Меню

Коэффициент мощности опережающий ток

Коэффициент мощности и гармоники в электросети

Контроллер компенсатора

Контроллер компенсаторной установки для увеличения cos φ

В прошлой статье я рассказал при исследование качества электроэнергии при помощи анализатора HIOKI. Там я обещал продолжить рассказ и поделиться своими знаниями по таким понятиям, как коэффициент мощности (известный в народе как cos φ) и гармоники питающего напряжения.

Кроме того, расскажу, что такое PF, DPF, и докажу, что косинус и синус – две большие разницы! 🙂

Для примера разберём, как обстоят дела с косинусом и гармониками на предприятии, которое мы обследовали совместно с “ИК Энергопартнер”.

Косинус угла в электротехнике

Кто хочет, почитайте про cos φ в Википедии, а я расскажу своими словами.

Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением. Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360.

На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:

косинус фи - коэффициент мощности

  • P – активная мощность, которая тратится на совершение полезной работы,
  • S – полная мощность.

Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:

Формула коэффициента мощности

Формула коэффициента мощности через активную и реактивную мощности

На самом деле, всё не так просто, подробности ниже.

Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:

В видео подробно и доступно изложена вся теория по теме.

Размерности. Что в чём измеряется

Активная мощность Р ⇒ Вт (то, что измеряет домашний счетчик),

Реактивная мощность Q ⇒ ВАР (Вольт · Ампер Реактивный),

Полная мощность S ⇒ ВА (Вольт · Ампер).

Кстати, в стабилизаторах и генераторах мощность указана в ВА. Так больше. Маркетологи знают лучше.

Также маркетологи знают, что на потребителях (например, на двигателях) мощность лучше указывать в Вт. Так меньше.

Минусы и плюсы наличия реактивной составляющей

При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжений равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.

Реактивная составляющая не так бесполезна. Она формирует электромагнитное поле, нужное для адекватной работы реактивной нагрузки.

В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.

Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.

Чисто реактивная нагрузка бывает только в учебнике. Реально за счет потерь всегда присутствует и активная составляющая тоже.

Реактивная составляющая мощности питания является негативным фактором, поскольку:

  • Возникают дополнительные потери в линиях передачи электроэнергии,
  • Снижается пропускная способность линий электропередачи,
  • Происходит падение напряжения на линиях передачи из-за увеличения реактивной составляющей тока питающей сети,
  • Происходит дополнительный нагрев и износ систем распределения и трансформации электроэнергии,
  • Возможно появление резонансных эффектов на частотах гармоник, что может вызвать перегрев питающих сетей.

По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.

Пример: Для передачи определенной мощности нужен ток 100 А при cos φ = 1. Однако, при cos φ = 0,6 для обеспечения той же мощности нужно будет передать ток 166 А! Соответственно, нужно думать о повышении мощности питающей сети и увеличении сечения проводов…

Реактивная мощность – это часть мощности источника питания, эта мощность была накоплена в магнитном поле, а затем возвращена обратно источнику.

Как компенсируют реактивную составляющую мощности?

Для понижения (компенсации) индуктивного характера реактивной составляющей используют введение емкостной составляющей в нагрузку, которая имеет положительный сдвиг фаз напряжения и тока (ток опережает напряжение). Реализуется это путем подключения параллельно нагрузке конденсаторов необходимой емкости. В результате происходит компенсация, и нагрузка со стороны питающей сети становится активной, с малой долей реактивной составляющей.

Компенсаторная установка на конденсаторах

Компенсаторная установка на контакторах

Важно, чтобы не происходило перекомпенсации. То есть, даже после компенсации косинус не должен быть выше 0,98 – 0,99, и характер мощности всё равно должен оставаться индуктивным. Ведь компенсация имеет ступенчатый характер (контакторами переключаются трехфазные конденсаторы).

Конденсатор компенсатора

Конденсатор компенсатора реактивной мощности

Однако, для конечного потребителя компенсация реактивной мощности не имеет особого смысла. Польза в её компенсации есть только там, где имеются длинные сети передачи, которые “забиваются” реактивной мощностью, что в итоге снижает их пропускную способность.

Поэтому компенсация реактивной мощности относится к вопросу энергосбережения – она позволяет экономить расход топлива на электростанциях, и выработку бесполезной реактивной энергии, которая в конечном счете преобразуется в тепловую энергию и выбрасывается в атмосферу.

На предприятиях учитывается и активная, и реактивная потребляемые мощности, и при составлении договора оговаривается минимальное значение коэффициента мощности, которое нужно обеспечить. Если косинус упал – включается повышающий коэффициент при оплате.

Отрицательный косинус

Из школьного курса геометрии известно, что cos (φ) = cos (-φ), то есть косинус любого угла будет положительной величиной. Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!

В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ Коэффициент реактивной мощности Тангенс φ

Часто более удобным является коэффициент реактивной мощности tg φ, который показывает отношение реактивной мощности к активной. Понятно, что при tg φ = 0 достигается идеал cos φ = 1.

Гармоники питающего напряжения

Кроме образования реактивной мощности, на промышленных предприятиях существует такой негативный фактор, как выработка гармоник напряжения питающей сети.

Гармоники – это та часть спектра питающего напряжения, которая отличается частоты промышленной сети 50 Гц. Как правило, гармоники образуются на частотах, кратных основной. Таким образом, 1-я (основная) гармоника имеет частоту 50 Гц, 2-я – 100, 3-я – 150, и так далее.

Для измерения гармоник напряжения существует формула:

Гармоники напряжения – формула расчета

  • Кu – коэффициент нелинейных искажений, или THD (Total Harmonic Distortion),
  • U(1), U(2), и так далее – напряжение соответствующей гармоники, вплоть до 40-й.

Однако, эта формула не удобна на практике, поскольку не дает представления об уровне каждой гармонике в отдельности. Поэтому для практических целей используют формулу:

Коэффициент каждой гармоники напряжения

  • Кu(n) – коэффициент n-й гармонической составляющей спектра напряжения,
  • U(n) – напряжение n-й гармоники,
  • U(1) – напряжение 1-й гармоники

Таким образом, при измерении мы получим детальное распределение гармоник в спектре питающего напряжения, что позволит провести детальный анализ полученной информации и сделать правильные выводы.

Есть ещё гармоники тока, но там всё гораздо хуже…

На основе увеличения гармоник тока построен прибор для обмана счетчика. Кстати, там Автор прибора довольно убедительно доказал пользу своего изобретения)

PF или DPF?

Здесь надо сделать оговорку. Всё, что я говорил выше про косинус – относится к линейной нагрузке. Это означает, что напряжение и ток, хоть и гуляют по фазе, имеют форму синуса.

Но в реальном мире вся нагрузка не только не активная, но и не линейная. Значит, ток через неё имеет хоть и периодическую, но далеко не синусоидальную форму. Искаженная синусоида означает, что кроме первой гармоники имеются и другие, вплоть до бесконечности.

Читайте также:  Средства защиты от электрического тока выше 1000

Вот как обстоят иногда дела:

Формы напряжения и тока

Формы напряжения и тока при нелинейной нагрузке

Гармоники напряжения и тока на экране

Гармоники напряжения, тока и мощности

Обычно, когда нагрузка симметричная (трехфазные потребители), за счёт принципов работы все гармоники, кратные 2 и 3, почти отсутствуют. В итоге остаются в основном 5, 7, 11, 13 гармоники, имеющие частоты соответственно частоты 250, 350, 550, 650 Гц.

Поэтому надо понимать, что та теория, что я расписал выше – для идеальных условий (без нелинейных искажений), которых в реале не бывает. Либо, если пренебречь высшими гармониками тока, и взять только первую (50 Гц), что обычно и происходит в жизни.

И если подходить к терминологии строго, то cos φ и PF (Power Factor) – это не одно и то же. PF учитывает также все гармоники напряжения и тока. И с учетом нелинейности реальный PF будет меньше.

Для учета коэффициента мощности в приборе HIOKI есть параметр DPF (Displacement Power Factor, смещённый коэффициент мощности), который учитывает только первую гармонику и равен cos φ.

коэффициент мощности PF - DPF

Коэффициенты мощности полный PF и смещённый DPF (для чистого синуса)

В итоге можно сказать, что справедливо выражение:

cos φ = DPF ≤ PF

Измерения на предприятии

При индуктивном характере нагрузки, который наблюдается на практике в большинстве случаев, ток отстает от напряжения (отрицательный сдвиг фаз), что видно на экране прибора HIOKI 3197 (табличные данные) при проведении измерений:

Векторная диаграмма тока и напряжения

В данном случае видно, что ток отстает от напряжения примерно на 26°.

Из вышеприведенного измерения видно, что при угле отставания тока (сдвиге фаз) 26° cos φ = 0,898. Данный расчет подтверждается измеренным значением.

Измерение проводилось в течение около двух часов, за это время оборудование (нагрузка) циклически включалось и выключалось. За всё время измерения коэффициент нелинейных искажений напряжения THD не превысил 1,3% по каждой из фаз.

Результаты измерений приведены ниже:

Измеренные гармоники на экране прибора

Измеренные гармоники напряжения, тока и мощности

Режим мультиметра HIOKI

Режим мультиметра – на экране разные параметры

Для проверки проведём расчет по выше приведенной формуле для самых интенсивных гармоник (5, 7, 11):

Расчет гармоник по формуле

Расчет гармоник напряжения

Как видно, остальные гармоники имеют пренебрежимо малый вес.

Временной график THD:

График THD (коэфта нелинейных искажений)

Временной график cosϕ:

Анализ полученных результатов обследования

На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности. Но перед её покупкой было решено обратить внимание на гармоники.

Были реальные случаи, когда из-за высокого уровня гармоник напряжения взрывались и загорались конденсаторные установки

В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.

Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.

Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).

Рекомендации по уменьшению гармонических составляющих питающего напряжения

Для уменьшения гармоник напряжение рекомендуется сделать следующее:

  1. На все преобразователи частоты мощностью более 10 кВт в обязательном порядке установить линейные дроссели переменного тока. Лучшим вариантом будет выбор дросселей с высоким импедансом (3-4 %), которые уменьшат уровень гармоник на 15-20%. Кроме того, установка дросселей улучшит надежность и отказоустойчивость преобразователей.
  2. На преобразователи частоты мощностью более 35 кВт, кроме дросселей переменного тока, установить дроссели постоянного тока для питания звена постоянного тока. Это дополнительно уменьшит выбросы гармоник в питающую сеть на 5-10%.
  3. Применить пассивные LC-фильтры на вводе питания преобразователей частоты и других нелинейных нагрузок.

Для выполнения приведенных рекомендаций желательно обратиться к инструкциям производителей и специалистам.

Креме того, рекомендуется проверить состояние питающих проводов, кабелей, клемм, переходных сопротивлений силовых соединений фазных и нейтральных проводов, качество соединений заземления корпусов электроприборов и т.д. В результате обследования выявлены преобразователи с отключенным заземлением.

Рекомендации по выбору компенсирующих устройств реактивной мощности

Мощность компенсирующего устройства выбирается исходя из мощности нагрузки, а также существующего и желаемого коэффициентов мощности.

Для расчета параметров можно воспользоваться следующей методикой.

Определить из таблицы коэффициент К, который считается по формулам на основе углов фаз некомпенсированного и компенсированного питания:

Таблица для определения коэффициента выбора

Таблица для определения коэффициента выбора конденсаторов

Например, текущий cosϕ = 0,7, желаемый cosϕ = 0,96. Тогда К = 0,73.

Как я уже говорил, не рекомендуется компенсировать реактивную мощность полностью (до cosϕ = 1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов)

Этот тот самый случай, когда к идеалу стремиться не нужно)

Далее, необходимую емкостную мощность конденсаторных батарей определяют по формуле: Qc = КP (ВАр).

Например, в нашем случае, при мощности 1000 кВт полная мощность конденсаторной батареи будет 730 кВАр.

При выборе конденсаторной батареи она должна обладать следующими параметрами (не хуже):

  • Перегрузка по току – 1,3 I ном
  • Перегрузка по напряжению – 1,1 U ном
  • Мощность минимальной ступени – не более 15 кВАр
  • Допустимое содержание гармоник напряжения – не менее 20 %
  • Частота расстройки фильтра – не более 190 Гц (срез начиная с 4-й гармоники)
  • Регулятор реактивной мощности – электронный, с измерением и выдачей всех необходимых параметров
  • Коммутация – контакторы, поскольку изменение активной мощности не быстрое

(рекомендации даны поставщиком КУ)

На этом всё. Если есть желание что-то добавить, или поправить меня – как всегда, рад вашим комментариям!

Источник

Коэффициент мощности косинус фи — наглядное объяснение простыми словами.

что такое косинус фи

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

два проводника с потенциалом

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

напряжение это разность потенциалов

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.

ток после включения лампочки возрастание

На первый взгляд может показаться, что лампочка загорается моментально. Однако это не так. Ток проходя через нить накала, будет нарастать от своего нулевого значения до номинального, какое-то определенное время.

постепенное возрастание тока после подключения прибора или лампочки

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

катушка индуктивности и ее влияние на косинус фи

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

сравнение графика нарастания силы тока с катушкой индуктивности в схеме и без нее

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

выбрось батарейку и ничего не будет

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

Читайте также:  Поражение электрическим током или молнией помощь при этом

возрастание тока при постоянном напряжении

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

синусоида переменного напряжения и косинус фи

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

запаздывание тока от напряжения

от чего зависит запаздывание тока от напряжения

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

один цикл синусоиды напряжения в 360 градусов

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.

косинус фи на графике запаздывания тока от напряжения

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.

значения косинуса фи в зависимости от градусов

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.

графики синусоиды для ламп

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.

111_driver

В качестве примера можно взять импульсные блоки питания.

что такое коэффициент мощности и КНИ

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

формула расчета косинуса фи коэффициента мощности

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.

что такое треугольник мощностей

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

как выбрать светодиодную лампу

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

    во-первых, это повышенное потребление электроэнергии

на что влияет низкий коэффициент мощности

Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

что такое косинус мощности фи

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

    величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

    для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

откуда берется в лампах косинус фи

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

111_DNaT

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

значения параметра косинуса фи

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:таблица значений косинуса фи для разных потребителейтаблица значений косинуса мощности для разных приборов и оборудования

прибор для измерения коэффициента мощности

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

измерение коэффициента мощности косинус фи цифровым ваттметром

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

цифровой бытовой ваттметр

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

Источник



Коэффициент мощности cos φ: определение, назначение, физический смысл

Коэффициент мощности cos φ1Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.

  1. Математически cos φ
  2. Повышение коэффициента мощности
  3. Повышение cos φ преследует 3 основные задачи:
  4. Основные способы коррекции cos φ

Математически cos φ

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.

Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

Васильев Дмитрий Петрович

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Коэффициент мощности cos φ2

Короткое видео о кратким объяснением, что такое коэффициент мощности:

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

  1. снижение потерь электроэнергии;
  2. рациональное использование цветных металлов на создание электропроводящей аппаратуры;
  3. оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.

Абрамян Евгений Павлович

Коэффициент мощности cos φ: определение, назначение, физический смысл

Основные способы коррекции cos φ

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

Читайте также:  Электроплитка рассчитана напряжения 220 вольт сила тока 3 ампера определите мощность тока плитки

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Подробное видео с объяснением, что такое cosφ :

Источник

Косинус фи (cos φ) — Коэффициент мощности

На шильдиках двигателей и некоторых других устройств можно видеть непонятный параметр косинус фи (cos φ). Что этот параметр означает, в данной статье коротко объясняется, что это такое.
Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.
Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока.
При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

Фаза тока и напряжения совпадают косинус фи = 1

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».
При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.
При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения
А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности, да потому что S=U*I.
Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Емкостная нагрузка

Сдвиг фаз то отстает от напряжения

Индуктивная нагрузка

Сдвиг фаз, фаза тока опережает фазу напряжения

Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю.
Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

Q =U x I x sin φ

На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна.
Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

К счастью счетчики активной мощности фиксируют соответственно только активную мощность. И нам не приходится переплачивать за полную мощность.

Однако у реактивной мощности есть большой минус она создает бесполезную нагрузку на электрическую сеть из-за этого образуются потери.

Комментарии и отзывы

Косинус фи (cos φ) — Коэффициент мощности : 23 комментария

Я у себя на даче подключил к сети ГИГАНТСКУЮ батарею конденсаторов из старых люминисцентных светильников и счётчик у меня практически не крутится. Реактивная нагрузка компенсирует активную (чайники, обогреватели, лампочки и т.п.). И никто не докапается, пломбы на счётчике не сорваны, незаконных подключений нет, а розетка – моя, что хочу, то туда и включаю. К сожалению, этот фокус не проходит с электронными счётчиками, которые повсеместно ставят в Москве.

mankubus – так какую- же ёмкость вы подключили к сети? (P.s у меня просто еще не эллектронный счетчик – вот и хочу поэксперементировать! )
Спасибо

расход электроэнергии зависит от емкости(микрофарат) конденсатора?

Графики перепутаны. На графике “Емкостная нагрузка” должно быть написано: “Индуктивная нагрузка”, и наоборот на графике “Индуктивная нагрузка” должно быть указано “Емкостная нагрузка”. Грамотеи, на весь рунет “прославились”.

Ну и горе электрик ты, чайники, обогреватели, лампочки это активная нагрузка, тогда откуда берется реактивная ? из воздуха индуцируется ? Тогда же весь мир не платил бы за электричество. Лапшу на уши не вешай людям )))

Здравстуйте. на одном из фидеров после замены счечика вырос расход энергии.. при проверке показало что, cos ф=1, нагрузка на линии в основном: тр-ры и эл.двигатели.. . вчём может быть причина…? сам счетчик в норме. учет ведется на стороне 6кВ. если кто может разЪясните пожалуйста!

Алик перешли на почту: sit-lip48@mail.ru запрос ,отправлю описание.

у вас на графиках всё наоборот – если ток отстает от напряжения, то начало его периода по времени начинается на графике ПОЗЖЕ, это будет индуктивная нагрузка. У вас же на приведенных графиках при индуктивной нагрузке ток(красная синусоида) начинается раньше по времени, чем напряжение (синяя). Это неверно. Посмотрите хотя бы измерения по осциллографу и практические графики (не реклама, можете ссылку вырезать – http://myboot.ru/index.php?option=com_content&view=article&id=59&catid=34 – в самом низу страницы)

Тоже обратил на это внимание, читаешь, пытаешься вникнуть, а тут с графиками накосячили и сбивают с толку)

с графиками нет косяков.

Графики с косяком. Ёмкостной ток должен быть слева от напряжения, а индуктивный – справа, т. к. направление оси “Х” – слева направо.
————
Пример с асинхронным двигателем также неудачен. Если двигатель крутится в холостую – это вовсе не значит, что будет одна реактивная мощность. Как раз наоборот – реактивки почти не будет (впрочем, как и активной энергии). НЕГРУЗКИ НЕТ!

Померяйте напряжение и ток и помножьте их. Увидите, что мощность есть. В двигателе и в трансформаторе не может не быть активной на холостом ходу, т.к. есть сопротивление поводов.

Уважаемый prospero графики верны. это связанно не с направлением оси Х, а с тем что ток в отличии от напряжения в катушке не может мгновенно достичь своего максимального значения, а для конденсаторов наоборот напряжение возрастает с убыванием тока. И ЭТО ЗАКОН. А графики ещё нужно уметь читать…

Графики не верны. Изучайте ТОЭ.

Мы анализируем не ток в катушке или напряжение в емкости, при подаче переменного напряжения, а строим графики тока и напряжения нагрузки чисто индуктивной (сдвиг по фазе напряжения и тока на 90 эл. гр. – ток отстает от напряжения на 90 эл. гр.) и при чисто емкостной нагрузке – напряжение отстает от тока на 90 эл. гр.

На графиках рассмотрены только 2 примера, когда либо ток, либо напряжение равны нулю. Как следствие перемножения – мощность =0. Но есть и промежуточные варианты, когда ни один из множителей не равен нулю. Почему не рассмотрен такой вариант ? Спасибо.

подскажите откуда в формуле расчета мощности берется корень из 3?

Павел, Наверное потому что 3 фазы, если 220 умножить на корень из 3 получится 380

полная мощность S = 3Uф x Iф = 1,73 x Uл x Iл = 3Uф x Iф =3 x Uл/1,73 x Iл
В симметричной 3-х фазной системе Iл = Iф, Uф = Uл/1,73
Корень из 3 = 1,7320508, примерно 1,73 Линейное напряжение больше фазного в 1,73 раза.
Смотрите ТОЭ, раздел “Трехфазный переменный ток” в любом учебнике электротехники.

в примере сказано,что про токе 1 и напряжению 0 мощности нет. позвольте,но это к.з.

1*0=0, мощности нет, работы тоже, какое КЗ?

Но ведь при КЗ ток = 1, а напряжение = 0, что не так?

Ох-ох-хо.
Книга есть. Автор Бессонов. ТОЭ называется. Очень доходчиво написано про электричество. Читайте, приобретайте знания. Зачем здесь смешить.

Источник