Меню

Метод контурных токов с источником тока сложной цепи

Метод контурных токов (MKT)

Обоснование последовательности расчета

На рисунке 3.45. представлена сложная электрическая цепь, в которой заданы величины всех ЭДС Метод контурных токов (MKT)источников тока Метод контурных токов (MKT)и резисторов Метод контурных токов (MKT). Необходимо выполнить расчет величин токов в ветвях электрической цепи.

На первом этапе необходимо проставить произвольное направление токов в ветвях и упростить электрическую цепь, по известным методам, пронумеровав узлы. На рисунке 3.46. представлена упрощенная цепь, где

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Положительные направления результирующих ЭДС в ветвях выбираются произвольно и в данном примере выбраны совпадающими с электрической цепью на рисунке 3.39.

Метод контурных токов (MKT)

Воспользуемся для обоснования метода MKT методом непосредственного применения законов Кирхгофа и составим по первому закону Кирхгофа (к — 1) уравнений (т. е. 4 — 1 = 3) для узлов 1,2,3 и по второму закону Кирхгофа для контуров, I, II, III:

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Ветви 4, 5 и 6 — ветви дерева (рисунок 3.40.), а ветви 1, 2 и 3 — ветви соединения. Токи ветвей соединения называют контурными токами и обозначают Выразим токи ветвей дерева через контурные токи из уравнений (3.38):

Метод контурных токов (MKT)

Исключаем токи смежных ветвей (дерева) из системы уравнений (3.39), для чего выражения для токов (3.40) — (3.42) подставим в уравнения (3.39):

Метод контурных токов (MKT)

Выполним группировку коэффициентов при контурных токах уравнений системы (3.43) и получим стандартную форму системы уравнений по MKT:

Метод контурных токов (MKT)

Анализ системы уравнений (3.44) позволяет прийти к следующим выводам:

Метод контурных токов (MKT)

  • коэффициент при контурном токе, номер которого совпадает с номером контура, для которого составлено уравнение, равняется арифметической сумме сопротивлений этого контура, ее мы будем называть собственным сопротивлением контура :

Метод контурных токов (MKT)

Метод контурных токов (MKT)

  • коэффициенты при контурных токах, номера которых не совпадают с номером контура, для которого составляется уравнение, являются сопротивлениями ветвей, которые принадлежат одновременно двум контурам; знак этих коэффициентов зависит от того, одинаково или противоположно направлены токи в этих ветвях, и мы будем называть их взаимными сопротивлениями контуров

Метод контурных токов (MKT)

Левые части уравнений (3.44) являются алгебраическими суммами источников ЭДС по второму закону Кирхгофа и мы будем называть их контурными

Метод контурных токов (MKT)

Группировка коэффициентов в правых частях уравнений (3.44) приведет к системе уравнений (3.48):

Метод контурных токов (MKT)

Система уравнений может быть решена с помощью определителей:

Метод контурных токов (MKT)

Метод контурных токов (MKT)

где — алгебраические дополнения формул.

Система уравнений (3.48) является стандартной формой записи уравнений по методу контурных токов для любой электрической цени с

тремя независимыми контурами. Учитывая, что Метод контурных токов (MKT) Метод контурных токов (MKT)можно рассчитать остальные токи по формулам (3.40) — (3.42).

Можно сформулировать правило:

Ток в любой ветви равен алгебраической сумме контурных токов в этой ветви, при этом положительный знак выбирают при совпадении направления контурного тока с направлением тока ветви, и отрицательный — наоборот. Расчет остальных токов выполним по схеме (рисунок 3.45).

Для узла 5 по первому закону Кирхгофа Метод контурных токов (MKT). Аналогично для узла 1 Метод контурных токов (MKT); для узла 9 Метод контурных токов (MKT); для узла 8 Метод контурных токов (MKT).

Метод контурных токов (MKT)

Если количество независимых контуров , система уравнений по методу контурных токов будет иметь вид:

Метод контурных токов (MKT)

В матричной форме систему (3.52) можно записать в полном виде:

Метод контурных токов (MKT)

где Метод контурных токов (MKT)— квадратичная матрица собственных и взаимных сопротивлений контуров или кратко — матрица сопротивлений; Метод контурных токов (MKT)— матрица-столбец контурных ЭДС; Метод контурных токов (MKT)— соответственно номера рядка и столбца элементов матриц.

Матрица сопротивлений симметричная, так как Метод контурных токов (MKT). На главной диагонали этой матрицы расположены собственные сопротивлении контуров Метод контурных токов (MKT). Решение матричных уравнений (3.53) и (3.54) относительно неизвестной матрицы контурных токов имеет вид:

Метод контурных токов (MKT)

Метод контурных токов (MKT)

где — обратная матрица сопротивлений.

Последовательность расчёта по методу контурных токов

Расчет цепей по методу контурных токов рекомендуется вести в следующей последовательности.

  1. Упростить исходную цепь, заменив реальные источники тока на реальные источники напряжения.
  2. Выбрать независимые контуры, направление контурных токов в них и направления токов в ветвях, входящих только в один контур должны совпадать с направлением контурного тока.
  3. Записать и решить стандартную систему уравнений по методу контурных токов.
  4. По найденным контурным токам найти по первому закону Кирхгофа токи в остальных ветвях схемы.
  5. Выполнить проверку результатов расчёта.

Если в схеме идеальные источники тока и их не преобразовали в модели с источниками ЭДС, расчет имеет ряд особенностей. Чтобы выбрать независимые контуры, необходимо использовать дерево графа так, чтобы в идеальные источники тока входили в ветви соединения. В этом случае токи источников тока приравниваем к известным контурным токам, а уравления составляют и решают только для контуров с неизвестными контурными токами. При этом в уравнения включаются слагаемые, которые приравняли токам идеальных источников тока.

Задача 3.9.

Для электрической цепи, схема которой изображена на рисунке 3.47. выполнить расчёт токов в ветвях электрической цепи, если параметры элементов имеют следующие значения:

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Решение:

На первом этапе упростим схему рисунка 3.47, заменив модели источников энергии с источниками тока на модели с источниками ЭДС. Так заменяем: Метод контурных токов (MKT)и Метод контурных токов (MKT)на эквивалентные источники ЭДС

Метод контурных токов (MKT)

Метод контурных токов (MKT)и Метод контурных токов (MKT)на эквивалентный источник

Метод контурных токов (MKT)

Метод контурных токов (MKT)и Метод контурных токов (MKT)на

Метод контурных токов (MKT)

Метод контурных токов (MKT)

На втором этапе выбираем положительные направления токов в ветвях схемы с неизвестными контурными токами и произвольно выбираем положительные их направления (рисунок 3.48).

Метод контурных токов (MKT)

На третьем этапе составляем стандартную систему уравнений по MKT для трёх неизвестных контурных токов :

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Подставляем полученные значения коэффициентов в уравнения системы (3.56) получаем:

Метод контурных токов (MKT)

Решаем полученную систему уравнений с помощью определителей:

Метод контурных токов (MKT)

Правила вычисления определителей при раскрытии по первому столбцу:

Читайте также:  Подстанции преобразования переменного тока в постоянный

Метод контурных токов (MKT)

Метод контурных токов (MKT)

На четвёртом этапе вычисляем токи ветвей:

Метод контурных токов (MKT)

Метод контурных токов (MKT)

Ток , вычисляем для узла 1 по первому закону Кирхгофа:

Метод контурных токов (MKT)

Аналогично величины токов:

Метод контурных токов (MKT)

На пятом этапе выполняем проверку вычислений подстановкой величин токов в уравнения, составленные по второму закону Кирхгофа для исходной схемы рисунка 3.47:

Метод контурных токов (MKT)

Подставляем заданные параметры элементов электрической цепи и величины токов в систему уравнений (3.63):

Метод контурных токов (MKT)

Система уравнений (3.63) превратилась в верное равенство.

Эта страница взята со страницы задач по электротехнике:

Возможно эти страницы вам будут полезны:

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Метод контурных токов

В каждой электрической цепи имеются так называемые Р – ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы. На практике используются методы, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять расчеты и получать точные результаты.

Суть метода контурных токов

Метод контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Другим способом расчетов служит метод выделения максимального дерева. Само дерево представлено в виде подмножества звеньев электрической цепи и является односвязным графом, в котором отсутствуют замкнутые контуры. Для того чтобы оно появилось, из цепи постепенно исключаются некоторые звенья. Дерево становится максимальным, когда к нему добавляется любое исключенное звено, в результате чего образуется контур.

Применение метода выделения максимального дерева представляет собой последовательное исключение из цепи заранее установленных звеньев в соответствии с определенными правилами. Каждый шаг в цепи предполагает произвольное исключение одного звена. Если такое исключение нарушает односвязность графа, разбивая его на две отдельные части, в этом случае звено может возвратиться обратно в цепь. Если граф остается односвязным, то и звено остается исключенным. В конечном итоге, количество звеньев, исключенных из цепи, оказывается равным количеству независимых контуров, расположенных в схеме. Получение каждого нового независимого контура связано с присоединением к электрической цепи конкретного исключенного звена.

Применение метода контурных токов для расчета цепи

В соответствии с этой методикой, неизвестными величинами являются расчетные или контурные токи, предположительно протекающие во всех независимых контурах. В связи с этим, все неизвестные токи и уравнения в системе, равны количеству независимых контуров электрической цепи.

Токи ветвей в соответствии с данным методом рассчитываются следующим образом:

  • В первую очередь вычерчивается схема цепи с обозначением всех ее элементов.
  • Далее определяется расположение всех независимых контуров.
  • Направления протекания контурных токов задаются произвольно по часовой или против часовой стрелки в каждом независимом контуре. Они обозначаются с использованием цифровых или комбинированных символов.
  • В соответствии со вторым законом Кирхгофа, затрагивающего контурные токи, составляются уравнения для всех независимых контуров. В записанном равенстве направления обхода контура и контурного тока этого же контура совпадают. Необходимо учитывать и то обстоятельство, что в ветвях, расположенных рядом, протекают собственные контурные токи. Падение напряжения потребителей берется отдельно от каждого тока.
  • Следующим этапом является решение полученной системы любым удобным методом, и окончательное определение контурных токов.
  • Нужно задать направление реальных токов во всех ветвях и обозначить их отдельной маркировкой, чтобы не перепутать с контурными.
  • Далее нужно от контурных токов перейти к реальным, исходя из того, что значение реального тока конкретной ветви составляет алгебраическую сумму контурных токов, протекающих по этой ветви.
Читайте также:  Какую работу совершает электрический ток в лампе когда через нее проходит 2кл электричества

Если направление контурного тока совпадает с направлением реального тока, то при выполнении алгебраического суммирования математический знак не меняется. В противном случае значение контурного тока нужно умножить на -1.

Метод контурных токов очень часто применяется для расчетов сложных цепей. В качестве примера для приведенной схемы нужно задать следующие параметры: Е1 = 24В, Е2 = 12В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Для решения этой сложной задачи составляются два уравнения, соответствующие двум независимым контурам. Направление контурных токов будет по часовой стрелке и обозначается I11 и I22. На основании второго закона Кирхгофа составляются следующие уравнения:

После решения системы получаются контурные токи со значением I11 = I22 = 3 А. Далее произвольно обозначается направление реальных токов, как I1, I2, I3. Все они имеют одинаковое направление – вверх по вертикали. После этого выполняется переход от контурных к реальным. В первой ветви имеется течение только одного контурного тока т I11. Его направление совпадает с реальным током, поэтому I1 + I11 = 3 А.

Формирование реального тока во второй ветке осуществляется за счет двух контурных токов I11 и I22. Направление тока I22 совпадает с реальным, а направление I11 будет строго противоположно реальному. Таким образом, I2 = I22 – I11 = 3 – 3 = 0 А. В третьей ветке I3 наблюдается течение лишь контурного тока I22. Его направление будет противоположным направлению реального тока, поэтому в данном случае расчеты выглядят следующим образом: I3 = -I22 = -3А.

Основным положительным качеством метода контурных токов по сравнению с вычислениями по законам Кирхгофа, является значительно меньшее количество уравнений, используемых для вычислений. Тем не менее, здесь присутствуют определенные сложности. Например, реальные токи ветвей не всегда удается определить быстро и с высокой точностью.

Источник



1.3 Метод контурных токов

1.3 Метод контурных токов

В методе контурных токов за основные неизвестные величины принимают контурные токи, которые замыкаются только по независимым контурам (главным контурам). Контурные токи находят, решая систему уравнений, составленную по второму закону Кирхгофа для каждого контура. По найденным контурным токам определяют токи ветвей схемы.

Алгоритмом метода контурных токов:

1. Задаются направлением токов ветвей и обозначают их на схеме.

2. Определяют независимые контуры и их нумеруют. При наличии в схеме источников тока независимые контуры, для которых составляются уравнения метода контурных токов, можно определить, если мысленно удалить источники тока.

3. Выбирают направление контурных токов (целесообразно в одну сторону) и составляют уравнения по методу контурных токов, обходя каждый контур в направлении его контурного тока. Контурный ток, проходящий через источник тока, известен и равен току источника тока (через источник тока проходит только один контурный ток!).

4. Полученную систему алгебраических уравнений решают относительно неизвестных контурных токов.

5. Искомые токи по методу контурных токов находят как алгебраическую сумму контурных токов, проходящих по данной ветви. Токи в ветвях связи равны контурным токам.

Решение задач методом контурных токов

Задача 1.3.1 . Определить токи в ветвях схемы рис. 1.3.1 методом контурных токов. Правильность решения проверить по балансу мощностей.

1. В соответствии с алгоритмом, зададимся направлением токов ветвей и обозначим их на схеме рис. 1.3.1.

3. Поскольку в схеме имеется ветвь, содержащая источник тока J, контурный ток Iк3 = J, а для контурных токов Iк1 и Iк2 запишем систему уравнений метода контурных токов:

Подставив значения сопротивлений, получаем численную систему уравнений метода контурных токов с двумя неизвестными контурными токами:

I к 1 = 0,4 A ; I к 2 = 3 A .

4. Определяем токи в ветвях схемы по методу контурных токов:

I 1 = I к 1 = 0,4 A ; I 5 = − I к 2 = − 3 A ; I 6 = I к 2 − I к 1 = 3 − 0,4 = 2,6 A .

для узла a:

I 4 = I 5 + J = ( − 3 ) + 2 = − 1 A ;

для узла b:

I 3 = J − I 1 = 2 − 0,4 = 1,6 A .

5. Правильность решения проверяем по балансу мощностей. Предварительно находим напряжение на зажимах источника тока:

U a d = φ a − φ d = J ⋅ R 2 + I 3 ⋅ R 3 + I 4 ⋅ R 4 − E 2 = = 2 ⋅ 10 + 1,6 ⋅ 20 + ( − 1 ) ⋅ 5 − 10 = 37 B .

E 2 ⋅ J + U a d ⋅ J + E 1 ⋅ ( − I 1 ) + E 6 ⋅ I 6 = J 2 ⋅ R 2 + I 3 2 ⋅ R 3 + I 4 2 ⋅ R 4 + I 5 2 ⋅ R 5 + I 6 2 ⋅ R 6 ; 10 ⋅ 2 + 37 ⋅ 2 + 15 ⋅ ( − 0,4 ) + 30 ⋅ 2,6 = 2 2 ⋅ 10 + 1,6 2 ⋅ 20 + ( − 1 ) 2 ⋅ 5 + ( − 3 ) 2 ⋅ 4 + 2,6 2 ⋅ 5 ; 166 В т = 166 В т .

Источник

Метод контурных токов для расчёта электрических цепей

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов позволяет уменьшить количество решаемых уравнений.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

В методе контурных токов уравнения составляются на основании второго закона Кирхгофа, причём их равно $ N_<\textrm<в>>-N_<\textrm<у>>+1 $, где $ N_<\textrm<у>> $ – число узлов, $ N_<\textrm<в>> $ – число ветвей, т.е. количество совпадает с количеством уравнений, составляемых по второму закону Кирхгофа.

Читайте также:  Определить ток в неразветвленной части цепи по векторной диаграмме

Опишем методику составления уравнений по методу контурных токов. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Электрическая схема метод контурных токов для расчёта электрической цепи

Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления контурных токов (рис. 2).

Электрическая схема метод контурных токов для расчёта электрической цепи направление контурных токов

Рис. 2. Задание направления контурных токов в электрической цепи

Количество уравнений, составляемых по методу контурных токов, равно 3. Здесь контур с источником тока так же не рассматривается.

Составим уравнение для контура «1 к.». В контуре «1 к.» контурный ток $ \underline_ <11>$ протекает по всем сопротивлениям $ R_ <2>$, $ \underline_ $, $ \underline_ $. Кроме того, через сопротивление $ R_ <2>$ протекает контурный ток смежного контура «2 к.» $ \underline_ <22>$, причём контурные токи $ \underline_ <11>$ и $ \underline_ <22>$ протекают в противоположных направлениях. Через индуктивное сопротивление $ \underline_ $ также протекает контурный ток $ \underline_ <33>$, причём контурные токи $ \underline_ <11>$ и $ \underline_ <33>$ также протекают в противоположных направлениях. Про составлении уравнения нужно сложить все падения напряжения (аналогично второму закону Кирхгофа), при этом необходимо учесть направление контурных токов: если контурные токи смежных контуров протекают в определённой ветви в одном направлении, то падение напряжения в этой ветви необходимо вносить со знаком «+», в противном случае – со знаком «-». Полученная сумма будет равна сумме ЭДС данного контура, при этом ЭДС берётся со знаком «+», если направление контурного тока совпадает с направлением ЭДС, в противном случае – со знаком «-».

Учитывая вышеизложенное, уравнение по методу контурных токов для контура «1 к.» будет выглядеть следующим образом:

$$ (R_ <2>+ \underline_ + \underline_) \cdot \underline_<11>— R_ <2>\cdot \underline_<22>— \underline_ \cdot \underline_ <33>= \underline_<1>. $$

Аналогично составим уравнение для контура «2 к.». Необходимо учесть, что уравнение для контура с источником тока не составляется, но ток от источника тока также необходимо учитывать в уравнение аналогично контурным токам других контуров. Само уравнение будет выглядеть следующим образом:

$$ -R_ <2>\cdot \underline_ <11>+ (R_ <2>+ R_ <4>+ \underline_) \cdot \underline_<22>— \underline_ \cdot \underline_ <1>= \underline_<2>. $$

Для контура «3 к.»:

$$ -\underline_ \cdot \underline_ <11>+ (R_ <1>+ R_ <3>+ \underline_ + \underline_) \cdot \underline_<33>— R_ <3>\cdot \underline_ <1>= \underline_<3>. $$

В приведённых выше уравнениях $ \underline_ = -\frac<1> <\omega C>$, $ \underline_ = \omega L $.

Таким образом, для того, чтобы найти искомые контурные токи, необходимо решить следующую систему уравнений, где слагаемые с силой тока источника тока перенесены в правую часть уравнений:

$$ \begin (R_ <2>+ \underline_ + \underline_) \cdot \underline_<11>— R_ <2>\cdot \underline_<22>— \underline_ \cdot \underline_ <33>= \underline_ <1>\\ -R_ <2>\cdot \underline_ <11>+ (R_ <2>+ R_ <4>+ \underline_) \cdot \underline_ <22>= \underline_ <2>+ \underline_ \cdot \underline_ <1>\\ -\underline_ \cdot \underline_ <11>+ (R_ <1>+ R_ <3>+ \underline_ + \underline_) \cdot \underline_ <33>= \underline_ <3>+ R_ <3>\cdot \underline_ <1>\end $$

В данном случае это система из 3 уравнений с 3 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ \begin R_ <2>+ \underline_ + \underline_ & -R_ <2>& -\underline_ \\ -R_ <2>& R_ <2>+ R_ <4>+ \underline_ & 0 \\ -\underline_ & 0 & R_ <1>+ R_ <3>+ \underline_ + \underline_ \end \cdot \begin \underline_ <11>\\ \underline_ <22>\\ \underline_ <33>\end = \begin \underline_ <1>\\ \underline_ <2>+ \underline_ \cdot \underline_ <1>\\ \underline_ <3>+ R_ <3>\cdot \underline_ <1>\end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ \underline<\bold> $ токов из трёх элементов, состоящий из искомых контурных токов, при этом

Далее в схеме по рис. 2 расставим направления токов в ветвях (рис. 3).

Электрическая схема метод контурных токов для расчёта электрической цепи определение токов в ветвях

Рис. 3. Задание направления токов в электрической цепи

Для определения токов в ветвях необходимо рассмотреть все контурные токи, которые протекают через данную ветвь. Видим, что через ветвь, где протекает ток $ \underline_ <1>$, проходит только один контурный ток $ \underline_ <11>$, и он сонаправлен, отсюда

Через ветвь, где протекает ток $ \underline_ <2>$, проходят контурные токи $ \underline_ <11>$ и $ \underline_ <22>$, причём ток $ \underline_ <11>$ совпадает с принятым направлением тока $ \underline_ <2>$, а ток $ \underline_ <22>$ – не совпадает. Те контурные токи, которые совпадают с принятым направлением, берутся со знаком «+», те, которые не совпадают – со знаком «-». Отсюда

Аналогично для других ветвей

$$ \underline_ <5>= \underline_<22>— \underline_<1>, $$

$$ \underline_ <7>= \underline_<33>— \underline_<1>, $$

Итак, метод контурных токов позволяет рассчитывать меньшее количество сложных уравнений для расчёта аналогичной электрической цепи по сравнению с законами Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Во время работы электроэнергетических систем могут возникнуть не только режимы коротких замыканий, но и обрывы. Метод…

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

Источник