Меню

Марки трансформаторов тока нулевой последовательности

Невский трансформаторный завод «Волхов»

Технический портал компании

Категории

  • 10 кВ
  • 20 кВ
  • 35 кВ
  • 6 кВ

Трансформаторы тока нулевой последовательности для использования в схемах релейной защиты совместно с микропроцессорными терминалами релейной защиты

В электрических системах, в особенности в сетях и установках с малым током замыкания на землю, возможные токи нулевой последовательности часто весьма невелики по сравнению с токами нормальной нагрузки. Тем более они не велики по сравнению с токами короткого замыкания между фаз.

Еще меньше должны быть расчетные токи нулевой последовательности при срабатывании различных устройств релейной защиты от замыкания на землю, защитного отключения и автоматики с учетом задаваемых коэффициентов чувствительности и запаса.

Токи нормальных нагрузок и междуфазных коротких замыканий могут создавать значительные токи небаланса в трансформаторах нулевой последовательности. Необходимость ограничения этих небалансов, являющихся для трансформаторов тока нулевой последовательности (ТТНП) основным видом помех, представляет основную трудность, которую приходится преодолевать при разработке и применении рассматриваемых устройств. Следует также иметь ввиду, что при небольших токах нулевой последовательности от ТТНП с приемлемыми конструктивными размерами может быть получена небольшая мощность, порядка долей В·А.

Получение заданной мощности тем труднее, чем больше номинальный рабочий ток контролируемой цепи. Это обусловлено необходимостью увеличения сечения первичных токопроводов и кабелей по условиям нагрева и соответственно – увеличения размеров окна магнитопроводов трансформаторов тока. А с увеличением окна при заданной мощности масса преобразователя резко возрастает.

Таким образом, появились определенные требования к трансформаторам тока нулевой последовательности, выполнение которых позволило бы производить точную отстройку защиты, учитывая большинство существенных паразитных явлений. Можно перечислить основные из них:

  • коэффициент трансформации и чувствительность ТТНП должны позволять измерять токи различных диапазонов, включая малые токи от 100 мА
  • максимальный ток небаланса ТТНП должен быть минимален и заранее известен
  • мощность ТТНП должна быть регламентирована и заранее известна (влияние нагрузки погрешности при заданном коэффициенте трансформации)

Существующие предложения на рынке

В настоящее время наиболее распространены два варианта конструктивного исполнения трансформаторов тока нулевой последовательности:

  • с тороидальным магнитопроводом разъемной и неразъемной конструкции, например ТЗЛК-НТЗ-0,66 и ТЗЛКР-НТЗ-0,66
  • с магнитопроводом прямоугольной формы неразъемной конструкции, например ТЗЛК-НТЗ-0,66-100х490

Подобные ТТНП выпускают как все отечественные, так и зарубежные производители трансформаторов тока.

Наибольшее распространение получили кабельные ТТНП с коэффициентом трансформации равным 25/1 и 30/1. Малый коэффициент трансформации, в свое время, был принят для обеспечения условия передачи во вторичную цепь максимально возможной мощности, достаточной для срабатывания электромагнитного реле, типа РТ-40, РТ-140 и РТЗ-51.

Однако при таком малом коэффициенте трансформации токовая и угловая погрешности ТТНП, даже при весьма малом сопротивлении вторичной цепи, достигают больших значений, 10, 15 и даже 20% по токовой погрешности и до 30 электрических градусов по угловой.

В настоящее время выпускаются, в том числе и российскими производителями, ТТНП с большим витковым коэффициентом трансформации (например 100/1 или 470/1). Но стоит отметить, что и такие трансформаторы тока нулевой последовательности не сопровождаются данными о гарантированных токовых и угловых погрешностях в зависимости от сопротивления во вторичной цепи.

Также у существующих трансформаторов тока нулевой последовательности максимальный ток небаланса или никак не регламентируется, или имеет значения, не позволяющие делать точную отстройку защиты.

Возможное решение проблемы. Предложение на рынок

ООО «Невский трансформаторный завод «Волхов» совместно с ООО НПП «ЭКРА» разработали трансформатор тока нулевой последовательности, удовлетворяющий необходимым требованиям современной электроэнергетики в схемах защит от однофазных замыканий на землю.

Расшифровка условного обозначения трансформаторов, предназначенных для работы с микропроцессорными терминалами релейной защиты

Пример записи обозначения трансформатора тока нулевой последовательности, разъемного, предназначенного для работы совместно с микропроцессорным терминалом релейной защиты, с литой изоляцией, устанавливающегося на кабель, изготовленного по ТУ 3414-006-30425794-2012, на номинальное напряжение 660 В, с диаметром окна для кабеля 100 мм, с максимальной величиной токовой погрешности не более 5 % и угловой погрешности не более 20 электрических градусов, при сопротивлении вторичной нагрузки ТТНП не более 1 Ом, изготовленного с коэффициентом трансформации 100/1, в климатическом исполнении «У» и категории размещения 2 по ГОСТ 15150-69 при его заказе и записи в документации другого изделия:

Трансформатор тока нулевой последовательности
ТЗЛКР-НТЗ-0.66-100-5-1-100/1 У2 МЗ
ТУ 3414-006-30425794-2012

Основные характеристики ТТНП, предназначенных для работы в схемах микропроцессорной защиты от однофазных замыканий на землю

Метод монтажа на кабель
Неразъемные
Разъемные

1) По требованию заказчика возможно изготовление трансформаторов с другими значениями параметров.
2) Для экспортных поставок.
3) Допускается распространять для трехсекундного тока термической стойкости.

Преимущества разработанного ТТНП

Гарантированная максимально возможная величина тока небаланса, измеренная на заводе-изготовителе, вносится в паспорт на трансформатор.

Малая величина тока небаланса имеет первостепенное значение при малом ёмкостном токе замыкания на землю в сети, так как выбор уставки срабатывания защиты от ОЗЗ производится с учетом отстройки по току небаланса во вторичных цепях. У обычных ТТНП (даже с неразъемной конструкцией) ток небаланса достигает 0,6 А при 100% рабочего тока, что существенно затрудняет отстройку уставки срабатывания защиты от ОЗЗ.

Максимальный ток небаланса ТТНП типа ТЗЛК-НТЗ МЗ и ТЗЛКР-НТЗ МЗ, измеренный при 100% рабочего тока представлен в таблицах ниже.

Токи небаланса ТТНП типа ТЗЛК-НТЗ МЗ

Изделие Ток небаланса, измеренный при рабочем токе 100 А и приведенный к первичной стороне не более А
ТЗЛК-НТЗ-0.66-70 МЗ 0,04
ТЗЛК-НТЗ-0.66-100 МЗ
ТЗЛК-НТЗ-0.66-125 МЗ
ТЗЛК-НТЗ-0.66-205 МЗ 0,08

Токи небаланса ТТНП типа ТЗЛКР-НТЗ МЗ

Изделие Ток небаланса, измеренный при рабочем токе 200 А и приведенный к первичной стороне не более А
ТЗЛКР-НТЗ-0.66-70 МЗ 0,5
ТЗЛКР-НТЗ-0.66-100 МЗ
ТЗЛКР-НТЗ-0.66-125 МЗ
ТЗЛКР-НТЗ-0.66-205 МЗ 0,8

ТТНП обладает гарантированной величиной токовой и угловой погрешности при вторичной нагрузке до 3 Ом. Примеры результатов измерений токовых и угловых погрешностей ТЗЛК-НТЗ МЗ и ТЗЛКР-НТЗ МЗ отображены на диаграммах ниже.

Предельные токовые погрешности ТТНП типа ТЗЛК-НТЗ МЗ

Предельные угловые погрешности ТТНП типа ТЗЛК-НТЗ МЗ

Предельные токовые погрешности ТТНП типа ТЗЛКР-НТЗ МЗ

Предельные угловые погрешности ТТНП типа ТЗЛКР-НТЗ МЗ

ТТНП обладает высоким качеством изготовления продукции. Трансформаторы сохранили все массогабаритные параметры ТТНП, предназначенных для работы с электромеханическими реле, обладая при этом более широким спектром электрических и метрологических характеристик.

Читайте также:  Ксо с трансформаторами тока

Массогабаритные характеристики ТТНП типа ТЗЛК-НТЗ МЗ и ТЗЛКР-НТЗ МЗ

Источник

ТЗЛМ-1 трансформаторы тока нулевой последовательности

ТЗЛМ-1-2-У2

Тип трансформатора: Измерительный

Класс напряжения: 0,66 кВ

Тип изоляции: Твердый диэлектрик

Цена (без учета НДС): По запросу руб.

Описание

ТЗЛМ-1 представляют собой трансформаторы тока нулевой последователь ности, предназначенные для питания схем релейной защиты от замыкания на землю отдельных жил трехфазного кабеля. Работают путем трансформации токов нулевой последовательности.

Трансформаторы ТЗЛМ-1 могут быть использованы в распредустройствах (3-110) кВ при условии, что главная изоляция между токоведущими жилами кабеля и вторичной обмоткой трансформатора обеспечивается изоляцией кабеля или воздушным промежутком.

Конструкция ТЗЛМ-1

Измерительные трансформаторы ТЗЛМ-1 выполн ены в виде опорной конструкции. Магнитопровод изготовлен из электротехнической стали. Вторичная обмотка намотана на магнитопровод. Роль первичной обмотки выполняет трехфазный кабель распредустройства, пропущенный через окно трансформаторов. Главная изоляция между токопроводящими жилами кабеля и вторичной обмоткой трансформаторов обеспечивается изоляцией кабеля. Рабочее положение любое.

Условия эксплуатации

Климатическое
исполнение

Рабочее значение температуры, °С

Источник



Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов. При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу. Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.


Но так будет только при отсутствии в системе замыканий на землю. При междуфазных увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Принципиальная схема простейшей ТЗНП Прямая, обратная и нулевая последовательность Форма напряжения в трехфазной сети

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Читайте также:  Определите мощность источника тока в схеме

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность направлена в линию. В других случаях, при «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Принцип действия ТЗНП, защита нулевой последовательности

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

Токи небаланса

Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Кроме того, в цепи этих обмоток не должны быть включены другие устройства или приборы, нарушающие симметрию их нагрузки.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Токовая защита нулевой последовательности: принцип действия и применение

В высоковольтных сетях из-за каких-либо повреждений может нарушаться нормальная работа электроустановок. Достаточно частое повреждение – замыкание на землю, при котором возникает угроза как человеческой жизни за счет растекания потенциала, так и оборудованию за счет нарушения симметрии в сети. Чтобы предотвратить возможные последствия от таких повреждений на подстанциях и в других устройствах применяют токовую защиту нулевой последовательности (ТЗНП).

Что такое нулевая последовательность?

Преимущественное большинство сетей получают питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю.

Это означает, что в системах 110, 10 и 6 кВ, для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать.

Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Рис. 2. Прямая, обратная и нулевая последовательность

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º.

Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку.

Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

Читайте также:  Как можно получить травму электрическим током

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения.

При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

Реализация защит ТЗНП

Широко применялись еще с советских времен панели защит ЛЭП-110 кВ на базе электромеханических реле, например ЭПЗ-1636. В ее состав, кроме ТЗНП входит еще дистанционная защита и токовая отсечка.

Однако электромеханические реле эксплуатирующихся панелей давно выработали свой ресурс, а точечная их замена не всегда приводит к надежным результатам.

Поскольку со времен разработки данной релейной техники прогресс уже ушел далеко вперед, старое оборудование целиком меняется на панели или шкафы, включающие в себя микропроцессорные терминалы релейных защит.

Источник

Трансформатор тока нулевой последовательности

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трансформатор тока нулевой последовательности

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах. Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С. Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.

В электрических сетях напряжением 6-35 киловольт настраивать защиту нулевой последовательности следует с особой осторожностью. Это связано с отсутствием глухозаземленной нейтрали, когда токи нулевой последовательности практически не превышают рабочих токов во всех подключениях. Из-за этого настройка защиты становится очень сложной или вообще невозможной, особенно при наличии в цепях множества линий с однофазными кабелями, неудачно расположенными между собой. Токи нулевой последовательности в нормальном режиме могут появиться в жилах и экранах однофазных кабелей. Частично влияние этих токов компенсируется подключением трансформаторов тока.

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.

Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях. Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе. Он соединяется сразу со всеми жилами кабеля.

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю. Они применяются в сетях с изолированной нейтралью и схемах релейной защиты. Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях. Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки. Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Источник