script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Коэффициент мощности однофазной электрической цепи переменного тока

Мощность переменного тока и коэффициент мощности

Мощность переменного тока и коэффициент мощностиКогда речь идет о переменном токе, то здесь различают:

1) Активную мощность P;

2) Реактивную мощность Q;

3) Полную (кажущуюся) мощность S.

Активная мощность P вычисляется по формуле:

где φ — угол сдвига фаз между напряжением и током; cos φ — коэффициент мощности, который всегда меньше единицы.

Активная мощность проявляется в приемниках тока, таких как электрическая печь, лампа накаливания, мотор, пре­образуясь там в механическую энергию, в тепловую и т. п.

Реактивная мощность Q может быть найдена по формуле:

Реактивная мощность измеряется в вольт-амперах реактивных (ВАр или кВАр, если речь о киловольт-амперах реактивных).

Реактивная мощность загружает линию между приемником и генератором, просто циркулируя по проводам между ними. Она проявляется при создании и разрушении магнитных и электрических полей при индуктивном или емкостном характере нагрузки. Трансформаторы, асинхронные электродвигатели — вот лишь пара примеров, где реактивная мощность значительно проявляется, особенно при работе устройств вхолостую. Таким образом, чем ниже реактивная мощность, тем эффективнее используются электрические установки.

Полная мощность (или кажущаяся мощность) выражается формулой:

Полная мощность измеряется в вольт-амперах. Эта мощность включает как активную, так и реактивную составляющие.

Коэффициентом мощности, или cosφ («косинусом фи»), цепи переменного тока, называется отношение активной мощности к полной мощности.

Коэффициент мощности, обычно, меньше единицы, но в случае когда нагрузка полностью активная, вся мощность является активной мощностью, и тогда коэффициент мощности равен единице.

Электрические измерения

В общем случае, чем большую долю полной мощности составляет непосредственно активная мощность, тем более коэффициент мощности приближен к единице.

И задача состоит в том, чтобы по линии к потребителю протекала только минимально необходимая величина реактивной энергии.

Уменьшить реактивную мощность можно путем уменьшения сдвига фаз между напряжением и током. Низкий cosφ (коэффициент мощности) имеет следствием неполное использование электрического оборудования установок и снижение общего коэффициента полезного действия. Поэтому, необходимо добиваться поддержания cosφ установок на приемлемо высоком уровне. Для повышения Cosφ применяют специальные компенсирующие установки (синхронные компенсаторы, статические конденсаторы) или добиваясь полной загрузки трансформаторов и электродвигателей.

Источник

Что такое активная и реактивная мощность переменного электрического тока?

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Читайте также:  Величина постоянного тока при которой человек начинает ощущать его воздействие

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Что такое активная и реактивная мощность переменного электрического тока?

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Что такое активная и реактивная мощность переменного электрического тока?

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Что такое активная и реактивная мощность переменного электрического тока?

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Что такое активная и реактивная мощность переменного электрического тока?

Как перевести амперы в киловаты?

Что такое активная и реактивная мощность переменного электрического тока?

Что такое делитель напряжения и как его рассчитать?

Что такое активная и реактивная мощность переменного электрического тока?

Способы вычисления потребления электроэнергии бытовыми приборами

Что такое активная и реактивная мощность переменного электрического тока?

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Что такое активная и реактивная мощность переменного электрического тока?

Что такое фазное и линейное напряжение?

Что такое активная и реактивная мощность переменного электрического тока?

Как подобрать блок питания для светодиодной ленты по техническим характеристикам, расчёт мощности

Источник



Мощность однофазного переменного тока. Коэффициент мощности

date image2014-02-04
views image4131

facebook icon vkontakte icon twitter icon odnoklasniki icon

Лекция 5

Рис.2.35 изображает неразветвлённую цепь с активным сопротивлением R и индуктивностью L.

Рис.2.35. Цепь переменного тока с активным сопротивлением и индуктивностью

Пусть мгновенный ток в цепи изменяется по закону . Тогда мгновенное напряжение на активном сопротивлении , так как на этом участке напряжение и ток совпадают по фазе. Напряжение на катушке индуктивности , поскольку на индуктивности напряжение опережает по фазе ток на угол .

Построим для действующих значений напряжения и тока векторную диаграмму для рассматриваемой цепи (рис. 2.36).

Векторы и образуют треугольник напряжений. Выведем закон Ома для этой цепи. Из треугольника напряжений имеем . Но , а , где — индуктивное сопротивление, следовательно:

Рис.2.36. Векторная диаграмма действующих значений тока и напряжения цепи переменного тока с активным сопротивлением и индуктивностью

Введем обозначение , где Z — полное сопротивление цепи. Тогда выражение закона Ома примет вид:

Полное сопротивление Z можно определить из треугольника сопротивлений (рис. 2.37).

Рис.2.37. Треугольник сопротивлений цепи переменного тока с активным сопротивлением и индуктивностью

Сдвиг фаз между током и напряжением определяется из треугольника сопротивлений:

Поскольку вектор сдвинут по фазе относительно вектора на угол против часовой стрелки, этот угол имеет положительное значение.

Если (рис.2.38) , то мгновенная мощность . Для действующих значений произведение , откуда . Выражение . Исходя из этого,

Таким образом, мгновенная мощность переменного тока может быть представлена в виде постоянной величины и, изменяющейся около неё с двойной частотой, величины .

Введем понятие средней или активной мощности:

Активная мощность характеризует расход энергии на активном сопротивлении.

Реактивная мощность характеризует обмен энергий между индуктивной катушкой и источником:

Полная мощность оценивает предельную мощность нагрузки:

Читайте также:  Где измеряют постоянный ток

Рис.2.38. Зависимости мгновенных значений напряжения, тока и мощности цепи переменного тока с активным сопротивлением и индуктивностью

Совокупность всех мощностей можно определить из треугольника мощностей (рис. 2.39).

Рис.2.39. Треугольник мощностей

Так: Обозначим коэффициент мощности в виде соотношения .

Коэффициент мощности cosφ изменяется от 0 до 1. По его величине судят, какую часть полной мощности составляет активная мощность. На практике стремятся к увеличению cosφ.

3. Трёхфазные электрические цепи

3.1. Преимущество трёхфазного тока. Принцип получения трёхфазной ЭДС

В современной электроэнергетике наибольшее распространение получили трёхфазные цепи. Они обладают рядом преимуществ перед однофазными цепями переменного тока. Среди преимуществ можно отметить экономичность производства и передачи электрической энергии. По сравнению с однофазными электрическими машинами мощность трёхфазных машин повышается в 1,5 раза при одинаковых габаритах. При этом возможно простое получение вращающегося магнитного поля, необходимого для 3-х фазного асинхронного двигателя, самого распространенного из двигателей переменного тока, а также получение в одной установке двух эксплуатационных напряжений (фазного и линейного).

На рис.3.1 изображена модель трёхфазного генератора, с помощью которой можно пояснить принцип получения трёхфазной ЭДС.

На неподвижном статоре генератора размещаются три одинаковые и сдвинутые друг относительно друга на угол по магнитным осям обмотки, которые называются фазными обмотками генератора.

Начала обмоток обозначены буквами A,B,C, концы — X,Y,Z. ЭДС в неподвижных витках обмоток статора индуктируются в результате пересечения этих витков магнитным полем, возбуждаемым током вращающегося ротора (ротор с обмоткой условно изображен в виде постоянного магнита с полюсами N и S).

Расположенная на роторе обмотка возбуждения питается от источника постоянного напряжения.

Рис.3.1. Модель трёхфазного генератора

При вращении ротора с равномерной угловой скоростью , в обмотках фаз статора индуктируются периодически изменяющиеся синусоидальные ЭДС , , одинаковой частоты. Мгновенные ЭДС индуктивных элементов сдвинуты по фазе на угол . За условное положительное направление ЭДС в каждой фазе принимается направление от конца к началу (рис.3.2).

Рис.3.2. Направления мгновенных ЭДС обмоток статора трёхфазной цепи

Совокупность ЭДС, напряжений и токов трёхфазной цепи называется трёхфазной системой. При сдвиге фаз между ЭДС, напряжениями и токами на угол и равенстве их амплитудных значений трёхфазная система называется симметричной. Симметричная трехфазная система может изображаться тригонометрическими функциями, графиками, векторами.

Если принять, что мгновенная ЭДС фазы A в нулевой момент времени равна , то мгновенные ЭДС в фазах индуктивных элементов В и С будут определяться тригонометрическими функциями и .

Мгновенные значения ЭДС трёхфазного генератора графически выразятся в виде трёх синусоид, сдвинутых друг относительно друга по фазе на угол (рис.3.3).

Рис.3.3. Мгновенные значения ЭДС трёхфазного генератора

При симметричной нагрузке геометрическая сумма трёх симметричных ЭДС фаз равна 0. или . Векторная диаграмма значений ЭДС симметричного трехфазного генератора представлена на рис.3.4.

Рис.3.4. Векторная диаграмма значений ЭДС симметричного трехфазного генератора

Частота вращения ротора синхронного генератора равна частоте вращения поля статора и сохраняется постоянной, независимо от нагрузки. Частота ЭДС генератора f зависит от числа пар полюсов ротора p и частоты его вращения n, то есть f = pn, при f = 50 Гц, p = 1, n = 50 об/c = 3000 об/мин. В качестве первичных двигателей вращения генераторов используют дизели или турбины.

Источник

Особенности переменного тока

26 октября 2019

Время на чтение:

Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.

Нормы мощности в сети переменного тока

Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт. Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром. При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.

Что такое мощность переменного тока

Мощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.

Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.

Мощностные нормы в сети переменного тока

Характеристики

Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.

Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.

Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.

Характеристики переменного тока

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Читайте также:  Широтно импульсные преобразователи в электроприводе постоянного тока

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.

Формула мощности в цепи переменного тока

В однофазной цепи

Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.

Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.

В трехфазной цепи

В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.

Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.

Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.

Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.

В трехфазной цепи

В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.

Источник