Меню

Мощьность в цепях переменного токов

Что такое активная и реактивная мощность переменного электрического тока?

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Что такое активная и реактивная мощность переменного электрического тока?

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Что такое активная и реактивная мощность переменного электрического тока?

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Читайте также:  Трансформатор тока ткб 1

Что такое активная и реактивная мощность переменного электрического тока?

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Что такое активная и реактивная мощность переменного электрического тока?

Как перевести амперы в киловаты?

Что такое активная и реактивная мощность переменного электрического тока?

Что такое делитель напряжения и как его рассчитать?

Что такое активная и реактивная мощность переменного электрического тока?

Способы вычисления потребления электроэнергии бытовыми приборами

Что такое активная и реактивная мощность переменного электрического тока?

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Что такое активная и реактивная мощность переменного электрического тока?

Что такое фазное и линейное напряжение?

Что такое активная и реактивная мощность переменного электрического тока?

Как подобрать блок питания для светодиодной ленты по техническим характеристикам, расчёт мощности

Источник

Мощность в цепях переменного тока

date image2015-10-22
views image34933

facebook icon vkontakte icon twitter icon odnoklasniki icon

В цепях переменного тока различают три вида мощностей: активную Р, реактивную Q и полную S.

Активная мощность вычисляется по формуле:

Активную мощность потребляет резистивный элемент. Единица измерения активной мощности называется Ватт (Вт), производная единица – килоВатт (кВт), равная 10 3 Вт.

Реактивная мощность вычисляется по формуле:

Реактивная мощность потребляется идеальным индуктивным и

емкостным элементами. Единица измерения реактивной мощности называется Вольт-Ампер реактивный (Вар), производная единица – килоВАр (кВАр), равная 10 3 ВАр.

Полная мощность потребляется полным сопротивлением и обозначается буквой S:

Единица измерения полной мощности называется ВА (Вольт-Ампер), производная единица – килоВольт-Ампер (кВА), равная 10 3 ВА.

По сути, размерность у всех выше перечисленных единиц измерения одинакова – . Разные название этих единиц нужны, чтобы различать эти виды мощности.

Проявляются различные виды мощности по-разному. Активная мощность необратимо преобразуется в другие виды мощности (например, тепловую, механическую). Реактивная мощность обратимо циркулирует в электрических цепях: энергия электрического поля конденсатора преобразуется в энергию магнитного поля, и наоборот. «Извлечь» реактивную мощность с «пользой для дела» невозможно.

Из формул (2.19) – (2.21) следует, что между активной, реактивной и полной мощностью имеет место соотношение:

Соотношение между P, Q и S можно интерпретировать как соотношение сторон прямоугольного треугольника (вспомните треугольник сопротивлений, треугольник напряжений – все эти треугольники подобны).

Из рис. 2.10 видно, что cosφ = (2.24)

Отсюда вытекает определение одной из основных характеристик цепей переменного тока – коэффициента мощности. Специального обозначения он не получил.

Коэффициент мощности показывает, какую долю полной мощности составляет активная мощность.

Желательно, чтобы коэффициент мощности цепи был как можно больше, т.е. приближался к 1. Реально предприятия электрических сетей устанавливают такое ограничение для промышленных предприятий : соs φ = (0,92-0,95). Достигать значений соs φ >0,95 рискованно, так как разность фаз φ при этом может скачком перейти от положительных значений к отрицательным, что вредно для электрооборудования. Если соsφ 0 до 90 0 . Следовательно, увеличить соsφ – значит уменьшить разность фаз , то есть уменьшить (ХLС).

Если влиять на (ХLС), меняя С и L, то это приведет к увеличению тока в последовательной цепи и изменению режима работы оборудования, поэтому такой способ практически не применяется. В следующем разделе рассмотрен другой способ повышения коэффициента мощности.

Цепь переменного тока с параллельным соединением ветвей.

Рассмотрим электрическую цепь с двумя параллельными ветвями (рис. 2.11). Полученные выводы распространим на цепь с любым количеством ветвей. К цепи, содержащей две параллельные ветви, включающие активные, индуктивные и емкостные элементы (R1, L1, C1 и R2, L2, C2 cоответственно), подводится переменное напряжение U частоты f.

Прямая задача: Заданы все Обратная задача: Заданы свойства входящие в цепь элементы. цепи. Найти неизвестные элементы Найти все токи и разности цепи (эта задача решена в лаборафаз. торной работе Ц-5)

Решим прямую задачу, то есть найдем токи I1, I2 и общий ток I .

Рис. 2.11. Электрическая цепь с двумя параллельными ветвями

Из второго закона Кирхгофа следует, что напряжения на параллельных участках цепи одинаковы:

На основании закона Ома найдем токи I1 и I2 :

Найдем также разности фаз тока и напряжения для каждой ветви:

На основании первого закона Кирхгофа применительно к узлу А можно записать:

Таким образом, для определения тока I необходимо векторно сложить токи I1 и I2. В качестве опорного вектора удобно выбрать вектор напряжения .

Предположим, что при расчете разностей фаз тока и напряжения в ветвях цепи оказалось, что φ1>0, а φ2 под углом φ1 к вектору , и вектор под углом φ2 к вектору . Графически складываем эти векторы (см. рис.2.12). Величина тока определяется длиной полученного вектора с учетом выбранного масштаба. Разность фаз неразветвленного участка цепи определяется углом между векторами и

Источник



Работа и мощность тока. Переменный и постоянный ток.

Работа и мощность тока

Всем доброго времени суток! В сегодняшней статье мы будем разбираться с понятиями работы и мощности электрического тока. Для начала рассмотрим постоянный ток, а затем проведем аналогичные “исследования” и для цепей переменного тока 🙂 Тема довольно обширная, формул много, так что давайте приступать!

Работа и мощность постоянного тока.

Давайте вспомним первую статью курса “Основы электроники” – вот она. Там мы определили напряжение как работу, которую необходимо затратить для переноса единичного заряда из одной точки в другую. Обозначим эту величину – A . Чтобы найти работу, которую совершат несколько зарядов, нам необходимо работу одного заряда умножить на количество зарядов:

По определению мощность – это работа за единицу времени. Таким образом, мы получаем формулу мощности:

Снова возвращаемся мысленно к уже упомянутой первой статье курса, в которой мы обсуждали понятия тока и напряжения и вспоминаем, что количество зарядов, проходящее через проводник в единицу времени ( \frac <\Delta t>) – это и есть ток по определению. И в итоге мы приходим к следующему выражению для мощности электрического тока:

Читайте также:  Обратный ток мочи в почки

Здесь мы также учли, что работа A – численно равна напряжению на данном участке цепи.Собственно, мы получили одну из основных формул для нахождения мощности постоянного тока. А учитывая закон Ома получаем следующее:

Единицей измерения мощности является Ватт, а 1 Вт – мощность, при которой за 1 секунду совершается работа 1 Джоуль.

Тут необходимо остановиться на одном довольно интересном нюансе. Часто при обсуждении работы электрического тока можно услышать сочетание – киловатт-час. Например, электросчетчики в домах показывают работу именно в этих единицах измерения. Так вот несмотря на схожесть в названиях единиц измерения мощности (ватт) и работы (киловатт – час / ватт – час) не стоит забывать, что эти термины относятся к разным физическим величинам. Чтобы перевести КВт*ч в более привычные с точки зрения системы измерений Си Джоули можно воспользоваться следующим математическим соотношением:

Давайте рассмотрим небольшой пример для иллюстрации вышесказанного 🙂 Итак, пусть у нас есть чайник, мощность которого составляет 1200 Вт (1.2 КВт). Мысленно включим его на 10 минут (1/6 часа). В итоге, работа электрического тока (а вместе с ней и потребленная чайником энергия) составит:

С работой и мощностью постоянного тока все понятно, давайте перейдем к цепям переменного тока.

Мощность переменного тока.

Пусть у нас ток и напряжение изменяются по следующим законам:

Мы приняли, что ток и напряжение сдвинуты по фазе на величину \beta .

Мгновенная мощность (мощность переменного тока в любой момент времени) будет равна:

Преобразуем формулу в соответствии с тригонометрической формулой произведения синусов:

Вот так будут выглядеть зависимости тока, напряжения и мощности переменного тока от времени:

Мощность переменного тока

На самом деле практический интерес представляет не мгновенное значение мощности (которое постоянно меняется), а среднее. Для среднего значения мощности переменного тока за период запишем следующее выражение:

Не буду особо нагружать математическими выкладками, давайте просто обратим внимание на то, что в формуле мгновенной мощности второе слагаемое ( -U_m\medspace I_m\medspace cos(2wt\medspace-\medspace \beta) ) при интегрировании (суммировании) будет равно нулю. Это связано с тем, что если мы рассматриваем конкретный период, то значение косинуса в течение одного полу-периода сигнала будет иметь положительную величину, а в течение другого – отрицательное). Поэтому в финальной формуле средней мощности переменного тока останется только интеграл от первого слагаемого:

Вот мы и получили выражение для вычисления средней за период мощности в цепи переменного тока (ее также называют активной мощностью)!

Если сдвиг фаз между током и напряжением будет равен нулю, то значение средней мощности будет максимальным (поскольку cos 0 = 1 ). В случае сдвига фаз часть мощности передается в нагрузку (активная мощность), а часть нет (реактивная мощность). Реактивная мощность характеризует энергию, которая переходит от источника к реактивным элементам цепи, а затем возвращается этими элементами обратно в источник в течение одного периода. Из формулы понятно, что чем больше cos\beta , тем больше мощности попадет непосредственно в нагрузку, поэтому величину cos\beta называют коэффициентом мощности. Активную мощность мы определили ранее, а вот для реактивной мощности справедлива немного другая формула:

Ну а полная мощность переменного тока равна:

На сегодня на этом все, мы разобрались с понятиями работы и мощности электрического тока, до скорых встреч на нашем сайте!

Источник

Мощность переменного тока — понятие, виды и формулы

Общее понятие

Электрическое напряжение определяется как отношение работы поля по переброске пробного заряда из одной заданной точки в другую к размеру потенциала. При дислокации единичного резерва выполняется работа, которая равняется напряжению на искомом участке. Общая мощность получают умножением работы электрического поля для единичного заряда на число потенциалов за определенную единицу времени.

В переменной электрической цепи выделяется 3 вида мощности:

  • активный P;
  • реактивный Q;
  • полного типа S.

В цепи переменного электричества формула для расчета постоянного тока применяется только для вычисления мгновенной мощности. Этот показатель претерпевает изменения во времени и почти не имеет практического смысла для всех остальных расчетов. Среднезначимый показатель мощности требует временной интеграции. Мгновенная мощность объединяется в течение определенного промежутка для расчета величины в магистрали с периодическим изменением силы переменного потока и синусоидального напряжения.

Применяется концепция комплексных чисел для связывания всех трех видов мощности. Это понятие обозначает, что в переменной цепи нагрузка выражается подобным числом так, что активная разновидность представляется действительной составляющей. Реактивный показатель выступает мнимым показателем, а полная мощность показывается в форме модуля. В этих расчетах принимает участие угол сдвига фаз φ, который является аргументом баланса мощностей в цепи переменного тока.

Активная мощность

Активная скорость преобразования выражается также через взаимное отношение силы потока, напряжения к значению активной составляющей сопротивления. В магистрали синусоидального и несинусоидального движения электронов активная нагрузка приравнивается к сумме аналогичных значений на отдельных участках.

Для определения среднего периодического размера используется активная мощность переменного тока, формула расчета P = U . I . cos φ (косинус), где:

  1. U — мощность.
  2. I — сила потока.
  3. φ — угол смещения фаз.

Средний показатель мгновенной скорости преобразования в однофазной цепи берется в виде среднеквадратичного значения тока и напряжения с определенным углом сдвига. В цепях несинусоидального электричества мощность приравнивается к сумме соответствующих показателей отдельных перемещений. С помощью активной мощности характеризуется интенсивность необратимого видоизменения электроэнергии в другие разновидности, например, электромагнитную или тепловую.

Проходящая мощность используется в качестве активной в концепции длинных магистралей для анализа электромагнитных течений, протяженность которых сопоставляется с размерностью волны. Искомое значение рассчитывается как разница между понижающейся и отражающейся мощностями. От свойств коэффициента углового смещения зависят полученные показатели отрицательной или положительной нагрузки активного типа.

Читайте также:  Авббшв 4х240 допустимый ток нагрузки

Реактивная характеристика

Для обозначения применяется дополнительно единица вольт-ампер реактивный (вар). В русских аналогах используется вар, а международные специалисты применяют var. В РФ единица допускается для электротехнических расчетов в форме внесистемного значения.

Нахождение производится по формуле P = U . I . sin φ (синус), где:

  1. U — среднеквадратичная мощность.
  2. I — среднеквадратичная сила потока.
  3. φ — угол фазного смещения, значения синуса, определяются по таблицам.

При диапазоне показателя от 0 до 90º (ток отстает от напряжения, а нагрузка носит активно-индуктивный вид) синус φ будет иметь положительное значение. При угловом сдвиге от 0 до -90º (поток электронов опережает нагрузку, мощность отличается активно-емкостным свойством) константа всегда показывает отрицательный знак. Реактивная мощность характеризует напряженность, которая возникает в электромеханических приборах и цепях при изменении энергетических волн поля в магистрали переменного синусоидального потока.

В физическом смысле реактивная нагрузка показывает энергию, которая перекачивается от источника тока на конденсаторы, индукторы, двигательные обмотки, а впоследствии возвращается к источнику за один колебательный период. Реактивная мощность не принимает участия в работе электротока. В случае положительной характеристики устройство потребляет, а нагрузка с отрицательным знаком говорит о производстве энергии.

Это обстоятельство рассматривается в условном контексте, т. к. почти все энергопотребляющие приборы, например, двигатели асинхронной работы, а также полезная нагрузка, подаваемая через трансформатор, относятся к активно-индуктивным видам. Синхронные двигатели электростанций одновременно производят и потребляют энергию в зависимости от максимальной величины электротока возбуждения в роторных обмотках. Эта особенность применяется для координации уровня нагрузки в магистрали в электротехнике.

С помощью современных преобразователей производится компенсация реактивной нагрузки во избежание перегрузок и для увеличения коэффициента мощности электроустановок. Приборы более точно оценивают размер энергии, которая поступает в обратном направлении от индуктора к источнику переменного тока.

Полная нагрузка

Показатель используется в физике для описания потребляемой мощности, которая прилагается к подводящим агрегатам электросети с использованием резисторов. Суммируются параметры ЭДС распределительных щитков, кабелей, проводов, ЛЭП, трансформаторов.

Полную нагрузку можно рассчитать по формуле S = U . I, где:

  1. S — параметр полной нагрузки (В/а).
  2. U — расчетная нагрузка в генераторе.
  3. I — комплексный показатель силы тока в сочетании с обмоточным значением.

Параметр темпа преобразований зависит от характеристик применяемого тока, а не от свойств фактически использованной нагрузки. По этой причине полная мощность распределительных электрощитов и трансформаторных агрегатов измеряется в вольт-амперах, а значение ватт к ней не применяется.

Работа в различных условиях

Модуль комплексного показателя интенсивности передвижения равняется показателю полной нагрузки. Действительная составляющая часть приравнивается к активной силе, а мнимая считается реактивным видом. Имеет место положительный или отрицательный знак, что зависит от интенсивности загруженности цепи. Комплексная мощность должна соответствовать сопряженному электрическому сопротивлению. Положительная нагрузка характеризуется соотношением Р > 0, а знак минус проявляется в случае Р

Коэффициент скорости преобразования

Мощностной коэффициент является показателем потребления тока при присутствии реактивного компонента и искажающей нагрузки. Значение коэффициента отличается от понятия косинуса сдвигаемого угла. Второе понятие характеризуется смещением протекающего переменного тока, напряжения и используется только при синусоидальном токе и силе равного значения.

Коэффициент равняется отношению расходуемой нагрузки к ее полному значению. При этом работа совершается за счет активного вида преобразования. При синусоидальном токе и вольтаже полная нагрузка находится в виде суммы реактивной и активной форм. Активная нагрузка приравнивается к усредненному произведению силы тока и напряжения и не может быть выше произведения аналогичных среднеквадратических размерностей. Мощностной коэффициент показывается в диапазоне от 0 до 1 или ставится в процентах от 0 до 100.

При математическом расчете числовой множитель интерпретируется в качестве косинуса угла между токовыми векторами и направлением приложения вольтажа. Поэтому при синусоидальных характеристиках размерность коэффициента может совпадать с косинусом угла. Если применяется только синусоидальный вольтаж, а ток используется несинусоидальный с нагрузкой без реактивного компонента, то числовой переходник равняется части нагрузки при первых искажениях потребительского тока.

Если реактивный элемент присутствует в нагрузке, то, помимо мощностного коэффициента, указывается характер работы (емкостно-активный или индуктивно-активный). Коэффициент в этих случаях отличается и является отстающим или опережающим значением.

Практическое применение и коррекция

Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.

Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.

КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.

Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.

Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии. Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя. При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.

Источник