script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Мероприятия по защите от опасности поражения электрическим током

Способы защиты от поражения электрическим током

Способы защиты от поражения электрическим током

Электрооборудование и электроустановки относятся к источникам повышенной опасности. Их использование и обслуживание сопряжены с риском поражения электричеством, особенно при игнорировании требований безопасной эксплуатации. Рассмотрим, как осуществляется защита от поражения электрическим током, и какие меры необходимо принимать при работе с высоковольтным оборудованием.

Основные категории средств защиты

Для обеспечения безопасности эксплуатации электрооборудования выполняются следующие меры, которые можно поделить на 3 основных группы:

  1. Использование общетехнических средств защиты.
  2. Применение средств индивидуальной защиты.
  3. Организация средств специальной защиты людей и оборудования.

изоляция проводов

Первоочерёдно должна быть обеспечена качественная изоляция проводников. Это реализуется как с помощью обеспечения недоступности токоведущих частей оборудования (при помощи корпусов приборов, распределительных щитков и шкафов), так и использованием двойной и тройной изоляции проводов.

Ей стоит уделить особое внимание. Изоляция подразделяется на рабочую, дополнительную и усиленную:

  • к рабочей изоляции относятся штатные диэлектрические оболочки, устанавливаемые на токопроводящую продукцию заводом-изготовителем. Она не только обеспечивает защиту от поражения электрическим током, но и предохраняет электрооборудование от негативного воздействия окружающей среды;
  • дополнительная изоляция направлена на обеспечение рабочей защиты, и такие используется в местах соединения или повреждения диэлектрика;
  • усиленная изоляция представляет собой вариант улучшенной, с более высокой степенью защиты, рабочей изоляцией.

Общетехнические средства защиты

Без их применения введение электрооборудования в эксплуатацию невозможно. Использование общетехнических средств защиты позволяет обеспечить безопасность как при эксплуатации, так и при обслуживании электрооборудования.

К таким средствам относятся автоматические выключатели, автоматы, системы изоляции и маркировка.

Средства индивидуальной защиты

Их можно разделить на 2 категории:

Средства индивидуальной защиты

  1. Основные средства. Разделяются, в свою очередь, на средства, предназначенные для работы с сетями до и свыше 1000 В. В первую группу входят указатели и индикаторы напряжения, шланги, клещи, системы изоляции. Во вторую — перчатки, трапы, кронштейн-площадки, специальный инструмент с высоковольтной изоляцией.
  2. Дополнительные средства. К ним относятся специальные диэлектрические коврики и галоши, сапоги, монтажные пояса, каски, когти и пр.

Назначение индивидуальных средств защиты — обеспечение безопасности всех систем организма.

Специальные средства защиты

Исходя из функциональности, их можно разделить на следующие группы.

Системы защитного заземления

Их применение позволяет снизить напряжение металлических частей оборудования до безопасной для человека величины. В соответствии с правилами эксплуатации электрооборудования, использование заземляющего контура обязательно.

Механизм работы защитного заземления заключается в преднамеренном соединении с землёй внешних частей электроустановок, не предназначенных для пропуска тока, в частности, корпусов и управляющих механизмов. Ведь по причине короткого замыкания, нарушения изоляции проводов, попадания молнии, индуктивности проводников возникает высокий риск поражения человека при взаимодействии с корпусом оборудования. Обеспечить его защиту от поражения электрическим током можно с помощью заземления. В качестве земли может выступать грунт, вода рек и морей, залежи каменного угля и т. д.

По принципу организации заземление принято разделять на контурное и выносное.

Системы зануления

Этот способ широко распространён для обеспечения защиты в трехфазных сетях номиналом до 1000 В. Он заключается в преднамеренном соединении металлических частей оборудования с нейтралью трансформатора, напрямую подключённой к земле.

Системы защитного отключения

УЗО

В эту группу входят устройства, автоматически отключающие электроустановки от источника тока при прикосновении к токопроводящим частям человека, либо при превышающей допустимые значения утечки тока. Стандартно применяются в однофазных сетях.

УЗО позволяют обеспечить защиту человека от поражения электрическим током путём снижения времени воздействия электричества на человека. При замыкании проводников с землёй или прикосновении к ним человека происходит оперативное срабатывание защитного выключателя. Использование УЗО позволяет не только обезопаситься от поражения электротоком, но и контролировать состояние изоляции, минимизировать последствия её повреждения. Для защиты человека от поражения электрическим током обычно применяются УЗО с током срабатывания не больше 30 мА.

Учитывая их конструкцию, устройства можно разделить на несколько типов:

  • электронные УЗО. Их работа возможна только при подключении к питанию: возможна подача тока как от контролируемой сети, так и от внешнего источника;
  • электромеханические УЗО. Их стоимость несколько выше электронных устройств, но за счёт повышенной чувствительности они обеспечивают более высокий уровень защиты. Для функционирования используется напряжение контролируемой сети.

В настоящее время применение УЗО стало широко распространено как в частном, так и промышленном использовании.

Помимо вышеперечисленного, обеспечить защиту от поражения электрическим током человек может, тщательно руководствуясь правилами эксплуатации и обслуживания электроприборов, электроустановок. Одни из основных правил — использовать потребители тока установленного номинала, не допускать к их управлению или ремонту детей, осуществлять контроль влажности, не разбирать приборы, находящиеся под напряжением.

Источник

Меры и средства защиты от поражения электрическим током

Несмотря на то, что опасность электрического тока уже давно не новость для человека, статистика электротравматизма остается неутешительной. Поэтому чтобы работы в электроустановках были абсолютно безопасными, задействованные лица обязаны соблюдать и применять меры и средства защиты от поражения электрическим током. Актуальность вопроса обуславливается тем, что электрическая энергия повсеместно используется как в быту, так и охватывает практически все технологические процессы в самых разнообразных сферах промышленной и хозяйственной деятельности человека.

Основные меры защиты

Следует отметить, что перечислить все меры достаточно сложно, так как все они привязываются к конкретному оборудованию или видам работ. Более того, разные правила и нормы призваны регулировать отличительные вопросы в организации операций, конструктивных особенностях или эксплуатации электрических установок.

Организационные и технические

Один из основных документов, на которые следует опираться — Правила охраны труда при эксплуатации электроустановок. Именно они утверждают, что прежде, чем приступать к каким-либо действиям с электрическими приборами или их компонентами, обслуживающий персонал обязан выполнить ряд мер, которые позволят им избежать электрической травмы от тока. Все эти меры имеют четкое деление на организационные и технические в соответствии с п.2.1.1. и п.3 РД 153-34.0-03.150-00 соответственно.

Организационные мероприятия обязывают:

  • Оформить в установленном порядке планируемую работу ( по наряду, распоряжению или инструктажем);
  • Организовать подготовку рабочего места с последующим допуском персонала;
  • Осуществлять постоянный надзор во время работы в тех устройствах, где довольно большой риск поражения;
  • При необходимости, оформить перерывы, перевести на следующее место, вывести персонала после окончания.

В части технических мероприятий для предотвращения поражения электрическим током обслуживающий персонал обязан:

  • Выполнить установленные коммутации и принять меры, которые воспрепятствуют подаче напряжения при ошибочном или самопроизвольном переключении;
  • Вывесить на элементы управления соответствующие плакаты безопасности;
  • Проверить наличие или отсутствие рабочего или наведенного потенциала;
  • Наложить переносные или включить стационарные заземления;
  • Оградить место выполнения работ и указать его плакатами безопасности, обозначить места, приближение к которым несет угрозу воздействия электрической энергии.

Вышеприведенный комплекс мер, препятствующий поражению током, является общим для всех сфер. Однако в каждой отрасли он может дополняться или видоизменяться в зависимости от типа эксплуатируемых устройств, а также с учетом категории выполняемых работ.

Читайте также:  Драйвер для повышения тока

Меры по содержанию

Если предыдущие нормы устанавливали меры безопасности, которые должны соблюдаться перед началом работы, то существуют аналогичные меры, устанавливаемые ПТЭЭП и ПУЭ, но уже касательно технического состояния, конструктивных и рабочих параметров, как на этапе монтажа, так и в процессе дальнейшей эксплуатации электрооборудования.

Сюда входят:

Проверка состояния защитного заземления

  • Проверка состояния изоляции проводов, обмоток, изоляторов и прочих диэлектрических частей в части сопротивления электрическому току;
  • Наличие и состояние заземляющих устройств, мест соединения и подключения, параметры переходного сопротивления электрическому току;

Рис. 1. Проверка состояния защитного заземления

  • Измерение переходного сопротивления в местах соединения токоведущих частей, осмотр их технического состояния;
  • Соответствие цветовой маркировки фаз, нулевых проводников, линий защитного заземления;
  • Наличие диспетчерских наименований и знаков безопасности.

Общетехнические средства защиты

Для помещений с высокой степенью электрической опасности (бетонный пол, высокая влажность и т.д.), где при повреждении изоляции тело человека составит единственное сопротивление в цепи протекания тока, необходимо применять пониженное напряжение питания, электроинструмент с пониженным напряжением или с двойной изоляцией токоведущих элементов. Понижение выполняется как за счет трансформаторов – для получения переменного тока, так и с помощью полупроводниковых блоков питания для получения постоянного тока.

Как один из вариантов используется гальваническая развязка высокого и низкого напряжения, как способ электрического разделения по номиналам питания и изоляции. Такой метод защищает от удара электрическим током, в случае пробоя изоляции со стороны высокого напряжения от перехода высокого потенциала на низкую сторону.

Еще одним общим средством защиты от поражения электрическим током является защитное заземление и зануление.

Защитное заземление и зануление

Рис. 2. Защитное заземление и зануление

Первый, из которых предусматривает подключение корпусов и каркасов из токоведущих материалов к контуру заземления через защитный проводник PE, что позволяет снизить напряжение прикосновения к безопасной величине. Если установлены защиты по дифференциальному току, то они обеспечивают мгновенное срабатывание УЗО. Второй обеспечивает соединение электрооборудования с нулевым проводом для корректной работы защит, обычно применяется в сетях с заземленной нейтралью.

Специальные средства защиты

К специальным средствам защиты, которые позволяют избежать удара электрическим током, относятся всевозможные устройства и приспособления, действия которых используются в узконаправленных целях. Одним из них являются различные защиты, предназначенные для автоматического отключения электрической цепи в случае возникновения аварийной ситуации:

  • Автоматические выключатели тока и контакторы;
  • Дифференциальные защиты, реагирующие на утечку тока при пробое изоляции;
  • Контроль изоляции;
  • Защита по напряжению и т.д.

Переносные заземления устанавливаются для соединения токоведущих частей с землей. В результате чего происходит снятие остаточного электрического заряда и последующий контроль отсутствия потенциала. При случайном возникновении электрического тока произойдет защитное отключение электроустановки.

Шунтирующие штанги и перемычки – устанавливаются при работе под напряжением. Они позволяют выровнять потенциал, обеспечивают прохождение токов через изолирующие секции. В случае невозможности выравнивания потенциалов произойдет срабатывание защитного устройства.

Изолирующие вышки и подъемники – обеспечивают электрическое сопротивление для изоляции персонала, выполняющего работу под напряжением.

Изолированные вышки

Рис. 3. Изолированные вышки

Для защиты органов зрения от электрической дуги или возможного искрообразования в качестве защитного средства используются специальные очки, которые являются обязательным в ряде технологических процессов.

Средства индивидуальной защиты

Все СИЗ в части защиты от поражения электрическим током создают дополнительную изоляцию от токоведущих элементов, от земли или и от одного и от другого. В зависимости от устройства электроустановок они подразделяются на средства защиты до 1000 В и выше 1000 В. Для каждой из этих категорий также происходит деление на основные и дополнительные, которое приведено в таблице ниже:

Таблица: деление средств индивидуальной защиты по категориям

До 1000 В Выше 1000 В
Основные Основные
Изолирующие штанги Изолирующие клещи Измерительные клещи Индикаторы и указатели напряжения Диэлектрические перчатки Инструмент с изолированными рукоятками Изолирующие штанги Изолирующие клещи Измерительные клещи Указатели напряжения Устройства фазировки, отыскания повреждений, измерения и испытания
Дополнительные Дополнительные
Диэлектрическая обувь Диэлектрические коврики Изолирующие подставки Изолирующие накладки Изолирующие колпаки Сигнализаторы Защитные ограждения (щиты, ширмы) Переносные заземления Плакаты и знаки безопасности Диэлектрические перчатки Диэлектрическая обувь Диэлектрические коврики Изолирующие подставки Изолирующие накладки Изолирующие колпаки Штанги для переноса и выравнивания потенциала Сигнализаторы Защитные ограждения Переносные заземления Плакаты и знаки безопасности

Средства индивидуальной защитыРис. 4. Средства индивидуальной защиты

Основные позволяют совершать прямые прикосновения к токоведущим элементам, их изоляции достаточно для класса напряжения, на которое они рассчитаны, чтобы обезопасить человека от поражения человека электрическим током. Дополнительные не могут применяться отдельно, так как даже при однофазном прикосновении уровня изоляции или способа применения не хватит для защиты от электротока.

Дополнительные СИЗ можно включать в работу только совместно с основными в качестве вспомогательной изоляции. Практически все средства защиты должны проходить периодические электрические испытания, подтверждающие их способность защиты, что обязательно проверяется до начала их использования.

Источник



Мероприятия по защите от поражения электрическим током

Электробезопасность на производстве обеспечивается соответствующей конструкцией оборудования, применением технических способов и средств защиты, организационными и техническими мероприятиями.

Конструкция электроустановок должна соответствовать условиям их эксплуатации и обеспечивать защиту персонала от соприкосновения с токоведущими частями, а оборудо- вания – от попадания внутрь посторонних твердых тел и воды.

Основными техническими способами и средствами защиты от поражения электриче- ским током, используемыми отдельно или в сочетании друг с другом, являются: защитное заземление, зануление, выравнивание электрических потенциалов, защитное отключение, изоляция токоведущих частей, малое напряжение, электрическое разделение сетей, огради- тельные устройства, изолирующие защитные и предохранительные устройства.

Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напря- жением, через малое по величине сопротивление. Защитному заземлению подлежат металличе- ские части электроустановок, доступные для прикосновения человека и не имеющие других ви- дов защиты, обеспечивающих электробезопасность. Областью применения защитного заземле- ния являются трехфазные трехпроводные сети напряжением до 1000 В с изолированной нейтра- лью и сети напряжением выше 1000 В с любым напряжением нейтрали.

Заземляющее устройство состоит из заземлителя (одного или нескольких металличе- ских элементов, погруженных на определенную глубину в грунт) и заземляющих провод- ников, соединяющих с заземлителем.

В электроустановках переменного тока напряжением до 1000 В в сети с изолирован- ной нейтралью сопротивление заземляющего устройства не должно превышать 4 Ом. Если мощность источника питания (трансформаторов, генераторов) составляет более 100 кВ А, то сопротивление заземляющего устройства может достигать 10 Ом, но не более.

Принцип действия защитного заземления – снижение до безопасных значений напря- жений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, либо выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала близкого по значению к потенциалу заземленного оборудования (рисунок 18.3).

а) в сети с заземленной нейтралью; б) в сети с изолированной нейтралью Рисунок 18.3 Схема защитного заземления

Читайте также:  Переменный ток чем он плох

При пробое фазы на корпус сравниваются потенциалы оборудования φоб и основания φосн, а Uпр и ток через человека становятся меньше:

Uпр =jобjосн

= I З

Как видно из схемы, при значительном удалении электроустановок от заземлителя (более 20 м) защита от поражения током обеспечивается только уменьшением потенциала заземленного оборудования за счет малого сопротивления, обусловленного большим коли- чеством одиночных заземлителей.

При выполнении контурного заземления (рисунок 18.4) любая точка поверхности грунта внутри контура имеет значительный потенциал, так как поля растекания тока от за- землителей накладываются. Напряжение прикосновения при контурном заземлении (Uпр2) будет значительно меньше, чем при выносном заземлении (Uпр1), так как разность потенци- алов между точками внутри контура будет снижена, а ток, проходящий через человека, при его прикосновении к корпусу электрооборудования, находящегося под напряжением, будет меньше, чем при выносном заземлении.

Рисунок 18.4 Контурное заземление

Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно применяется в трехфазной сети с заземленной нейтральной точкой напряжением до 1000 В. Защита человека от поражения электрическим током в сетях с занулением осуществляется тем, что при замыкании одной из фаз на зануленный корпус в цепи этой фазы возникает ток коротко- го замыкания, который воздействует на токовую защиту (плавкий предохранитель, автомат), в результате чего происходит отключение аварийного участка от цепи (рисунок 18.5). Кроме того, еще до сбрасывания защиты ток короткого замыкания вызывает перераспределение напряжений в сети, приводящее к снижению напряжения корпуса относительно земли. Таким образом, зану- ление уменьшает напряжение прикосновения и ограничивает время, в течение которого человек, прикоснувшийся к корпусу, может попасть под действие напряжения.

Чтобы обеспечить автоматическое отключение аварийных установок, сопротивление цепи короткого замыкания (петли «фаза — нуль») не должно превышать 2 Ом, а ток короткого замы- кания Iк удовлетворять условию

³ Iном × К ,

где Iном — номинальный ток срабатывания защиты; К — коэффициент кратности тока.

Рисунок 18.5 Схема зануления

Выравнивание электрических потенциалов (ВЭП) между электропроводящим полом или землей, с одной стороны, и доступными для прикосновения металлическими нетокове- дущими частями электроустановок и технологического оборудования, с другой, — один из основных способов электрозащиты животных (рисунок 18.6).

1 – зона нулевого потенциала; 2 – бетонный пол; 3 – грунт; 4 – элементы УВЭП Рисунок 18.6 Выравнивание электрических потенциалов

Принцип электрозащитного действия ВЭП заключается в уменьшении до допустимых значений разности электрического потенциала (напряжение прикосновения), приходящего- ся на животного, стоящего на полу (или на земле) и прикасающегося к металлическим нетоковедущим частям, находящимся под напряжением.

В случаях, когда ВЭП служит основным способом электрозащиты, к нему предъявля- ют лишь одно главное требование: при всех расчетных нормальных и аварийных режимах работы электроустановок значения напряжения прикосновения и шага не должны превы- шать допустимые (с учетом длительности воздействия).

Чаще всего устройство для ВЭП выполняют в виде металлической сетки, закладываемой в бетонную подготовку пола животноводческих помещений и электрически соединенной с металли- ческими нетоковедущими частями технологического оборудования, доступного для прикоснове- ния животным. Если на этих металлических частях появляется электрический потенциал, то точно такой же потенциал оказывается и на металлической сетке. Деревянный настил пола, на котором стоят животные, всегда влажный, и его удельное сопротивление незначительное. Поэтому и по- тенциал пола в зоне размещения животных близок к потенциалу сетки, а возможное напряжение прикосновения (разность потенциалов, приходящаяся на тело животных) оказывается безопасным. Все рассмотренные выше способы электрозащиты (защитное заземление, зануление, ВЭП) предназначены для обеспечения электробезопасности в режимах системы обеспече- ния электроснабжения, при которых ток протекает по земле, а человек или животное ока- зывается в зоне растекания тока. Если же человек случайно прикасается к токоведущей ча- сти электроустановки напряжением до 1000 В с глухозаземленной нейтралью и при этом либо стоит на земле или на электропроводящем полу, либо прикасается к зануленной части электроустановки или технологического оборудования, то ни заземление, ни зануление, ни

выравнивание электрического потенциала не оказывают какого-либо защитного действия. Надежную электрозащиту в этих случаях могут обеспечить лишь устройства защитного от-

ключения (УЗО), подразделяемые на несколько типов, в зависимости от параметра, на который реагирует датчик: напряжения корпуса относительно земли (рисунок 18.7), тока замыкания на землю. Металлические нетоковедущие части электроустановок технологического оборудования и различных коммуникаций, которые случайно могут оказаться под напряжением вследствие нарушения изоляции токоведущих частей, заземлены. Датчиком является реле напряжения, включенное между защищаемым корпусом и вспомогательным заземлителем Rв.

Рисунок 18.7 Схема УЗО, реагирующая на изменение напряжения корпуса относительно земли

При пробое фазы на корпус на нем появляется напряжение относительно земли (20-60 В), срабатывает реле напряжения (РН), настроенное на определенную уставку, и установка отключается контактором.

Сущность защитного отключения заключается в немедленном разрыве электрической цепи, как только появится опасность поражения (например, ток утечки более 10 мА). Со- гласно ПУЭ время срабатывания УЗО не должно превышать 0,2 с.

Двойной изоляцией называется изоляция, состоящая из рабочей и дополнительной, защищающей от поражения электрическим током в случае повреждения основной изоля- ции. ПУЭ предусматривают применение двойной изоляции как одного из возможных ме- роприятий электробезопасности, равноправное с защитным заземлением, занулением и за- щитным отключением. Это значит, что электротехнические изделия, имеющие двойную изоляцию, не требуется заземлять, снабжать защитно-отключающим устройством. На пас- портной табличке такого изделия должен быть знак: квадрат внутри квадрата.

С двойной изоляцией изготовляют, например, ручные переносные светильники и не- которые ручные электрические машины. Рукоятка светильника из пластмассы представляет собой дополнительную изоляцию к рабочей изоляции проводов, входящих внутрь светиль- ника. В ручных электрических машинах (например, сверлильных) корпус может быть изго- товлен полностью или частично пластмассовым, но может быть и полностью металличе- ским, если для прохода проводов внутри корпуса применены изоляционные втулки, а элек- тродвигатель отделен от корпуса изолирующими прокладками.

Существует так называемая усиленная изоляция. Это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная. Ее применяют в тех элементах изделия с двойной изоляцией, в которых двойную защиту затруднительно применить по конструктивным соображениям: например, в выклю- чателях сверлильных машин.

Малым напряжением называется напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Корпуса электроприемников с малым напряжением не требуется занулять или заземлять, кроме электросварочных устройств и электроприемников, работающих во взрывоопасных помещениях.

Как самостоятельное защитное мероприятие или в дополнение к другим, например к применению малого напряжения, можно применять разделяющие трансформаторы. Разде- ляющий трансформатор – это специальный трансформатор, предназначенный для отделе- ния приемника электрической энергии от первичной электрической сети и сети заземления или зануления. Ни корпус электроприемника, ни вторичная обмотка разделяющего транс- форматора не должны зануляться или заземляться в отличие от вторичной обмотки просто- го понижающего трансформатора, но корпус самого трансформатора должен быть занулен. Ограждения токоведущих частей, находящихся под напряжением, предохраняют от случайного прикосновения к этим частям. Временно устанавливаемые ограждения могут быть выполнены в виде переносного барьера или натянутого каната с укреплением на них

Читайте также:  Ноутбук адаптер переменного тока для samsung

предупредительного плаката: «Стой! Под напряжением!».

Изолирующие средства защиты предназначены для изоляции человека от частей электроустановок, находящихся под напряжением, и от земли, если человек одновременно касается земли или заземленных частей электроустановок и токоведущих частей или ме- таллических, оказавшихся под напряжением корпусов электрооборудования.

Существуют основные и дополнительные изолирующие средства. Основные изолиру- ющие средства имеют изоляцию, предназначенную для того, чтобы длительно выдержи- вать рабочее напряжение электроустановки, поэтому с их помощью разрешено касаться токоведущих частей, находящихся под напряжением. Изолирующие свойства основных защитных средств бывают разными в зависимости от напряжения электроустановок, где они применяются.

Основными изолирующими защитными средствами для электроустановок напряжени- ем до 1000 В служат: изолирующие штанги, изолирующие и измерительные клещи, указа-

тели напряжения, а также средства для ремонтных работ (изолирующие лестницы, инстру- мент с изолирующими ручками и др.).

Дополнительные изолирующие средства обладают недостаточными изолирующими свойствами и предназначены только для усиления защитного действия основных средств, вместе с которыми они должны применяться. К ним относятся: диэлектрические галоши, коврики, изолирующие подставки.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

Методы защиты персонала от поражения электрическим током

Со школьной скамьи с уроков безопасности жизнедеятельности мы знакомы с таким понятием, как поражение электрическим током. И не спроста. Поскольку это является одной из самых опасных угроз, которая чревата последствиями не только для электрика в процессе работы или работника на производстве, но и любого домочадца. Поэтому, необходимо обладать как можно большей информацией для предотвращения удара электричеством и знать, как поступать, если несчастный случай уже произошел. На просторах интернета имеется огромное количество информации о средствах и мерах защиты от поражения электрическим током. Невзирая на это, большая часть людей не осведомлена данной темой. Лень и неверное понимание правил поведения при работе, в быту или при ремонте инструментов, работающих под напряжением, зачастую, являются причиной возникновения опасной ситуации. Все это может привести к получению различных травм, поэтому мы убедительно просим Вас не пренебрегать своей безопасностью.

Для того, чтобы предотвратить поражение электричеством, сначала необходимо удостовериться

  1. Изоляция проводки не повреждено и находится в соответствующем состоянии;
  2. На оборудовании или проводке установлено защитное заземление;
  3. Закрыт доступ к токоведущим частям;
  4. Транспортируемые инструменты, оборудование питаются от пониженного напряжения;
  5. Применяются устройства дифференциальной защиты в качестве дополнительной меры

Также, не менее эффективным, но не очень удобным способом, будет использование резиновых перчаток и обуви в процессе работы с проводкой и обслуживании электрооборудования.

Профилактические меры в быту

Существует ряд основных пунктов, которых необходимо придерживаться для предотвращения удара электрическим током в быту, а именно:

  • НИ В КОЕМ СЛУЧАЕ самостоятельно не чинить электроприборы и проводку, если вы некомпетентны в этом вопросе;
  • НЕ работать с неисправными электроприборами и розетками;
  • НЕ трогать оголенные участки проводки, если повреждена изоляция.

Профилактические меры на производстве

Рассмотрим меры и средства защиты на производстве (предприятиях, заводах, фабриках и т.д.). В их основу входит проведение регулярных плановых инструктажей сотрудников, касаемо мер от поражения электрическим током. Но одного инструктажа будет недостаточно, поскольку человеку свойственно забывать принятую им информацию. Также необходимо контролировать состояние основной проводки, проводки оборудования и инструментов на производстве. Хотим отметить, что безопасность персонала лежит не только на самом персонале, но и на руководстве, поскольку именно на производстве происходят ситуации с поражением электрическим током.

Человеческая халатность и неосторожность являются одной их самых частых причин поражения электрическим током. Несмотря на то, что человек знает методы защиты от электрического тока, он относится к этому безответственно, что и становится следствием производственных травм и летального исхода.

Также такое несерьезное отношение может исходить и от администрации организации, на котором трудится пострадавший. Если на производстве с сотрудником произошел случай в процессе работы – ответственность за данную ситуацию будет полностью лежать на руководстве предприятия. Данная мера вызвана для того, чтобы руководство компании обращало больше внимания на безопасность своих сотрудников.

Для того, чтобы предотвратить последствия от удара электрическим током используют защитное заземление и зануление.

заземление — соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю с помощью нулевого проводника;

зануление — соединение корпуса электроприбора с нейтральным проводом сети – нулем.

Также важно помнить, что поражение электрическим током можно получить при косвенном прикосновении. Косвенное прикосновение – это электрический контакт людей с открытыми проводящими частями, оказавшимися при повреждении изоляции. Особую опасность представляет собой контакт человека с установкой без заземления, поскольку даже одно случайное прикосновение может стать для него последним.

Каждый руководитель должен помнить: нельзя экономить на оборудовании электриков, сварщиков и других работников в целях защиты от удара электрическим током и предотвращения несчастных случаев.

Алгоритм действий при поражении электрическим током

Теперь рассмотрим алгоритм действий при уже случившемся поражении электрическим током, а именно:

  • Отключить электропитание (полностью). Если нет навыков и умения сделать это самому, необходимо вызвать аварийную службу.
  • Обеспечить полную безопасность. Перенести пострадавшего в другое место (при необходимости)
  • Оценить состояние пострадавшего по принципу ABCD, BLS
  • Провести сердечно-легочную реанимацию (при необходимости)
  • Установить венозный катер, провести инфузионную терапию
  • Транспортировать пострадавшего на место оказания первой помощи

ВАЖНО ПОМНИТЬ: при косвенном или прямом прикосновении пораженного человека электрический ток ударит и того, кто прикоснулся. Поэтому категорически запрещается трогать пострадавшего до прекращения подачи электричества на объект, которого пострадавший касается.

Теперь разберем алгоритмы ABCD и BLS:

ABCD – процесс, при котором проверяются основные жизненные показатели пациента: состояние дыхательных путей, кровообращение, снижение уровня сознания;

BLS – анализ состояния дыхания пострадавшего, мероприятия по сердечно-легочной реанимации.

Таким образом, незнание мер, средств и способов защиты от поражения электричества влечет за собой необратимые последствия. Поэтому, не игнорируйте требования и правила безопасности, соблюдайте меры предосторожности и берегите себя от несчастных случаев.

Источник