Меню

Какими носителями заряда создается диффузионный ток

Дрейфовый и диффузионный токи в полупроводниках.

Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия).

Если электрическое поле отсутствует и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет.

Под действием приложенного к кристаллу напряжения в нем возникает электрическое поле; движение носителей заряда упорядочивается: электроны перемещаются по направлению к положительному электроду, дырки – к отрицательному. При этом не прекращается и тепловое движение носителей заряда, вследствие которого происходят столкновения их с атомами полупроводника и примеси.

Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток – дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок.

В собственных полупроводниках концентрации электронов и дырок одинаковы, но вследствие их разной подвижности электронная составляющая тока больше дырочной. В примесных полупроводниках концентрации электронов и дырок существенно отличаются, характер тока определяется основными носителями заряда: в полупроводниках р-типа – дырками, а в полупроводниках n-типа – электронами.

При неравномерной концентрации носителей заряда вероятность их столкновения друг с другом больше в тех слоях полупроводника, где их концентрация выше. Совершая хаотическое тепловое движение, носители заряда отклоняются в сторону, где меньше число столкновений, т. е. движутся в направлении уменьшения их концентрации.

Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, – диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным.

Электроны, перемещаясь из слоя с высокой концентрацией в слой с более низкой концентрацией, по мере продвижения рекомбинируют с дырками, и наоборот, диффундирующие в слой с пониженной концентрацией дырки рекомбинируют с электронами. При этом избыточная концентрация носителей заряда уменьшается.

2.4. Полупроводниковые резисторы

Как следует из вышесказанного, полупроводники представляют собой особый класс веществ, обладающий целым рядом уникальных электрофизических свойств. На основе полупроводниковых материалов были разработаны многочисленные электронные приборы, являющиеся элементной базой современных радиоэлектронных и информационных систем. Наиболее простыми полупроводниковыми приборами, принцип действия которых основан на уникальных электрофизических свойствах полупроводников, являются нелинейные полупроводниковые резисторы.

Полупроводниковыми резисторами называют приборы, принцип действия которых основан на свойствах полупроводников изменять свое сопротивление под действием температуры, электромагнитного излучения, приложенного напряжения и других факторов. Рассмотрим три наиболее распространенных типа полупроводниковых резисторов.

Терморезисторпредставляет собой полупроводниковый нелинейный резистор, сопротивление которого значительно изменяется при изменении температуры. Терморезистор выполняют в виде бусинки, диска, цилиндрического стержня, плоской шайбы. В некоторых конструкциях предусмотрено помещение терморезистора в металлический или стеклянный герметизированный баллон. Внешний вид терморезисторов представлен на рис. 2.4.1.

Терморезисторы, обладающие отрицательным температурным коэффициентом сопротивления, называют термисторами. Они нашли широкое применение в радиоэлектронном оборудовании самого различного назначения.

В полупроводниковых терморезисторах зависимость сопротивления от температуры достаточно точно описывается выражением, которое является аппроксимацией

Где R (T) номинальное значение сопротивления при температуре Т0.=293K

Т- температура в К,

В- коэффициент постоянный для данного типа резисторов

Примерная зависимость сопротивления терморезистора от температуры представлена на рис. 2.4.2.

Рисунок 2.4.1. Внешний вид терморезисторов.

Рисунок 2.4.2. График зависимости сопротивления терморезистора от температуры.

К важнейшим параметрам термисторов относятся: холодное сопротивление — сопротивление термистора при температуре окружающей среды 20 °С; температурный коэффициент сопротивления TKС, выражающий в процентах изменение сопротивления термистора при изменении температуры на 1°С; максимальная рабочая температура — температура, при которой характеристики термистора остаются стабильными в течение установленного срока службы; наибольшая рассеиваемая мощность – мощность, при которой термистор при протекании тока разогревается до максимальной рабочей температуры; теплоемкость Н – количество теплоты, необходимой для повышения температуры термистора на 1°С;

коэффициент рассеяния b – мощность, рассеиваемая термистором при разности температур термистора и окружающей среды в 1 °С; постоянная времени τ – время, в течение которого температура термистора становится равной 63 °С при перенесении его из среды с температурой 20 °С в среду с температурой 100 °С. Постоянная времени определяется как отношение теплоемкости к коэффициенту рассеяния: τ=Н/b.

В устройствах промышленной электроники термисторы применяются достаточно широко для измерения и регулирования температуры, термокомпенсации различных элементов электрических схем, работающих в широком диапазоне температур, стабилизации напряжения в цепях переменного и постоянного токов, а также в качестве регулируемых бесконтактных резисторов в цепях автоматики.

В ряде специальных устройств находят применение так называемые полупроводниковые болометры, состоящие из двух термисторов. Один из термисторов (активный) непосредственно подвергается воздействию контролируемого фактора (температуры излучения), а другой (компенсационный) служит для компенсации влияния температуры окружающей среды.

Позисторами называют полупроводниковые термисторы с положительным температурным коэффициентом сопротивления. В качестве полупроводника в них используют титанат бария со специальными примесями, сопротивление которого увеличивается при повышении температуры.

Читайте также:  Какая полярность у переменного тока

Как и для термисторов с отрицательным ТКC, для позисторов основными характеристиками являются вольтамперная и температурная. Параметры позисторов аналогичны параметрам термисторов с отрицательным TKC.

Варисторпредставляет собой полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Внешний вид варисторов представлен на рис. 2.4.3. Примерный вид вольтамперной характеристики варистора приведен на рисунке 2.4.4. Симметричность характеристики позволяет использовать варистор в цепях как постоянного, так и переменного тока. К основным параметрам варисторов относятся: статическое сопротивление при постоянных значениях напряжения и тока Rст=U/I; динамическое сопротивление переменному току Rд=ΔU/ΔI; коэффициент нелинейности – отношение статического сопротивления к динамическому в данной точке характеристики р=Rст/Rд; наибольшая амплитуда импульсного напряжения и допустимая рассеиваемая мощность

Рисунок 2.4.3. Варисторы.

Рисyнок 2.4.4. Вольтамперная характеристика варистора

Исходя из двух последних параметров, выбирают рабочее эксплуатационное напряжение варистора.

В схемах промышленной электроники варисторы применяют для регулирования электрических величин, стабилизации токов и напряжений и для защиты приборов и элементов схем от перенапряжений.

1. Какие вещества называют полупроводниками?

2. Как зависит электропроводность полупроводников от температуры?

3. Объясните следующие термины: валентная зона, зона проводимости, запрещенная зона?

4. Приведите формулу зависимости сопротивления терморезистора от температуры?

5. Какие полупроводники называют полупроводниками р-типа?

6. Какие полупроводники называют полупроводниками п-типа?

7. Приведите выражение для удельной электропроводности полупроводников.

Источник

Диффузионный ток

Диффузионный ток вызывается неравномерным распределением носителей заряда в полупроводнике. Диффузионный ток возникает под воздействием таких факторов, как свет, радиация, градиент температуры. Наиболее распространенные электронные приборы, которые работают с использованием диффузионного тока, это биполярные транзисторы, фотодиоды и датчики температуры.

В отличие от влияния окружающей температуры, которое вызывает равновесную генерацию зарядов, и эти заряды равномерно распределяются по объему, генерация в полупроводнике электронов, или дырок происходит при освещении его поверхности светом, облучением потоком заряжённых частиц, введением носителей заряда через контакт (инжекцией) в диодах или биполярных транзисторах. В этом случае внешняя энергия передается непосредственно носителям заряда, а тепловая энергия кристаллической решетки не изменяется. В результате избыточные носители заряда не находятся в тепловом равновесии с кристаллической решеткой и поэтому называются неравновесными. В отличие от равновесных носителей заряда они обычно неравномерно распределяются по объему полупроводника, как это показано на рисунке 1.

Диффузионный ток в полупроводнике
Рисунок 1 Диффузионный ток в полупроводнике

Концентрация электронов в месте поступления внешней энергии поднимается до значения np. Соответственно концентрация дырок будет pn. Неравномерное распределение неравновесных носителей зарядов сопровождается их диффузией в сторону меньшей концентрации. Это движение носителей зарядов приводит к появлению электрического диффузионного тока. Это явление широко используется в солнечных батареях. Направление диффузионного тока при освещении поверхности полупроводника показано на рисунке 1.

После прекращения действия возбудителя, за счет рекомбинации электронов и дырок концентрация избыточных носителей быстро уменьшается и возвращается к равновесному значению при данной температуре. Скорость рекомбинации неравновесных носителей пропорциональна избыточной концентрации дырок () или электронов ():

Знак «минус» в выражении (2) означает противоположную направленность диффузионного тока при движении электронов и дырок в сторону уменьшения их концентраций в полупроводнике. За время жизни концентрация неравновесных носителей уменьшается в 2,7 раза (в exp(1) раз). Их время жизни обычно находится в пределах . Носители зарядов рекомбинируют в объеме полупроводника и на его поверхности.

Теперь определим плотность диффузионного тока в полупроводнике. Рассмотрим одномерный случай. Пусть концентрации электронов n(x) и дырок p(x) в полупроводнике зависят от координаты x. Это приведет к диффузионному движению дырок и электронов из области с большей их концентрацией в область с меньшей концентрацией, что, в свою очередь, вызывает суммарный диффузионный ток электронов и дырок, плотности которых описываются выражениями:

В полупроводнике с собственной проводимостью возникает одновременно диффузионный ток электронов и дырок. Диффузионный ток в полупроводнике вдоль оси x, вызванный градиентом распределения электронов и дырок одновременно, показан на рисунке 2.

Сумма диффузионных токов в полупроводнике с собственной проводимостью
Рисунок 2. Диффузионный ток в полупроводнике, вызванный градиентом распределения электронов и дырок одновременно

За счет более высокой подвижности, электроны распространяются дальше, поэтому их концентрация на поверхности полупроводника уменьшается. В результате суммарный диффузионный ток в различных зонах полупроводника течет в противоположных направлениях.

Градиент концентрации характеризует степень неравномерности распределения зарядов (электронов и дырок) в полупроводнике вдоль одного из выбранных направлений (в данном случае вдоль оси x). Коэффициенты диффузии показывают количество электронов и дырок, пересекающих в единицу времени единичную площадку, перпендикулярную к выбранному направлению. При градиенте концентрации в этом направлении, равном единице, коэффициенты диффузии связаны с подвижностями носителей зарядов соотношениями Эйнштейна:

Если в полупроводнике одновременно присутствуют и электрическое поле, и градиент концентрации носителей, то проходящий ток будет иметь дрейфовую и диффузионную составляющие. Такая ситуация возникает в диодах и биполярных транзисторах. В этом случае плотности токов электронов и дырок рассчитываются по следующим уравнениям:

Пример возникновения суммы диффузионного и дрейфового тока в полупроводниковом диоде показан на рисунке 3. На этом же рисунке показан график изменения концентрации инжектированных электронов в диода.

Диффузионный ток и дрейфовый ток в полупроводниковом диоде
Рисунок 3. Диффузионный ток в полупроводниковом диоде, вызванный инжектированными электронами

Итог:

  • диффузионный ток — это ток, который протекает в полупроводнике под воздействием температуры, света, радиации или инжекции.
  • диффузионный ток является основным током, определяющим работу полупроводниковых диодов и транзисторов

Дата последнего обновления файла 24.12.2019

  1. В. Н. Дулин Электронные и ионные приборы — М. — Л.: Государственное энергетическое издательство, 1963. -544 с.
  2. Электронные, квантовые приборы и микроэлектроника. Под редакцией Федорова Н. Д. — М.: Радио и связь, 1998. -560 с.
  3. Электронные приборы. Под редакцией Шишкина Г.Г. -М.: Энергоатомиздат, 1989.-496 с.
  4. Батушев В. А. Электронные приборы. -М.: Высшая школа, 1980. -383 с.
  5. Савиных В. Л. Физические основы электроники. Учебное пособие. — Новосибирск.: СибГУТИ, 2003. — 77 с.
  6. Глазачев А. В. Петрович В. П. Физические основы электроники. Конспект лекций — Томск: Томский политехнический университет, 2015.

Вместе со статьей «Диффузионный ток» читают:

Источник



Диффузионный и дрейфовый ток

Дрейфовый ток в полупроводнике – это ток, возникающий за счет приложенного электрического поля. При этом электроны движутся навстречу линиям напряженности поля, а дырки по направлению линий напряженности поля. Диффузионный ток это ток, возникающий из-за неравномерной концентрации носителей заряда. n2>n1. n2-n1= .

Отношение — это градиент неравномерности концентрации примесей. Величина диффузионного тока будет определяться градиентом неравномерности и будет составлять ; ; где коэффициенты диффузии.

4. Потенциальный барьер в p – n — переходе. Распределение концентрации электронов и дырок, заряда, напряженности на границе p-n перехода.

При возникновении контакта двух полупроводников (в одном из которых высока концентрация дырок (p-тип), а в другом — свободных электронов (n-тип)) вследствие теплового движения начинается диффузия основных носителей заряда из «родного» полупроводника в соседний, где концентрация таких частиц во много раз меньше. Дырки переходят из p-полупроводника в n-полупроводник, электроны — из n- в p-полупроводник.

В результате диффузии электронов из n-области в дырочную и дырок из p-области в электронную на границе между этими областями образуется двойной слой разноименных зарядов. И тогда контактная разность потенциалов, которая в случае pn-перехода выше, чем на контакте “металл-полупроводник” составляет 0,4. 0,8В.

При этом, также как и в случае контакта «металл-полупроводник», на границе возникает электрическое поле, препятствующее дальнейшему переходу носителей заряда. То есть, в приграничной области происходит изгиб зон таким образом, что для перехода из одного полупроводника в другой носителям требуется дополнительная энергия. В p-полупроводнике зоны изгибаются вниз, создавая потенциальный барьер для дырок, в n-полупроводнике изгибаются вверх — потенциальный барьер для электронов.

В приграничном слое возникает динамическое равновесие: рекомбинирующие носители заменяются новыми, но общее количество носителей остается постоянным.

При прямом смещении, когда положительный потенциал подан на p-область, дырки устремляются навстречу электронам, которые, преодолевая пониженный потенциальный барьер в области pn-перехода, попадают в p-область. При этом происходит рекомбинация электронов и дырок. Вследствие этого «чужие» носители заряда не проникают глубь полупроводников, погибая в области pn-перехода. Протекание тока при этом можно представить в виде двух потоков — электронов и дырок, которые втекают в область рекомбинации с противоположных сторон. С увеличением напряжения возрастают скорости втекающих электронов и дырок и, соответственно, скорость их рекомбинации.

5. Электронно-дырочный переход при приложении прямого и обратного напряжения.

Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направлено навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолевать потенциальный барьер, и поэтому через p-n переход будет протекать сравнительно большой ток, вызванный основными носителями заряда.

Такое включение p-n перехода называется прямым, и ток через p-n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении p-n переход открыт. Если подключить внешнее напряжение минусом на p-область, а плюсом на n-область, то возникает внешнее электрическое поле, линии напряженности которого совпадают с внутренним полем p-n перехода. В результате это приведет к увеличению потенциального барьера и ширины p-n перехода. Основные носители заряда не смогут преодолеть p-n переход, и считается, что p-n переход закрыт. Оба поля – и внутреннее и внешнее – являются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через p-n переход, образуя очень маленький ток, который называется обратным током. Такое включение p-n перехода также называется обратным.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Диффузионный и дрейфовый токи.

Диффузия (от лат. diffusio — распространение, растекание, рассеивание) — неравновесный процесс, вызываемый тепловым движением частиц, приводящий к установлению равновесия и выравниванию концентраций (при постоянстве температуры и отсутствии внешних сил). Если частицы заряжены, то их диффузионное перемещение приводит к появлению диффузионных токов.

Диффузионный поток направлен из области высокой концентрации в область низкой концентрации. Свободные носители заряжены. Следовательно любое их перемещение, в том числе и диффузионное, приводит к появлению электрических токов, которые так и будем называть диффузионными.

Рис. 1.25. Схема, иллюстрирующая возникновение диффузионных токов электронов и дырок.

Схема на рис. 1.25 иллюстрирует возникновение диффузионных токов электронов и дырок. Следует обратить внимание, что потоки электронов и дырок на схеме направлены в одну сторону, а токи дырочный и электронный токи в разные. Направление дырочного тока совпадает с направлением потока, электронного противоположно, поэтому токи компенсируют друг друга уменьшая общий диффузионный ток.

Скорость диффузии (диффузионный поток) пропорционален градиенту концентрации, поэтому для диффузионных токов можно записать:

где Dn и Dp соответственно коэффициенты диффузии электронов и дырок. Коэффициенты диффузии носителей заряда связаны с их подвижностью соотношением Эйнштейна:

Коэффициент диффузии тем выше, чем выше подвижность носителей заряда.

Токи, возникающие во внешних полях принято называть дрейфовыми, поскольку внешнее поле не прекращая хаотического теплового движения носителей заряда заставляет их смещаться (дрейфовать) в направлении, которое зависит от знака носителя и направления внешнего поля. К дрейфовым токам можно отнести и рассмотренные ранее токи проводимости токи (их иногда называют омическими), используя (1.56) для них можно записать:

Таким образом процессы, определяющие перенос зарядов в полупроводниках будут определяться четырьмя токами: дрейфовыми токами электронов и дырок, возникающими при наличии электрического поля и диффузионными токами электронов и дырок, возникающими в том случае, когда существует градиент концентрации носителей заряда.

Все четыре тока связаны между собой уравнением непрерывности (4), которой явилось следствием закона сохранения заряда.

Уравнение непрерывности.

Для полупроводника, в объеме которого происходит генерация и рекомбинация носителей заряда, используя (4) запишем:

где G и U соответственно члены характеризующие скорость генерации и скорость рекомбинации носителей заряда. Используя (21) и (24) и разделив левую и правую части уравнения на величину заряда электронов получим:

Для одномерного случая разделяя члены, относящиеся к электронам и дыркам , учитывая, что полный ток равен:

Связь между распределением заряда и электрического поля в образце устанавливается с помощью уравнения Пуассона:

Для полупроводника близкого к собственному основными зарядами являются электроны и дырки, поэтому:

Подставляя ∂E/∂x в (31) получим:

Считая, что в образце выполняется условие электронейтральности: Δp≈Δn и τp ≈ τn. суммируя уравнения для электронов и дырок получим:

где D и μ коэффициенты , характеризующие совместную диффузию и дрейф электронов и дырок, поэтому их и называют коэффициентами амбиполярной диффузии и амбиполярной подвижности:

Уравнение (1.67) описывает основные изменения происходящие с носителями заряда и соответственно токами в полупроводниковых материалах и соответственно приборах на их основе. Это уравнение в правой части содержит три члена: генерационно-рекомбинационный, диффузионный и дрейфовый. Это уравнение широко используется при анализе процессов в полупроводниковых приборах, поскольку позволяет значительно упростить расчеты, по существу заменив операции с четырьмя потоками носителей операциями с одним.

Предположим, что у нас имеется полупроводниковый образец в центре которого инжектируется избыточная концентрация электронов и дырок (Δn ≈ Δp) , такое распределение можно создать коротким лазерным импульсом с энергией квантов большей ширины запрещенной зоны. Как со временем будет изменяться этот импульс, если к образцу приложить внешнее электрическое напряжение (рис. 1.26), которое создаст в нем электрическое.

Ответ на поставленный вопрос поможет дать уравнения (1.66), (1.67) при этом не обязательно решать само уравнение, достаточно воспользоваться введенными характеристическими коэффициентами, характеризующими совместно движение электронов и дырок (36). Действительно направление движения совпадает с электрическим полем, если подвижность — положительная величина и направлено в другую сторону, если подвижность — отрицательная величина.

Допустим, что рассматриваемый полупроводник n типа, тогда n>>p и из (1.67) получим, что μ ≈μp. Следовательно перемещение импульса носителей заряда в электрическом поле будет определяться перемещением дырок vдр= μpE.

Допустим, что рассматриваемый полупроводник p типа, тогда p>> n и из (1.67) получим, что μ ≈μn. Следовательно перемещение импульса носителей заряда в электрическом поле будет определяться перемещением электроновvдр= — μnE.

В случае собственного полупроводника (n = p = ni) μ = 0 и соответственно vдр= μE.

Рассмотренные варианты проиллюстрированы на нижней диаграмме рис. 1.26.

Рис. 1.26. Дрейф инжектированного светом электронно-дырочного импульса в электрическом поле.

В процессе дрейфа импульс будет расплываться за счет диффузии и общее число избыточных носителей заряда в нем будет уменьшаться в результате рекомбинации.

Приведенный пример демонстрирует эффективность уравнения (35) при анализе процессов в различных областях полупроводниковых приборов. Так биполярные полупроводниковые приборы (диоды, транзисторы, тиристоры и др) состоят из чередующихся областей p и n типа. Поэтому для анализа процессов в различных областях используются уравнения для неосновных носителей заряда.

Для p области p>>n и соответственно будут иметь место следующие уравнения.

Каждое из приведенных уравнений является частным случаем более общего уравнения (1.66) и используется для анализа процессов в полупроводниковых материалах и приборах именно для частных случаев, что значительно упрощает поиск возможного решения. Решение уравнения (1.66) достаточно в общем виде весьма сложно и, если это требуется по условиям задачи, то обычно выполняется численными методами с использованием соответствующих компьютерных программ.

Аналогично для n типа n>>p Для p соответственно будут иметь место

Дата добавления: 2018-06-01 ; просмотров: 352 ; Мы поможем в написании вашей работы!

Источник