script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Кр142ен12а схема включения с регулировкой тока

Стабилизатор КРЕН12А (кр142ен12а)

В статье рассмотрены характеристики КРЕН12A (полная маркировка КР142ЕН12А) и схема её подключения. Данное полупроводниковое устройство представляет собой регулируемый стабилизатор положительного напряжения питания для электроприборов работающих от 1,25-37 В с током потребления до 1,5 А. Она оснащена необходимой внутренней защитой транзистора на выходе, перегрузок по току и перегрева. Для получения необходимых выходных параметров необходима дополнительная электронная обвязка, состоящая всего из двух резисторов.

  1. Цоколевка
  2. Основные параметры
  3. Максимальные параметры
  4. Аналоги
  5. Регулировка напряжения
  6. Параллельное включение
  7. Производители

Цоколевка

Распиновка крен12а

Металлополимерный корпус микросхемы (КТ-28-2 или ТО-220) имеет всего три вывода и внешне очень напоминает транзистор. Внутри пластиковой упаковки размещено 276 интегральных элемента. Металлическая подложка физически соединена с контактом №2– «выход». Полная распиновка и типовое включение представлены на рисунке.

Основные параметры

Характеристики КРЕН12A, приведённые в технических описаниях (datasheet), стоит рассматривать с учётом максимальной рассеиваемой мощности устройства. В любых режимах работы не допускается её превышение, а для стабильной работы необходимо предусмотреть соответствующее охлаждение. Без использования радиатора предельная мощность ограничивается параметрами корпуса — обычно не превышает 1 Вт. Напряжение на входе микросхемы должно быть всегда больше, чем на выходе на 2-3 В.

Максимальные параметры

Приведём максимальные значения параметров для КРЕН12A:

  • напряжение: на входе до 40 В; на выходе от 1.25 до 37 В;
  • выходной ток 1.5 А;
  • рассеиваемая мощность до 20 Вт;
  • диапазон рабочих температур от 0 до +125 o C.

Не допускается превышать указанные значения.

Аналоги

У КРЕН12А есть отличные функциональные аналоги КР142ЕН12Б (до 1 А) и LM317T. Импортный по некоторым параметрам считается лучше отечественного. Возможно в связи с этим белорусский «Интеграл» в последнее время выпускает подобные устройства и с маркировкой «LM». Это обусловлено большой популярностью линейных стабилизаторов напряжения в мире, поэтому зарубежные производители все время совершенствуют их.

Регулировка напряжения

Вместо одного из двух резисторов можно использовать потенциометр к КР142ЕН12А и получить схему включения с регулировкой. C его помощью на выходе микросхемы добиваются необходимого напряжения. Таким образом, в домашних условиях, можно сделать простейший регулируемый стабилизатор постоянного электропитания.

Схема на 12 В для КРЕН12А(Б)

На рисунке ниже представлена упрощённая схема включения крен12а для стабилизации 12V. При таком подключении ток в нагрузке ограничен максимальными параметрами микросхемы и не превышает 1 А. Рассеиваемая мощность определяется площадью радиатора — чем она больше, тем лучше.

В данной схеме для понижения выходного напряжения сопротивление R2 уменьшают. И наоборот, для повышения – увеличивают R2. Минимальное возможное значение R2 составляет 1 Ом (1.25 В), а максимальное теоретически — до 6.2 кОм (35 В).

Конечно, для полноценного регулируемого блока питания (БП) указанных компонентов будет недостаточно. Например, для подключения от сети 220 В необходимы еще трансформатор, выпрямительный диодный мост и сглаживающие конденсаторы. Упрощенную схему БП можно скачать по следующей ссылке или тут — более продвинутая конструкция БП с возможностью получения фиксированных напряжений.

Для повышения тока в нагрузке на выходе микросхемы устанавливают мощные транзисторы, однако есть еще возможность параллельного включения.

Параллельное включение

КР142ЕН12А допускает еще и параллельное включение. Таким образом тоже можно добиться увеличения значений выходных параметров. С таким подключением на выходах общей схемы, в зависимости от количества используемых КРЕНок, можно добиваться многократного роста тока в нагрузке. Наглядные примеры тестирования такого рода конструкций смотрите в видеоролике.

Производители

Скачать даташит на кр142ен12а в pdf-формате можно по здесь или кликнув по ссылке с наименованием изготовителя. Российским производителем этого изделия является брянский завод электроприборов АО «Группа Кремний ЭЛ», а ближнем зарубежье — белорусский «Интеграл».

Источник

Стабилизаторы крен 142 – описание, характеристики и типовая схема

Трехвыводные стабилизаторы напряжения бывают фиксированные или регулируемые. Первые разработаны на конкретное выходное напряжение (в нашем случае 5 В). Вторые – регулируемые стабильники, которые позволяют установить необходимое напряжение в заявленных пределах.

Если вам не нужно ограничивать выходные параметры или настраивать сигнал на нестандартные параметры, то обратите внимание на стабилизатор с фиксированным напряжением КРЕН 142, который позволит использовать меньше деталей и поэтому станет лучшим выбором.

Схема КРЕН 142

Как выбрать стабилизатор по току? Устройство должно быть выбрано с номиналом, довольно близким к значению максимально возможного тока в цепи. Если стабилизатор будет слегка загружен, то со стабильностью часто бывает не всё в порядке. Однако схема должна быть подобрана оптимально и полезно во всех смыслах. То есть номинальный ток с большим запасом тоже ни к чему, поскольку ток короткого замыкания будет также слишком большим для того, чтобы защитить цепь.

Типовая схема включения КР142ен5а

Стабилизатор серии КР142ен5а с постоянным положительным напряжением на выходе в 5 В имеет широкое применение в самых различных электронных приборах. Сфера его использования – в качестве источника питания для логических систем, аппаратов высокоточного воспроизведения и других радиоэлектронных приборов. Электрическая схема КР142ЕН5А показана на рисунке ниже.

КРЕН 5в стабилизатор

Емкости С1, С2 играют корректирующую роль. С2 предназначена для сглаживания пульсации, а С1 – для защиты от вероятного высокочастотного возбуждения микросхемы. Ток нагрузки стабилизатора рассчитан до 2 А.

Если добавить в схему вспомогательные детали можно преобразовать её в источник с регулированием напряжения. При удалённом расположении КРЕН 142 (с длиной соединительных проводов один метр и более) от фильтрующих конденсаторов выпрямителя, к его входу следует присоединить конденсатор. Для регулирования напряжения на выходе используется внешний делитель. Для правильной работы устройства потребуется применение дополнительного радиатора. Эти модели являются аналогами импортных регуляторов серии 78xx.

Цоколевка и схема включения

Микросхема КР142ен5а рассчитана на максимальный ток 5 А, и она может его обеспечить. Но превышение тока грозит выходом устройства из строя. Ниже приводится вариант включения микросхемы. Разрешается производить монтаж микросхемы два раза, демонтаж один раз.

КРЕН 5в стабилизатор

Крепёж схемы к печатной плате выполняется методом распайки выводов корпуса, см. цоколевку микросхемы на рисунке.

КРЕН 5в стабилизатор

Характеристики стабилизатора

Микросхема кр142ен5а представляет собой стабилизатор компенсационного типа с регулируемым выходным напряжением положительной полярности.

  • защита от перегрева;
  • ограничение по току КЗ;
  • масса не более 1,4 г;
  • габариты 14,48х15,75 мм.

Предельные значения параметров режима эксплуатации и условий окружающей среды:

  • Температура хранения -55 … +150 С;
  • Температур кристалла в рабочем режиме -45 … +125 С.
Читайте также:  Область применения импульсных токов

Источник



Простой лабораторный блок питания на микросхеме КР142ЕН12 (LM317)

Лабораторный блок питания – прибор первой необходимости в радиолюбительской мастерской, в электротехнической практике. Автор не ведет регулярных работ с тонкой и нежной электроникой, однако иногда приходится. И когда прибор готов, начинаются поиски подходящих КРЕН и LM («гуляющая» деревенская сеть). В последнее время, приходится также регулярно иметь дело со светодиодными лентами (встраиваемая подсветка декоративных витражных светильников ). Светодиодная лента в таких светильниках зачастую применяется довольно причудливым образом и в результате такого рода монтажных работ, пострадал не один штатный импульсный блок питания. Словом, назрела необходимость.

Техническое задание

Блок питания виделся линейным (НЧ трансформатор) как более живучий, простой и ремонтопригодный. Вес и габариты для стационарного прибора не слишком важны. Блок питания должен быть регулируемым, выдавать постоянное стабилизированное напряжение до, ну скажем +20 В, с током нагрузки до нескольких ампер. Блок питания непременно должен быть оснащен защитой от короткого замыкания, желательна и регулируемая защита от превышения тока нагрузки. Блок питания может быть одноканальным, однополярным.
Очень хорошо иметь «на борту» и комплект измерительных приборов – вольтметр-амперметр. Это сильно повышает удобство в работе, позволит проводить некоторые другие работы и измерения, освобождает рабочее пространство на столе от лишних внешних приборов и проводов.

Изготовление авторских светильников предполагает вероятность их продажи, в том числе и в страны, электрические сети которых имеют напряжение отличное от родных 220 вольт . К счастью, импульсные БП имеют диапазон входных напряжений, перекрывающий все вероятные значения –

100…240 В. Остается только снабдить сетевой адаптер подходящим переходником. Напряжение сети близкое к 240 вольтам не редкость в нашей сети (на одной из фаз). Нижнее же значение диапазона взять неоткуда. Проверить работоспособность БП при низком напряжении весьма желательно, учитывая качество большинства попадающих к нам блоков питания китайского производства. Применяемый в лабораторном блоке питания силовой трансформатор ТС-180-2 имеет сетевые обмотки на двух катушках (разделенные на две равные части). Это позволило очень просто получить искомое напряжение

Что понадобилось для работы

Набор инструментов для электромонтажа, мультиметр, паяльник с принадлежностями, набор слесарного инструмента.

Кроме радиоэлементов в дело пошел корпус от старинного PC-шника, кусок оргстекла, немного кровельной стали, толстого текстолита и алюминия. Паста КПТ-8, крепеж, монтажный провод и медная проволока, термотрубка, нейлоновые ремешки, ЛКМ.

Конструирование

Блок питания решено было собрать на основе специализированной микросхемы регулируемого стабилизатора КР142ЕН12 (LM317). Это позволило при весьма простой схеме прибора получить вполне приличные параметры.

Схема имеет следующие особенности – переключаемая (переключателем SA2) вторичная обмотка трансформатора TV1 для понижения нагрева регулирующего элемента стабилизатора. Усиление микросхемы DA1 стабилизатора выносным транзистором VT1. Регулятор тока срабатывания защиты микросхемы на элементах R5…R9, SA3.

Сетевой трансформатор – ТС180-2 с перемотанными вторичными обмотками. Кроме силовых вторичных обмоток, были намотаны и две относительно слаботочных обмотки для двуполярных стабилизаторов питания измерительных приборов. Катушки трансформатора пропитаны лаком, что позволило свести к минимуму его акустический шум (гудение) и позволило надеяться на длительную работу со старым обмоточным проводом.

В блоке питания применены самодельные измерительные приборы – цифровой вольтметр и амперметр на микросхемах КР572ПВ2 (ICL7107) [3]. Семисегментные индикаторы, для удобства быстрого опознания, разного размера и разного цвета. Микросхемы приборов требуют двуполярного питания +5 В, -5 В. Каждому прибору требуется свой блок питания, БП амперметра должен быть полностью изолирован от цепей основной схемы.

Контакты переключателей SA2, SA3 должны пропускать ток до 3А. В качестве этих переключателей применены галетные ПГК [2] с керамическими платами. Допустимый ток через контактную группу, именно 3 А. Для повышения надежности БП контакты синхронно работающих групп соединены параллельно.

Блок питания собран в старом железном корпусе от системного блока PC на процессоре 80286. Это еще без радиаторов и обдувающих вентиляторов. Корпус небольшого размера, сделан из стали значительной толщины. Представляет собой сварную коробчатую раму и П-образную крышку. Маленькой УШМ удалось выпилить внутренние специализированные отсеки, металлическое основание для установки материнской платы впаял на свое место газовой горелкой. Это увеличило жесткость конструкции.

Главный радиатор для установки регулирующих элементов сделал самостоятельно из толстого алюминиевого листа с приклепанными отрезками такого же уголка. Скреплял алюминиевыми вытяжными заклепками, места соединений смазывались теплопроводной пастой КТП-8.

Штатная панель корпуса, будущая в конструкции лицевой, оказалась с вентиляционными проемами и отверстиями, пришлось делать фальшпанель. Пояснительные надписи, шкалы и.т.д. вычерчены в AutoCAD и распечатаны с фотографическим качеством на специальной плотной бумаге. Отверстия и проемы вырезаны скальпелем. Сверху лицевая панель прикрыта прозрачной панелью из органического стекла. Панель вырезана ножовкой по металлу, внутренние отверстия выпилены лобзиком по дереву, мелкие просверлены. Панели не имеют специального крепежа, все удерживается штатным крепежом установочных элементов.

Внутренние отверстия и проемы в панели из кровельной стали 0,5 мм выпилены ювелирным лобзиком, в штатной –бормашиной или тонким абразивным диском маленькой УШМ. Отверстия просверлены и расточены круглым напильником.

Выходные клеммы – минусовая привинчена прямо к металлическому корпусу, изнутри к ней припаян отрезок толстого луженого провода, куда сводятся все «земляные» концы. Плюсовая клемма удлинена и изолирована – к ней припаян отрезок винта М4 и сделан текстолитовый изолятор.

Части изолятора выпилены из пластины лобзиком по дереву и обточены на сверлильном станке.

После сборки передней панели установил основные органы управления устройством. Измерительные приборы установил на импровизированные стойки из длинных винтов М3. В качестве светофильтра маскирующего неработающие сегменты индикаторов применен широкий малярный скотч.

Светодиоды (пока не задействованы — передняя панель использована от предыдущей недоработанной конструкции) плотно установлены в отверстия. Удерживает их толстый луженый провод, проложенный между изолированных термотрубкой выводов светодиодов и припаянный к металлической панели. Линза на торцах светодиодов сточена надфилем заподлицо с прозрачной панелью.

Параллельное соединение групп контактов галетных переключателей, выполнено толстым луженым проводом. Перед установкой, переключатели настраиваются перестановкой ограничителя. На лепестках переключателя SA3 смонтированы токозадающие резисторы R5…R8. Мой переключатель оказался с двумя группами по пять контактов. Синхронно включаемые контакты были включены параллельно, аналогично SA2, пятый контакт задействован для еще одного диапазона 10 мА. При этом диапазон 4 сделан фиксированным (удален переменный резистор R9) на 100 мА. Значения токозадающих резисторов и их мощность можно рассчитать по формулам, приведенным в [1].

Читайте также:  Не применяют генератор постоянного тока последовательного возбуждения

На металлическое основание установлен трансформатор и блок оксидных конденсаторов С5 (2х10 000х50 В). Сетевой шнур временно подключен к лепесткам трансформатора, силовые выводы вторичной обмотки распаяны на SA2, подключен выпрямитель. Пробным включением убедился в работоспособности этой части схемы.

Простой лабораторный блок питания на микросхеме КР142ЕН12 (LM317)

На самодельном радиаторе охлаждения установлена микросхема (не обязательно), диодный мост и внешний регулирующий транзистор (2хTIP147). Замена мощного полупроводникового прибора несколькими менее мощными выгодна с точки зрения охлаждения – мы равномернее распределяем источники тепла по радиатору.

Токовыравнивающие резисторы 0,25 Ом сделаны из отрезков (около 10 см) стальной проволоки (из ребристого пластикового шланга для прокладки электропроводки). Проволока отожжена в пламени газовой горелки, концы ее зачищены и залужены с хлористым цинком (паяльная кислота). Места пайки тщательно промываются водой, далее, проволочка-резистор паяется с канифолью.

На жестких выводах установочных элементов смонтированы и несколько мелких элементов с тонкими выводами. После проверки работоспособности, часть схемы, помещенная на радиаторе, устанавливается в корпус и подключается короткими проводами значительного (при необходимости) сечения. Проверка работоспособности.

Включение измерительных приборов. Как уже говорилось, специализированная микросхема КР572ПВ2 (ICL7107) для своей работы требует двуполярное напряжение +5 В, -5 В. Причем, измерительная цепь амперметра построена таким образом [3], что блок его питания должен быть совершенно изолирован от остальных цепей. Осознание этого факта, стоило нескольких сожженных печатных дорожек и горелой БИС. Что же, хорошие уроки всегда стоят дорого. На трансформаторе имелось только две одинаковые обмотки для +5 В и -5 В (предполагались напряжения общие для обоих измерителей). Удалось выйти из положения, применив иную схему включения выпрямителей и собрав еще один аналогичный блок питания. При этом получилось два гальванически развязанных БП.

Два независимых источника собраны на отдельных платках и закреплены за штатные фланцы микросхем (корпус ТО-220). Потребляемый измерительным прибором ток невелик, поэтому микросхемы стабилизаторов применены в пластиковом исполнении, что позволило крепить их без изолирующих прокладок. Единственная 7805 с металлическим фланцем (вывод GND микросхемы) в БП вольтметра также установлена без изолирующей прокладки, это допустимо схемой.

Металлическая плата с БП измерителей установлена на торцевом фланце сетевого трансформатора. Выполнены соединения, проверена работоспособность. Многооборотными подстроечными резисторами на платах измерителей [3], отображаемые значения приборов подогнаны к показаниям внешнего мультиметра.

Наконец, сделана панель для розетки

110 В, установлена сама розетка и выполнено ее подключение. Подключение, как имеющее гальваническую связь с сетью, дополнительно изолировано от металлического корпуса толстой ПВХ трубкой, относительно мягкий жгут в нескольких местах закреплен капроновыми ремешками, пайки изолированы термотрубкой.

Временный сетевой провод заменен постоянной проводкой через сетевой тумблер и колодку предохранителя. Жгуты и провода проложены аналогично – дополнительная изоляция от металлического шасси, механическое крепление, изоляция мест пайки.

Боковые стороны шасси прибора закрыты панелями, вырезанными из кровельной оцинкованной стали и установленными на вытяжные заклепки. Верхняя крышка вырезана из штатной П-образной крышки корпуса системного блока. Над радиатором и блоком токозадающих резисторов R5…R8 в крышке просверлены массивы отверстий для охлаждения, поврежденное лакокрасочное покрытие восстановлено.
На панели из оргстекла вокруг рукоятки переключения пределов ограничения тока (SA3) гравером сделаны пять рисок и указаны пределы – 10 мА; 100 мА; 0,3 А; 1 А; 3 А. Выгравированные углубления заполнены темной краской.

Выводы, работа над ошибками

Оригинальная схема претерпела несколько изменений и упрощений, все они работоспособны, а некоторое время эксплуатации показало, что и вполне удобны. Например, избавление от резисторов R3, R9. Введение еще одного предела 10 мА позволило очень удобно проверять работоспособность светодиодов, измерять напряжение стабилизации стабилитронов (обратное включение!).

При монтаже от внимания ускользнуло несколько моментов – не были установлены конденсаторы шунтирующие диоды выпрямительного моста и плавкий предохранитель FU2. Конденсаторы нейтрализуют помеху от переключения низкочастотных диодов, предохранитель поможет сохранить трансформатор в случае аварии. Это будет ближайшая доработка. Вместе с этим, стоит задействовать, по крайней мере, один из светодиодов – индицировать им перегорание сетевого предохранителя.

Источник

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

КРЕН, «кренка» — бытовое название интегральных стабилизаторов напряжения серии 142. Размеры её корпуса не позволяют нанести полную маркировку серии (КР142ЕН5А и т.п.), поэтому разработчики ограничились кратким вариантом – КРЕН5А. «Кренки» получили широкое распространение как в промышленности, так и в любительской практике.

Что из себя представляют стабилизаторы напряжения КРЕН 142

Микросхемы серии 142 завоевали популярность из-за простоты получения стабильного напряжения – несложная обвязка, отсутствие регулировок и настроек. Достаточно подать питание на вход, и получить стабилизированное напряжение на выходе. Наибольшую известность и распространение получили нерегулируемые интегральные стабилизаторы в корпусах ТО-220 на напряжение до 15 вольт:

  • КР142ЕН5А, В – 5 вольт;
  • КР142ЕН5Б, Г – 6 вольт;
  • КР142ЕН8А, Г – 9 вольт;
  • КР142ЕН8Б, Д – 12 вольт;
  • КР142 ЕН8В, Е – 15 вольт;
  • КР142 ЕН8Ж, И – 12,8 вольт.

В случаях, когда надо получить более высокое стабильное напряжение, применяются приборы:

  • КР142ЕН9А – 20 вольт;
  • КР42ЕН9Б – 24 вольта;
  • КР142ЕН9В – 27 вольт.

Эти микросхемы также выпускаются в планарном исполнении с несколько отличающимися электрическими характеристиками.

Серия 142 включает в себя и другие интегральные стабилизаторы. К микросхемам с регулируемым выходным напряжением относятся:

  • КР142ЕН1А, Б – с пределами регулирования от 3 до 12 вольт;
  • КР142ЕН2Б – с пределами 12…30 вольт.

Эти приборы выпускаются в корпусах с 14 выводами. Также в эту категорию входят трехвыводные стабилизаторы с одинаковым выходным диапазоном 1,2 – 37 вольт:

  • КР142ЕН12 положительной полярности;
  • КР142ЕН18 отрицательной полярности.

В серию входит микросхема КР142ЕН6 – двуполярный стабилизатор с возможностью регулировки выходного напряжения от 5 до 15 вольт, а также включение в качестве нерегулируемого источника ±15 вольт.

Все элементы серии имеют встроенную защиту от перегрева и короткого замыкания на выходе. А переполюсовку по входу и подачу внешнего напряжения на выход они не любят – время жизни в таких случаях исчисляется секундами.

Модификации микросхемы

Модификации микросхем, входящих в серию, отличаются корпусом. Большинство однополярных нерегулируемых стабилизаторов выполнено в «транзисторном» корпусе TO-220. Он имеет три вывода, этого хватает не во всех случаях. Поэтому часть микросхем выпускались в многовыводных корпусах:

  • DIP-14;
  • 4-2 – то же самое, но в керамической оболочке;
  • 16-15.01 – планарный корпус для монтажа на поверхность (SMD).
Читайте также:  Электрический постоянный ток для школьников

В таких исполнениях выпускаются, в основном, регулируемые и двуполярные стабилизаторы.

Основные технические характеристики

Кроме выходного напряжения, для стабилизатора важен ток, который он может обеспечить под нагрузкой.

Тип микросхемы Номинальный ток, А
К(Р)142ЕН1(2) 0,15
К142ЕН5А, 142ЕН5А 3
КР142ЕН5А 2
К142ЕН5Б, 142ЕН5Б 3
КР142ЕН5А 2
К142ЕН5В, 142ЕН5В, КР142ЕН5В 2
К142ЕН5Г, 142ЕН5Г, КР142ЕН5Г 2
К142ЕН8А, 142ЕН8А, КР142ЕН8А 1,5
К142ЕН8Б, 142ЕН8Б, КР142ЕН8Б 1,5
К142ЕН8В, 142ЕН8В, КР142ЕН8В 1,5
КР142ЕН8Г 1
КР142ЕН8Д 1
КР142ЕН8Е 1
КР142ЕН8Ж 1,5
КР142ЕН8И 1
К142ЕН9А, 142ЕН9А 1,5
К142ЕН9Б, 142ЕН9Б 1,5
К142ЕН9В, 142ЕН9В 1,5
КР142ЕН18 1,5
КР142ЕН12 1,5

Этих данных достаточно для предварительного решения о возможности применения того или иного стабилизатора. Если нужны дополнительные характеристики, их можно найти в справочниках или в интернете.

Назначение выводов и принцип работы

По принципу работы все микросхемы серии относятся к линейным регуляторам. Это означает, что входное напряжение распределяется между регулирующим элементом (транзистором) стабилизатора и нагрузкой так, что на нагрузке падает напряжение, которое задается внутренними элементами микросхемы или внешними цепями.

Если входное напряжение увеличивается, транзистор прикрывается, если уменьшается – приоткрывается таким образом, чтобы на выходе напряжение оставалось постоянным. При изменении тока нагрузки стабилизатор отрабатывает так же, поддерживая неизменным напряжение нагрузки.

Схема линейного регулятора напряжения.

У этой схемы есть недостатки:

  1. Через регулирующий элемент постоянно протекает ток нагрузки, поэтому на нём постоянно рассеивается мощность P=Uрегулятора⋅Iнагрузки. Эта мощность расходуется впустую, и ограничивает КПД системы – он не может быть выше Uнагрузки/ Uрегулятора.
  2. Напряжение на входе должно превышать напряжение стабилизации.

Но простота применения, дешевизна прибора перевешивают недостатки, и в диапазоне рабочих токов до 3 А (и даже выше) что-то более сложное применять бессмысленно.

Габаритные размеры КР142ЕН.

У регуляторов напряжения с фиксированным напряжением, а также у регулируемых стабилизаторов новых разработок (К142ЕН12, К142ЕН18) в трех- и четырехвыводном исполнении выводы обозначаются цифрами 17,8,2. Такое нелогичное сочетание выбрано, очевидно, для соответствия выводов с микросхемами в корпусах DIP. На самом деле такая «дремучая» маркировка сохранилась только в технической документации, а на схемах пользуются обозначениями выводов, соответствующим зарубежным аналогам.

Обозначение по технической документации Обозначение на схемах Назначение вывода
Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением
17 In Вход
8 GND ADJ Общий провод Опорное напряжение
2 Out Выход

Микросхемы старой разработки К142ЕН1(2) в 16-выводных планарных корпусах имеют следующее назначение выводов:

Назначение Номер вывода Номер вывода Назначение
Не используется 1 16 Вход 2
Фильтр шума 2 15 Не используется
Не используется 3 14 Выход
Вход 4 13 Выход
Не используется 5 12 Регулировка напряжения
Опорное напряжение 6 11 Токовая защита
Не используется 7 10 Токовая защита
Общий 8 9 Выключение

Недостатком планарного исполнения служит большое количество излишних выводов прибора.
Стабилизаторы КР142ЕН1(2) в корпусах DIP14 имеют другое назначение выводов.

Назначение Номер вывода Номер вывода Назначение
Токовая защита 1 14 Выключение
Токовая защита 2 13 Цепи коррекции
Обратная связь 3 12 Вход 1
Вход 4 11 Вход 2
Опорное напряжение 5 10 Выход 2
Не используется 6 9 Не используется
Общий 7 8 Выход 1

У микросхем К142ЕН6 и КР142ЕН6, выпускаемых в разных вариантах корпуса с теплоотводом и однорядным расположением выводов, цоколёвка следующая:

Номер вывода Назначение
1 Вход сигнала регулировки обоих плеч
2 Выход «-»
3 Вход «-»
4 Общий
5 Коррекция «+»
6 Не используется
7 Выход «+»
8 Вход «+»
9 Коррекция «-»

Пример типовой схемы подключения

Для всех нерегулируемых однополярных стабилизаторов типовая схема одинакова:

Типовая схема подключения микросхемы КР142ЕН.

С1 должен иметь ёмкость от 0,33 мкФ, С2 – от 0,1. В качестве С1 может быть использован фильтрующий конденсатор выпрямителя, если проводники от него до входа стабилизатора имеют длину не более 70 мм.

Двуполярный стабилизатор К142ЕН6 обычно включается так:

Схема подключения двуполярного стабилизатора напряжения КРЕН.

Для микросхем К142ЕН12 и ЕН18 напряжение на выходе устанавливается резисторами R1 и R2.

Схема подключения К142ЕН12, К142ЕН8.

Для К142ЕН1(2) типовая схема включения выглядит сложнее:

Схема подключения К142ЕН1, К142ЕН2.

Кроме типовых схем включения интегральные для стабилизаторов серии 142 существуют и другие варианты, позволяющие расширить область применения микросхем.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Микросхема К142 Зарубежный аналог
КРЕН12 LM317
КРЕН18 LM337
КРЕН5А (LM)7805C
КРЕН5Б (LM)7805C
КРЕН8А (LM)7806C
КРЕН8Б (LM)7809C
КРЕН8В (LM)78012C
КРЕН6 (LM)78015C
КРЕН2Б UA723C

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

Как проверить работоспособность микросхем КРЕН

Микросхемы серии 142 имеют достаточно сложное устройство, поэтому мультиметром однозначно проверить её работоспособность невозможно. Единственный способ – собрать макет реального включения (на плате или навесным монтажом), который включает в себя, как минимум, входную и выходные ёмкости, подать на вход питание и проверить напряжение на выходе. Оно должно соответствовать паспортному.

Несмотря на доминирование на рынке микросхем зарубежного производства, приборы серии 142 удерживают свои позиции за счет качества изготовления и других потребительских свойств.

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Что такое реле напряжения и для чего оно нужно в квартире

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Расшифровка цифровой и буквенной маркировки SMD резисторов

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Что такое магнитный двигатель и как его сделать своими руками?

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Для чего нужен пирометр и как измерять температуру бесконтактным методом

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

На какой высоте должны быть розетки и выключатели от пола в квартире?

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Как правильно выбрать утюг для дома — ТОП лучших моделей утюгов

Источник