script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Какое действие электрического тока используется для получения чистых металлов например меди алюминия

Какое действие электрического тока используется для получения чистых металлов например меди алюминия

1) В свободном виде встречаются золото и платина; золото бывает в распыленном состоянии, а иногда собирается в большие массы самородки. Так в Австралии в 1869 году нашли глыбу золота в сто килограммов весом. Через три года обнаружили там же еще большую глыбу весом около двухсот пятидесяти килограммов. Наши русские самородки много меньше, и самый знаменитый, найденный в 1837 году на Южном Урале, весил всего около тридцати шести килограммов. В середине XVII века в Колумбии испанцы, промывая золото, находили вместе с ним тяжелый серебристый металл. Этот металл казался таким же тяжелым, как и золото, и его нельзя было отделить от золота промывкою. Хотя он и напоминал серебро, но был почти нерастворим и упорно не поддавался выплавке; его считали случайной вредной примесью или преднамеренной подделкой драгоценного золота. Поэтому испанское правительство приказывало в начале XVIII столетия выбрасывать этот вредный металл при свидетелях обратно в реку. Месторождения платины находятся и на Урале. Оно представляет собой массив дунита (изверженная горная порода, состоящая из силикатов железа и магния с примесью железняка). В нем содержатся включения самородной платины в виде зерен. В самородном виде и в форме соединений могут находиться в природе серебро, медь, ртуть и олово.

2) Все металлы. Металлы средней и малой активности, которые в ряду напряжений находятся до олова, в природных условиях встречаются только в виде соединений − образуют оксиды и сульфиды. Реже их можно встретить в составе сложных кислотно-металлических соединений.

3) Химически активные элементы встречаются либо в виде простых солей, либо в виде полиэлементных соединений, которые имеют очень сложное химическое строение, но в основном достаточно просто разлагаются на составляющие при определенном воздействии.

Чаще всего металлы в природе встречаются в виде солей неорганических кислот:

  • хлоридов сильвинит КСl • NaCl, каменная соль NaCl;
  • нитратов – чилийская селитра NaNO3;
  • сульфатов – глауберова соль Na2SO4•10 H2O, гипс CaSO4•2Н2О;
  • карбонатов – мел, мрамор, известняк СаСО3, магнезит MgCO3, доломит CaCO3•MgCO3;
  • сульфидов серный колчедан FeS2, киноварь HgS, цинковая обманка ZnS;
  • фосфатов – фосфориты, апатиты Ca3(PO4)2;
  • оксидов – магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк, содержащий различные гидроксиды железа (III) Fe2O3•Н2О.

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

Источник

Электрометаллургия

Электрометаллургия — Методы получения металлов, основанные на электролизе, т. е. выделении металлов из растворов или расплавов их соединений при пропускании через них постоянного электрического тока. Этот метод применяют главным образом для получения очень активных металлов – щелочных, щелочноземельных и алюминия, а также производства легированных сталей.

Содержание

Виды процессов

В электрометаллургии используются электротермические и электрохимические процессы. Электротермические процессы используются для выделения металлов из руд и концентратов, производства и рафинирования чёрных и цветных металлов и сплавов на их основе (Электротермия). В этих процессах электрическая энергия является источником технологического тепла. Электрохимические процессы распространены в производстве чёрных и цветных металлов на основе электролиза водных растворов и расплавленных сред (Электрохимия). За счёт электрической энергии осуществляется окислительно-восстановительные реакции на границах раздела фаз при прохождении тока через электролиты. Особое место в этих процессах занимает гальванотехника, в основе которой лежат электрохимические процессы оседания металлов на поверхность металлических и неметаллических изделий.

Читайте также:  Схема освобождения пострадавшего от действия электрического тока

Электрохимические процессы охватывают плавку стали в дуговых и индукционных печах, спецэлектрометаллургию, рудовосстанавливающую плавку, включающую производство ферросплавов и штейнов, выплавку чугуна в шахтных электропечах, получения никеля, олова и других металлов.

Электродуговая плавка

Электросталь, предназначенная для дальнейшего передела, выплавляется главным образом в дуговых печах с основной футеровкой. Важные преимущества этих печей перед другими сталеплавильными агрегатами (возможность нагрева металла до высоких температур за счёт электрической дуги, обновляемая атмосфера в печи, меньший угар легирующих элементов, высокоосновные шлаки, обеспечивающие существенное снижение содержания серы) обусловили их использование для производства легированных высококачественных сталей — коррозионностойких, инструментальных (в том числе быстрорежущих), конструкционных, электротехнических, жаропрочных и т. д., а также сплавов на никелевой основе.

Мировая тенденция развития электродуговой плавки — увеличение ёмкости отдельного агрегата до 200—400 тонн, удельной мощности трансформатора до 500—600 и более кВА/т, специализация агрегатов (в одних — только расплавление, в других — рафинирование и легирование), высокий уровень автоматизации и использования ЭВМ для программного управления плавкой. В печах повышенной мощности экономически целесообразно плавить не только легированную, но и обычную углеродистую сталь. В развитых странах доля углеродистой стали от общего объёма электростали, выплавляемой в электропечах, составляет 50 % и более. В СССР в электропечах выплавлялось

80 % легированного металла.

Для выплавки специальных сталей и сплавов приобретают распространение плазменно-дуговые печи с основным керамическим тиглем (ёмкостью до 30 т), оборудованные плазмотронами постоянного и переменного тока (Плазменная металлургия). Дуговые электропечи с кислотной футеровкой используют для плавки металла, предназначенного для стального литья. Кислотный процесс в целом более высокопродуктивный, чем основной, из-за кратковременности плавки, благодаря меньшей продолжительности окислительного и восстановительного периодов. Кислотная сталь дешевле основной вследствие меньшего расхода электроэнергии, электродов, лучшей стойкости футеровки, меньшим затратам окислителей и возможности осуществления кремневосстанавливающего процесса. Дуговые печи ёмкостью до 100 тонн широко используются также для плавки чугуна в чугуноплавильных цехах.

Индукционная плавка

Плавка стали в индукционной печи, осуществляемая в основном методом переплавки, сводится, как правило, к расплавлению шихты, раскислению металла и отпуску. Это обуславливает высокие требования к шихтовым материалам с содержанием вредных примесей (P, S). Выбор тигля (основной или кислый) обуславливается свойствами металла. Чтобы кремнезём футеровки не восстанавливались в процессе плавки, стали и сплавы с повышенным содержанием Mn, Ti, Al выплавляют в основном тигле. Существенный недостаток индукционной плавки — холодные шлаки, которые нагреваются только от металла. В ряде конструкций этот недостаток устраняется путём плазменного нагрева поверхности металл-шлак, что позволяет также значительно ускорить расплавление шихты. В вакуумных индукционных печах выплавляют чистые металлы, стали и сплавы соответствующего назначения (Вакуумная плавка). Ёмкость существующих печей составляет от нескольких килограмм до десятков тонн. Вакуумную индукционную плавку интенсифицируют продувкой инертными (Ar, Не) и активными (CO, CH4) газами, электромагнитным перемешиванием металла в тигле, продувкой металла шлакообразующими порошками.

Спецэлектрометаллургия

Спецэлектрометаллургия охватывает новые процессы плавки и рафинирования металлов и сплавов, которые получили развитие в 50—60-х гг. 20 столетия для удовлетворения потребностей современной техники (космической, реактивной, атомной, химического машиностроения и др.) в конструкционных материалах с высокими механическими свойствами, жаропрочностью, коррозионной стойкостью и т. д. Спецэлектрометаллургия включает вакуумную дуговую плавку, электроннолучевую плавку, электрошлаковую переплавку и плазменно-дуговую плавку. Этими методами переплавляют стали и сплавы ответственного назначения, тугоплавкие металлы — вольфрам, молибден, ниобий и их сплавы, высокореакционные металлы — титан, ванадий, цирконий, сплавы на их основе и др. Вакуумная дуговая плавка была предложена в 1905 году В. фон Больтоном (Германия); в промышленных масштабах этот метод впервые был использован для плавки титана В. Кроллом (США) в 1940 году. Метод электрошлакового переплава разработан в 1952—53 гг. в Институте электросварки им. Патона АН УССР. Для получения сталей и сплавов на никелевой основе особо ответственного назначения используют разные варианты дуплекс-процессов, наиважнейший из которых — объединение вакуумной индукционной плавки и вакуумно-дуговой переплавки. Особое место в спецэлектрометаллургии занимает вакуумная гарнисажная плавка, в которой источниками тепла служат электрическая дуга, электронный луч, плазма. В этих печах, используемых для высокоактивных и тугоплавких металлов (W, Мо и др. и сплавы на их основе), порция редкого металла в водоохлаждаемом тигле с гарнисажем используется для получения слитков и фасонных отливок.

Читайте также:  Участку цепи подвели переменный ток эффективное напряжение 220

Рудовосстанавливающая плавка

Рудовосстанавливающая плавка включает производство ферросплавов, продуктов цветной металлургии — медных и никелевых штейнов, свинца, цинка, титановых шлаков и др. Процесс заключается в восстановлении природных руд и концентратов углеродом, кремнием и другими восстановителями при высоких температурах, которые создаются главным образом за счёт мощной электрической дуги (Рудотермическая печь). Восстанавливающие процессы обычно являются непрерывными. По мере проплавления подготовленную шихту загружают в ванну, а полученные продукты периодически выпускают из электропечи. Мощность таких печей достигает 100 МВА. На некоторых предприятиях на основе рудовосстанавливающей плавки производится чугун в электродоменных печах или электродуговых бесшахтных печах.

Электрохимические процессы получения металлов

Г. Деви в 1807 впервые использовал электролиз для получения натрия и калия.

В конце 1970-х гг. методом электролиза были получены более 50 металлов, в частности медь, никель, алюминий, магний, калий, кальций. Различают 2 типа электролитических процессов. Первый связан с катодным оседанием металлов из растворов, полученных методами гидрометаллургии; в этом случае восстановлению (откладыванию) на катоде металла из раствора отвечает реакция электрохимического окисления аниона на нерастворимом аноде.

Второй тип процессов связан с электролитическим рафинированием металла из его сплава, из которого изготавливается растворимый анод. На первой стадии в результате электролитического растворения анода металл переводится в раствор, на второй стадии он оседает на катоде. Последовательность растворения металлов на аноде и осаждения на катоде определяется предел напряжения. Однако в реальных условиях потенциалы выделения металлов существенно зависят от величины перенапряжения водорода на соответствующем металле. В промышленных масштабах рафинируют цинк, марганец, никель, железо и другие металлы; алюминий, магний, калий и др. получают электролизом расплавленных солей при 700—1000 °C. Последний способ связан с бо́льшим потреблением электроэнергии (15—20 тыс. кВт•час/т) в сравнении с электролизом водных растворов (до 10 тыс. кВт•час/т).

История

В начале 19 века В. В. Петров обнаружил возможность получения при помощи электрической дуги чистых металлов из их оксидов (руд). Этот процесс восстановления металлов лежит в основе современной электрометаллургии. Первые дуговые электрические печи для восстановления из руд были построены в конце 1870 годов. Но электропечи расходуют очень много электроэнергии, поэтому их промышленное применение началось только тогда, когда стали строить мощные электростанции и была решена проблема передачи электрической энергии на расстояние.

Источник



Вопросы § 35

Физика А.В. Перышкин

1.Как можно наблюдать на опыте тепловое действие тока?

Тепловое действие тока можно наблюдать на проволоке, через которую пропускают электрический ток, она нагревается, удлиняется от нагревания и провисает. Если ток увеличить, можно нагреть проволоку докрасна. В лампах накаливания вольфрамовая спираль накаляется током до яркого свечения.

2. Как можно наблюдать на опыте химическое действие тока?

Читайте также:  Расчет емкостных токов в кабели

Химическое действие тока состоит в выделении веществ из растворов при прохождении через
них электрического тока — явление электролиза используется для получения чистых металлов. На опыте это можно продемонстрировать, пропуская ток через раствор медного купороса, получая на отрицательно заряженном электроде чистую медь.

3. Где используют тепловое и химическое действия тока?

Тепловое действие электрического тока используется в различных нагревательных приборах: плитах, утюгах, лампах накаливания, обогревателях воздуха и воды, полов, грелках и т.п. Химическое действие электрического тока используется в промышленном производстве чистых металлов и других веществ электролизом.

4. На каком опыте можно показать магнитное действие тока?

Магнитное действие электрического тока можно продемонстрировать следующим опытом. На железный гвоздь намотать медную проволоку в изоляции, концы которой подсоединить к источнику тока. Когда ток идет, к гвоздю примагничиваются мелкие железные предметы: скрепки, гвоздики, кнопки, как только цепь разрывается, магнитное действие пропадает, все осыпается.

5. Какое действие тока используют в устройстве гальванометра?

В устройстве гальванометра используют явление взаимодействия катушки с током и магнита.

Источник

Какое действие электрического тока используется для получения чистых металлов например меди алюминия

Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.

Для получения медную копии (клише) с воскового диска использовалось явление ____________, то есть осаждение на электроде чистой меди при прохождении электрического тока через раствор её солей. При воспроизведении звука на граммофоне игла и мембрана, присоединённая к игле ____________, что позволяет достаточно хорошо повторить записанный звук.

В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.

Запись звука

Возможность записывать звуки и затем воспроизводить их была открыта в 1877 году американским изобретателем Т.А. Эдисоном. Благодаря этому появилось звуковое кино, началось массовое производство граммофонных пластинок.

На рисунке 1 дана упрощенная схема механического звукозаписывающего устройства. Звуковые волны от источника звука (певца, оркестра и т.д.) попадали в рупор 1, в котором была закреплена тонкая упругая пластинка 2 (мембрана). Под действием звуковой волны мембрана начинала колебаться. Колебания мембраны передавались связанному с ней резцу 3, острие которого оставляло при этом на вращающемся диске 4 звуковую бороздку. Звуковая бороздка закручивалась по спирали от края диска к его центру.

Диск или валик, на котором производилась звукозапись, изготавливалась из специального мягкого воскового материала. С этого воскового диска гальванопластическим способом снимали медную копию (клише): использовалось осаждение на электроде чистой меди при прохождении электрического тока через раствор её солей. Затем с медной копии делали оттиски на дисках из пластмассы. Так получали граммофонные пластинки.

При воспроизведении звука граммофонную пластинку ставят под иглу, связанную с мембраной граммофона, и приводят пластинку во вращение. Двигаясь по волнистой бороздке пластинки, конец иглы колеблется, вместе с ним колеблется и мембрана, причём эти колебания довольно точно воспроизводят записанный звук.

1898 году датский инженер Вольдемар Паульсен изобрёл аппарат для магнитной записи звука на стальной проволоке. Магнитные ленты появились значительно позже, их использование началось в 40-х годах XX века. На рисунке 3 представлен принцип работы записывающей магнитной головки магнитофона.

В 1979 году вернулась механическая запись звука, но уже на новом уровне – при записи лазерных дисков. Вместо иглы фонографа звуки на диске записывает луч лазера. Звуковая информация заключена в мельчайших углублениях (рис. 4), выгравированных при записи лазерным лучом на металлизированной поверхности диска. Этот диск во время вращения «читается» другим лазерным лучом, и различия в отражённом лазерном свете преобразуются в электрические сигналы, которые затем преобразуются в звук.

Источник