дешёвый DT

Сопротивление между ножками может быть и выше этих пределов, а микросхема на деле, может быть нерабочая. Но недавно столкнулся с таким случаем: разъем шлейфа питания, идущий с блока питания на скалер, сверху имел доступ для измерения только к верхнему, из двух рядов контактов на разъеме, нижний был скрыт корпусом, и доступ к нему имелся только с обратной стороны платы, что сильно затрудняет ремонт. Даже простое измерение напряжения на разъемах, в такой ситуации, бывает затруднено. Требуется второй человек, который согласится держать плату, на разъеме которой, ты будешь проводить измерения напряжения на выводах, с обратной стороны платы, причем часть деталей там, находится под сетевым напряжением, а сама плата находится на весу. Это не всегда возможно, часто люди, которых просишь подержать плату, просто боятся брать ее в руки, особенно если это платы питания, с одной стороны они правильно делают, меры предосторожности с не подготовленным персоналом, всегда должны быть более строгими.

ШИМ контроллер — микросхема

Так как же быть? Как можно быстро и без заморочек, условно проверить работу ШИМ контроллера, а если быть более точным, цепей питания, а одновременно и импульсного трансформатора, повышающего трансформатора, питающего лампы подсветки? А очень просто. Недавно нашел один интересный способ на Ю-тубе, для мастеров, автор очень доступно объяснял все. Начну издалека.

Что есть, упрощенно говоря, обычный трансформатор? Это две, или более обмоток, на одном сердечнике. Но здесь есть один нюанс, которым мы и воспользуемся, сердечник, как и сами обмотки, в теории могут быть раздельными, и просто находиться рядом, близко друг от друга. Параметры при этом сильно ухудшатся, но для наших целей, этого будет более чем достаточно. Так вот, вокруг каждого трансформатора, или дросселя, со значительным количеством витков, после включения питания схемы, присутствует магнитное поле, и оно тем больше, чем больше витков у обмотки трансформатора, или дросселя. Что же будет, если мы к обмотке трансформатора или дросселя, включенного в сеть устройства, поднесем другой дроссель, например с индуктивностью 470 мкГн, а нам для нашего пробника нужен именно такой, нагруженный светодиодом? Например такой, как на фото ниже:

Пробник для проверки импульсных бп

Другими словами, магнитное поле дросселя или трансформатора, будет пронизывать у нас, витки нашего дросселя, и на выводах его появится напряжение, которое можно будет использовать, в нашем случае, для индикации работоспособности схемы блока питания. Подносить пробник разумеется, нужно как можно ближе к проверяемой детали, и дросселем вниз. Как выглядят детали на плате, к которым нужно подносить наш пробник?

На плате обведены импульсный трансформатор красным, и трансформатор ламп подсветки зеленым. Если схема работает исправно, при поднесении пробника к ним, должен загореться светодиод. Это означает что питание на нашу, образно говоря проверяемую индуктивность, поступает. Разберем на практике. Если выходной транзистор пробит, не будет работать импульсный трансформатор.

Схема импульсного блока питания

На схеме снова выделено красным. Если пробит диод Шоттки, на выходе, после трансформатора, не будет индикации на дросселе фильтра. Но здесь есть один нюанс, если у дросселя на плате, небольшое количество витков, свечение будет либо еле заметным, либо вообще будет отсутствовать. Аналогично, если пробиты, например транзисторные ключи, или диодные сборки, через которые приходит питание на повышающий трансформатор, для ламп подсветки, LCD монитора или телевизора, не будет индикации при проверке на этом трансформаторе.

Фото дроссель для пробника

Стоимость данного дросселя в радиомагазине всего 30 рублей, также иногда они встречаются в блоках питания ATX, обычного светодиода, в стеклянной колбе 5 рублей. В результате мы имеем, простой, дешевый, и очень полезный при ремонтах прибор, который позволяет провести предварительную диагностику, импульсного блока питания, в течение буквально одной минуты. Условно говоря, данным пробником можно проверить, наличие напряжения на всех деталях, представленных на следующем фото.

Дросселя и трансформаторы

Я пользуюсь данным пробником пока всего 3-4 дня, но уже считаю, что могу рекомендовать его к использованию, всем начинающим радиолюбителям – ремонтникам, пока еще не имеющим, в своей домашней мастерской, осциллографа. Также этот пробник, может быть полезен тем, кто чинит электронную технику на выездах. Всем удачных ремонтов — AKV.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс. Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Источник



Как проверить трансформатор тока

Устройства, пропорционально преобразующие переменный ток из одной величины в другую на основе принципов электромагнитной индукции, называют трансформаторами тока (ТТ).

Их широко используют в энергетике и изготавливают разными конструкциями от маленьких моделей, размещаемых на электронных платах до метровых сооружений, устанавливаемых на железобетонные опоры.

Цель проверки — выявление работоспособности ТТ без оценки метрологических характеристик, определяющих класс точности и углового сдвига фаз между первичным и вторичными векторами токов.

Возможные неисправности. Трансформаторы выполняются автономными устройствами в изолированном корпусе с выводами для подключения к первичному оборудованию и вторичным устройствам. Ниже приведены основные причины неисправностей:

— повреждение изоляции корпуса; — повреждение магнитопровода; — повреждение обмоток: — обрывы; — ухудшение изоляции проводников, создающее межвитковые замыкания; — механические износы контактов и выводов.

Методы проверок. Для оценки состояния ТТ проводится визуальный осмотр и электрические проверки.

Визуальный внешний осмотр. Проводится в первую очередь и позволяет оценить:

— чистоту внешних поверхностей деталей; — появление сколов на изоляции; — состояние клеммников и болтовых соединений для подключения обмоток; — наличие внешних дефектов.

Проверка изоляции. (эксплуатация ТТ с нарушенной изоляцией не допускается!).

Испытания изоляции. На высоковольтном оборудовании трансформатор тока смонтирован в составе линии нагрузки, входит в нее конструктивно и подвергается совместным высоковольтным испытаниям отходящей линии специалистами службы изоляции. По результатам испытаний оборудование допускается в эксплуатацию.

Проверка состояния изоляции. К эксплуатации допускаются собранные токовые цепи с величиной изоляции 1 мОм.

Для ее замера используется мегаомметр с выходным напряжением, соответствующим требованиям документации на ТТ. Большинство высоковольтных устройств необходимо проверять прибором с выходным напряжением в 1000 вольт.

Итак, мегаомметром измеряют сопротивление изоляции между:

— корпусом и всеми обмотками; — каждой обмоткой и всеми остальными.

Работоспособность трансформатора тока можно оценить прямыми и косвенными методами.

1. Прямой метод проверки

Это, пожалуй наиболее проверенный способ, который по другому называют проверкой схемы под нагрузкой.

Используется штатная цепь включения ТТ в цепи первичного и вторичного оборудования или собирается новая цепь проверки, при которой ток от (0,2 до 1,0) номинальной величины пропускается по первичной обмотке трансформатора и замеряется во вторичной.

Численное выражение первичного тока делится на замеренный ток во вторичной обмотке. Полученное выражение определяет коэффициент трансформации, сравнивается с паспортными данными, что позволяет судить об исправности оборудования.

ТТ может содержать несколько вторичных обмоток. Все они, до начала испытаний, должны надежно подключаться к нагрузке или закорачиваться. В разомкнутой вторичной обмотке (при токе в первичной) возникает высокое напряжение в несколько киловольт, опасное для человека и оборудования.

Читайте также:  Счетчики электрические трехфазные тип меркурий 230 art pcigdn

Магнитопроводы многих высоковольтных трансформаторов нуждаются в заземлении. Для этого в их клеммной коробке оборудуется специальный зажим с маркировкой буквой “З”.

На практике часто есть ограничения по проверке ТТ под нагрузкой, связанные с условиями эксплуатации и безопасности. Поэтому используются другие способы.

2. Косвенные методы

Каждый из способов предоставляет часть информации о состоянии ТТ. Поэтому следует применять их в комплексе.

Определение достоверности маркировки выводов обмоток. Целостность обмоток и их вывода определяются “прозвонкой” (замером омических активных сопротивлений) с проверкой или нанесением маркировки. Выявление начал и концов обмоток осуществляется способом, позволяющим определить полярность.

Определение полярности выводов обмоток. Вначале ко вторичной обмотке ТТ подсоединяется миллиамперметр или вольтметр магнитоэлектрической системы с определенной полярностью на выводах.

Допускается использовать прибор с нулем в начале шкалы, однако, рекомендкеься посередине. Все остальные вторичные обмотки из соображений безопасности шунтируются.

К первичной обмотке подключается источник постоянного тока с ограничивающим его ток разряда сопротивлением. Обыкновенной батарейки от карманного фонарика с лампочкой накаливания вполне достаточно. Вместо установки выключателя можно просто дотронуться проводом от лампочки до первичной обмотки ТТ и затем отвести его.

При включении выключателя в первичной обмотке формируется импульс тока соответствующей полярности. Действует закон самоиндукции. При совпадении направления навивки в обмотках стрелка движется вправо и возвращается назад. Если прибор подключен с обратной полярностью, то стрелка будет двигаться влево.

При отключении выключателя у однополярных обмоток стрелка двигается импульсом влево, а в противном случае – вправо.

Аналогичным способом проверяется полярность подключения других обмоток.

Снятие характеристики намагничивания. Зависимость напряжения на контактах вторичных обмоток от проходящего по ним тока намагничивания называют вольтамперной характеристикой (ВАХ). Она свидетельствует о работе обмотки и магнитопровода ТТ, позволяет оценить их исправность.

С целью исключения влияния помех со стороны силового оборудования ВАХ снимают при разомкнутой цепи у первичной обмотки.

Для проверки характеристики требуется пропускать переменный ток различной величины через обмотку и замерять напряжение на ее входе. Это можно делать любым проверочным стендом с выходной мощностью, позволяющей нагружать обмотку до насыщения магнитопровода ТТ при котором кривая насыщения переходит в горизонтальное направление.

Данные замеров заносят в таблицу протокола. По ним методом аппроксимации вычерчивают графики.

Перед началом замеров и после них необходимо обязательно проводить размагничивание магнитопровода путем нескольких плавных увеличений токов в обмотке с последующим снижением до нуля.

Для замеров токов и напряжений следует пользоваться приборами электродинамической или электромагнитной систем, воспринимающих действующие значения тока и напряжения.

Появление в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. Поэтому, при первом использовании исправного трансформатора делают замеры и строят график, а при дальнейших проверках через определенное время контролируют состояние выходных параметров.

Источник

Проверка трансформатора тока

Устройства для пропорционального преобразования переменного тока до значений, безопасных для его измерений, называют трансформаторами тока.

Такие трансформаторы находят широкое применение в сфере электроснабжения и электроэнергетике и изготавливаются в различных конструктивных исполнениях, — от небольших моделей, размещаемых непосредственно на электронных платах, до сооружений внушительных размеров, устанавливаемых на специальные строительные конструкции.

Проверка ТТ проводится с целью выявления его работоспособности, при этом не производится оценка метрологических характеристик, которые определяют класс точности и сдвига фаз между вектором первичного и вторичного токов.

Перечень возможных неисправностей

Ниже приведены наиболее распространённые причины неисправностей ТТ:

  • механические повреждения магнитопровода;
  • повреждения изоляции корпуса;
  • механические повреждения обмоток:
  • обрывы обмоток;
  • снижение изоляции проводников обмотки, создающее межвитковые замыкания;
  • механический износ выводов обмотки и контактов.

Методы проверок

Для оценки работоспособности трансформатора проводится внешний визуальный осмотр и проверка электрических характеристик.

Внешний визуальный осмотр

С него начинается каждая проверка, и она позволяет оценить:

  • состояние внешних поверхностей деталей;
  • наличие сколов и трещин на изоляции;
  • состояние клеммных или болтовых соединений;
  • наличие видимых дефектов.

Проверка изоляции

Испытания изоляции

В случае установки в составе высоковольтного оборудования трансформатор тока смонтирован в линии нагрузки, при этом он входит в линию конструктивно, и в таком случае испытания изоляции проводятся при проведении совместных высоковольтных испытаний отходящей линии сотрудниками службы изоляции. По результатам проведенных испытаний оборудование может быть допущено в эксплуатацию.

Проверка состояния изоляции

Для проведения измерения сопротивления изоляции следует использовать мегомметр с Uвых соответствующий требованиям техдокументации на ТТ. Для большинства существующих высоковольтных устройств проверку сопротивления изоляции следует проводить прибором с Uвых в 1 Кв.

Мегомметром проводят измерения сопротивление изоляции между:

  • корпусом и обмотками (каждой из обмоток);
  • каждой из обмоток и всеми остальными.

К эксплуатации могут быть допущены собранные токовые цепи с величиной сопротивления изоляции не менее 1 мОм.

Оценка работоспособности трансформатора тока

1. Прямой метод проверки

Прямая проверка — наиболее проверенный способ, также называемый проверкой схемы под нагрузкой.

Для проведения следует использовать штатную цепь включения трансформатора в цепи первичного и вторичного оборудования или же, собрать новую цепь для проверки, при которой ток величиной от 20 до 100 % от номинальной величины проходит по первичной обмотке трансформатора и замеряется во вторичной.

Численное значение замеренного первичного тока нужно разделить на численное значение замеренного тока вторичной обмотки. Полученное значение и будет коэффициентом трансформации, которое следует сравнить с паспортным значением, что позволит судить об исправности трансформатора.

Трансформатор тока может содержать не одну, а несколько вторичных обмоток. До начала испытаний все обмотки должны быть надежно подключены к нагрузке или же закорочены. В противном случае, в разомкнутой вторичной обмотке, при условии появлении тока в первичной обмотке, возникнет напряжение в несколько КВ, опасное для жизни человека и могущее привести к повреждению оборудования.

Магнитопроводы большинства высоковольтных трансформаторов тока нуждаются в заземлении. Для этого в их конструкции предусмотрена специальная клемма, которая маркируется буквой “З”.

На практике очень часто возникают какие-либо ограничения по проверке трансформаторов под нагрузкой, обусловленные особенностями эксплуатации и безопасности испытаний. В связи с этим часто используются иные способы проверки.

2. Косвенные методы

Каждый из перечисленных ниже способов проверки может предоставить лишь частичную информации о состоянии трансформаторов. Поэтому эти способы необходимо применять в комплексе.

Определение правильности маркировки выводов обмоток

Целостность обмоток ТТ и их выводов следует определять замером их активных сопротивлений с проверкой или последующим нанесением маркировки.

Определение начала и конца каждой из обмоток следует проводить способом, позволяющим установить полярность.

Проверка полярности выводов обмоток.

Для проведения испытаний к вторичной обмотке присоединить амперметр или вольтметр магнитоэлектрического типа с определенной полярностью на его выводах.

Рекомендуется использовать прибор с нулем посередине шкалы, однако, допускается использовать и с нулем, расположенным в начале шкалы.

Все остальные вторичные обмотки трансформатора необходимо, из соображений безопасности, зашунтировать.

К первичной обмотке ТТ необходимо подключить источник постоянного тока, затем последовательно подключить к нему сопротивление для ограничения тока разряда. Достаточно использовать обыкновенный элемент питания (батарейку) с лампочкой накаливания. Вместо выключателя можно просто коснуться проводом от лампочки клеммы первичной обмотки ТТ и затем отвести его.

При совпадении полярности стрелка сдвинется вправо и возвратится назад. Если прибор подключен с обратной полярностью, то стрелка будет сдвигаться влево.

При отключении питания у однополярных обмоток стрелка сдвигается толчком влево, а в противном случае – толчком вправо.

Таким же образом следует проверить полярность подключения других обмоток трансформатора.

Снятие характеристики намагничивания.

Зависимость напряжения на клеммах вторичных обмоток от протекающего по ним тока намагничивания называется вольт-амперной характеристикой, сокращенно ВАХ. Она свидетельствует о правильности работы обмотки и магнитопровода, позволяет оценить их исправность.

Для того, чтобы исключить влияние помех со стороны расположенного рядом силового оборудования, характеристику ВАХ следует снимать, предварительно разомкнув цепь первичной обмотки.

Для построения характеристики ВАХ необходимо пропускать переменный ток различных величин через обмотку ТТ и измерять напряжение на входе обмотки. Такие испытания можно проводить любым лабораторным стендом с блоком питания, имеющим выходную мощность, позволяющую нагружать обмотку до насыщения магнитопровода трансформатора, при котором кривая насыщения обратится в горизонтальное положение.

Полученные по замерам данные нужно занести в таблицу протокола. По табличным данным строятся графики ВАХ.

Перед началом проведения замеров и после их окончания следует в обязательном порядке производить размагничивание магнитопровода методом нескольких постепенных увеличений тока в обмотке и последующим снижением тока до нуля.

Важно

Для измерения значений токов и напряжений следует использовать приборы электромагнитной или электродинамической систем, которые могут воспринимать действующие значения тока и напряжения.

Наличие в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. В связи с этим, при первом использовании исправного ТТ необходимо сделать замеры и построить график ВАХ, а при последующих проверках ТТ через определенное нормативами время следует контролируют состояние выходных параметров.

Источник