script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Мощность возбуждения при известном токе возбуждения двигателя

Возбуждение двигателя постоянного тока. Схемы возбуждения.

Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.

Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.

При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.

В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.

Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.

Источник

Мощность возбуждения при известном токе возбуждения двигателя

Доброго времени суток, дорогие читатели!

В этой статье я расскажу о том, что такое возбуждение в двигателях постоянного тока и «с чем его едят».

Наверное, каждый из нас в детстве имел игрушки с электроприводом. Те же, кто в те годы отличался любопытностью, не упустили возможность разобрать эти игрушки, дабы посмотреть, а что там внутри.

Заглянув внутрь такой игрушки, нами был найден маленький электромоторчик постоянного тока. Естественно, тогда мы и не задумывались над тем, почему он работает. Некоторые из нас, найдя в игрушке моторчик, решались разобрать и его. Вот эти-то любопытные товарищи, разобрав моторчик, находили там постоянный магнит (иногда не один), щетки и якорь с коллектором.

Что такое возбуждение в двигателях постоянного тока

Что такое возбуждение в двигателях постоянного тока

Так вот, как раз постоянный магнит и является простейшей системой возбуждения для моторов постоянного тока. Ведь якорь моторчика вращается только тогда, когда вокруг него присутствует постоянное магнитное поле, которое и создается при помощи постоянного магнита.

Двигатели постоянного тока промышленных масштабов в качестве возбудителей используют специальные обмотки, именуемые обмотками возбуждения.

Подключение же этих обмоток может быть самым различным. Они могут включаться параллельно якорю, последовательно с ним, смешано и, даже, независимо от них.

Возбуждающая обмотка состоит из значительно большего числа витков, нежели якорная. В связи с этим ток якорной обмотки в десятки раз превосходит ток возбуждающей. Скорость вращения такого движка может меняться в зависимости от нагрузки и магнитного потока. Благодаря свойствам подключения, движки параллельного включения довольно мало подвержены перемене частоты вращения.

Читайте также:  Трансформатор тока 700 5

Теперь рассмотрим вариант раздельного подключения рабочей и возбуждающей обмоток. Такой движок именуется мотором с независимым возбуждением.

Скорость такого движка может регулироваться при помощи смены сопротивления якорной цепи, или магнитного потока.

Тут есть небольшой нюансик: не стоит слишком уменьшать ток возбуждения при таком включении двигателя, поскольку это чревато очень большим подъемом якорного тока. Тем же самым опасен и обрыв цепи возбуждения этих двигателей. Кроме того, если нагрузка мотора с таким включением мала, либо при его включении на холостой ход может произойти такой сильный его разгон, что возникнет опасность для движка.

Как я уже говорил, разновидностью ДПТ независимого возбуждения считаются устройства, имеющие в качестве возбудителя постоянные магниты. Скажу несколько слов и о них.

Поскольку ДПТ и машины синхронного типа могут использовать вместо возбудителей постоянные магниты, то подобный вариант считается достаточно привлекательным. И вот почему:

  • у такого устройства снижено потребления тока за счет уменьшения числа обмоток, в результате чего такие показатели подобных машин, как КПД оказываются выше.
  • С использованием вместо возбудителя постоянных магнитов упрощается конструкция возбуждающих цепей движка, что повышает его надежность, ведь постоянный магнит не требует питания, следовательно у такого мотора нет токосъемного узла на роторе.

Теперь о последовательном включении обмоток (двигатели с последовательным возбуждением).

В этом варианте подключения якорный ток будет являться и возбуждающим. Это становится причиной изменения магнитного потока в сильной зависимости от нагрузки. Это является причиной большой нежелательности пуска их на холостом ходу и при маленькой нагрузке.

Применение же такое включение нашло там, где требуется значительный момент пуска, либо возможность выдерживания кратковременных перегрузок. В связи с этим их применяют, как средства тяги для трамваев, троллейбусов, электровозов, метро и подъемных кранов. Кроме того, их применяют, как средство запуска для ДВС (в качестве стартеров).

Последним вариантом включения движков постоянного тока считается их смешанное включение.

Каждый из полюсов этих моторов оснащен парой обмоток, одна из которых параллельная, а другая – последовательная. Подключать их возможно двумя способами:

  • Согласный метод (в этом случае токи складываются)
  • Встречный вариант (вычитание токов)

Соответственно, в зависимости от варианта подключения (от чего меняется и соотношение магнитных потоков) такой мотор может оказаться приближен либо к устройству, имеющему последовательное возбуждение, либо к движку с параллельным возбудом.

В большинстве случаев основной обмоткой у них считают последовательную обмотку, а параллельную – вспомогательной. За счет параллельной обмотки у таких моторов скорость при небольших нагрузках, практически не растет.

Если требуется получение значительного момента при пуске и возможность регулирования скорости на переменных нагрузках, используется подключение согласного типа. Встречное же подключение используется при необходимости получения постоянной скорости при изменяющейся нагрузке.

Если возникает необходимость реверсирования ДПТ (смены направления его вращения), то меняют направление тока в одной из его рабочих обмоток.

Методом смены полярности подключения клемм двигателя возможно поменять направление только тех моторов, которые включены по независимой схеме, либо движков с постоянным магнитом в качестве возбудителя. Во всех иных устройствах необходима смена направления тока в одной из рабочих обмоток.

Кроме того, движки постоянного тока нельзя включать методом подключения полного напряжения. Это связано с тем, что величина их пускового тока, примерно в 2 десятка раз выше номинального (это зависит от размеров и скорости двигателя). Токи пуска движков больших размеров могут и в полсотни раз превосходить их номинальный рабочий ток.

Токи больших величин способны вызвать эффект кругового искрения коллектора, в результате чего коллектор разрушается.

Чтобы выполнить включение ДПТ, используется методика плавного включения, либо применение пусковых реостатов. Включение прямого типа возможно лишь на небольших напряжениях и для маленьких движков, имеющих большое сопротивление якорной обмотки.

Пишите комментарии, дополнения к статье, может я что-то пропустил.
Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Всего доброго.

Короткая заметка:Без встраиваемых светодиодных потолочных светильников, вы не добьетесь оригинального светового дизайна на кухне. Перейдя по ссылке, вы сможете узнать, как просто, можно организовать интерьер света.

Источник



Типы возбуждения и механические характеристики двигателей постоянного тока

date image2014-02-18
views image4322

facebook icon vkontakte icon twitter icon odnoklasniki icon

ЛЕКЦИЯ 24

В зависимости от способа подключения обмотки возбуждения ДПТ делятся на двигатели независимого, параллельного, последовательного и смешанного возбуждения. В двигателях независимого возбуждения обмотка возбуждения питается от отдельного источника.

Схемы ДПТ с различны­ми типами возбуждения: а – парал­лельным; б – последовательным;
в – смешанным

Читайте также:  Российские сварочные аппараты постоянного тока

Основными уравнениями двигателя постоянного тока являются:

Е= СеФn

уравнение электромагнитного момента;

М = СмФIя

уравнение цепи якоря;

Е = UIяRя

М = Jdω/dt + Мс

Важную роль в анализе двигателей играет механическая характеристика – зависимость частоты вращения nот момента Mна валу при U, Iв = const.

ДПТ с независимым и параллельным возбуждением имеют общее свойство: ток возбуждения не зависит от тока якоря. Пренебрегая реакцией якоря, можно считать, что и поток Ф у них не зависит от нагрузки (момента Мс). Поэтому свойства и характеристики этих ДПТ идентичны, далее будем упоминать только ДПТ с параллельным возбуждением.

Из уравнений противоЭДС и цепи якоря выражаем частоту вращения якоря:

n = U/СеФ – IяRя)/ СеФ

Выразив Iя из формулы электромагнитного момента получаем механическую характеристику ДПТ с параллельным возбуждением:

n = (U/ СеФ) – (МRя/CeCмФ 2 )

которая получена из статических уравнений и задает связь между n и M в установившемся режиме (при M = Mс). Механическую характеристику называют естественной, если она получена для двигателей без реостатов в цепях якоря и возбуждения при U = Uном, Ф = Фном. Естественная характеристика является прямой. В режиме холостого хода M = Mс= 0, поэтому первое сла­гаемое в определяет частоту идеального холостого хода

В момент пуска двигателя n = 0 и пусковой момент

От коэффициента Kн = –Rя/(CeCмФ 2 ) зависит угол наклона прямой.

У двигателей средней и большой мощности сопротивление якорной обмотки Rя мало (десятые и сотые доли Ом), пусковой момент велик, а коэффициент Kн мал. Естественная характеристика имеет малый наклон, поэтому с изменением нагрузки частота n изменяется незначительно. Характеристики такого типа называют «жесткими».

На рис. приведена механическая характеристика n = f(Mс) механизма на валу ДПТ. В установившемся режиме M = Mс, рабочая точка А лежит на пересечении характеристик. Обычно точку номинального режима организуют близко к точке холостого хода: nnном = 3¸7% от n.

Двигатели с последовательным возбуждением. Для получения механической характеристики полагаем, что в цепях возбуждения и якоря реостаты отсутствуют и Iя = Iв. При слабо насыщенной магнитной цепи можно допустить, что Ф ≈ KIв = KIя, где K = const. Подставив Ф в, получим M = CмKIя 2 ; Iя = . Выразив n и подставив Iя, получим

Механическая характеристика ДПТ с последовательным воз­ буждением

Механическая характеристика ДПТ с последовательным возбуждением нелинейна, является «мягкой», что свиде­тельствует об очень большом пусковом моменте. Из характеристики видно, что запрещается работа (пуск) двигателя без нагрузки (Mс= 0) или с очень малой нагрузкой (Mс

Источник

Методические указания к решению задач 18-27

Задачи этой группы относятся к теме «Электрические машины по­стоянного тока». Для их решения необходимо изучить материал, приве­денный в указателе литературы к теме, решить рекомендуемые задачи и ознакомиться с типовыми примерами 17-21. Сведения о некоторых типах машин постоянного тока даны в табл. 22.

Необходимо иметь представление о связи между напряжением на выводах U, э. д. с. Е и падением напряжения IаRа в обмотке якоря для генератора и двигателя: для генератора Е= U+IаRа; для двигателя U=Е+IaRa. Для определения элект­ромагнитного или полного момента, развиваемого двигателем, можно поль­зоваться формулой, приведенной в учебнике:

Здесь магнитный поток выражен в веберах (Вб), ток якоря в амперах (А), момент получаем в ньютон-мет­рах (Н·м). Если магнитный поток машины неизвестен, то электромагнит­ный момент можно найти, определив из формулы для противо- э. д. с. маг­нитный поток и подставив его в фор­мулу для Мэм:

Е = откуда Ф = Тогда Mэм =

Здесь Рэм =ЕIа — электромагнитная мощность, Вт; w — угловая скорость вращения, рад/с.

Аналогично можно вывести формулу для определения полезного номинального момента (на валу):

Здесь Рном выражаем в Вт; Мном получаем в Н·м.

Пример 17. Генератор с независимым возбуждением (рис. 88) работает в номинальном режиме при напряжении на выводах Uном = 220 В. Сопротивление обмотки якоря Rа=0,2 Ом; сопротивление нагрузки Rн=2,2 Ом; сопротивление обмотки возбуждения Rв=55 Ом. Напряжение для питания обмотки возбуждения Uв=110 В. Номиналь­ная частота вращения якоря nном=1200 об/мин. Определить: 1) э. д. с. генератора; 2) силу тока, отдаваемого потребителю; 3) силу тока в 1 обмотке возбуждения; 4) полезную мощность, отдаваемую генератором; 5) электромагнитный тормозной момент, преодолеваемый приводным двигателем.

Решение. 1. Ток, отдаваемый в нагрузку:

2. Ток в обмотке возбуждения

3. Ток в обмотке якоря

Читайте также:  Как измерить ток импульса

4. Э. д. с. генератора

5. Полезная мощность, отдаваемая генератором:

P2 = Uном Iн = 220·100 = 22 000 Вт = 22 кВт.

6. Электромагнитная мощность и электромагнитный тормозной момент:

Рэм = ЕIа = 240,4·102 = 24600 Вт = 24,6кВт;

Пример 18. Генератор с параллельным возбуждением (рис. 89) рассчитан на напряжение Uном =220 В и имеет сопротивление обмотки якоря Rа=0,08Ом, сопротивление обмотки возбуждения Rв=55 Ом. Генератор нагружен на сопротивление Rн= 1,1 Ом.

К. п. д. генератора ηг = 0,85. Определить: 1) токи в обмотке возбуждения Iв, в обмотке якоря Iа и в нагрузке Iв; 2) э. д. с. генератора Е; 3) полезную мощность Р2; 4) мощность двигателя для вращения генератора Р1; 5) электрические потери в обмотках якоря Ра и возбуждения Рв; 6) суммарные потери в генераторе; 7) электромагнитную мощность Рзм.

Решение. 1. Токи в обмотке возбуждения, нагрузке и якоре:

2. Э. д. с. генератора

Е = Uном + IаRa = 220 + 204 · 0,08 = 236,3 В.

3. Полезная мощность

Р2 = Uном /Iн = 220·200 = 44 000 Вт = 44 кВт.

4. Мощность приводного двигателя для вращения генератора

5. Электрические потери в обмотках якоря и возбуждения:

Ра = Rа = 204 2 ·0,03 = 3320 Вт = 3,32 кВт;

Рв = Rв 4 2 ·55 = 880 Вт = 0,88 кВт.

6. Суммарные потери мощности в генераторе

7. Электромагнитная мощность, развиваемая генератором:

Рэм = ЕIа = 236,3·204 = 48 300 Вт = 48,3 кВт.

Пример 19. Электродвигатель постоянного тока с параллельным возбуждением (рис. 90) рассчитан на номинальную мощность Рном = 10 кВт и номинальное напряжение Рном=220 В. Частота вращения якоря n=3000 об/мин. Двигатель потребляет из сети ток I=63 А. Со­противление обмотки возбуждения Rв=85 Ом, сопротивление обмотки якоря Rа=0,3 Ом. Определить: 1) по­требляемую из сети мощность Р12)к. п. д. двигателя ηдв; 3) по­лезный вращающий момент М; 4) ток якоря Iа; 5) противо-э. д. с. в обмотке якоря Е; 6) суммарные потери в двигателе ; 7) потери в обмотках яко­ря Ра и возбуждения Рв.

Решение. 1. Мощность, пот­ребляемая двигателем из сети:

Р1= Uном I =220·63= 13 900 Вт = 13,9 кВт.

2. К- п. д. двигателя

3. Полезный вращающий момент (на валу)

М =9,55 Рном/n = 9,55·10·1000/3000 = 31,9 Н·м.

4. Для определения тока якоря предварительно находим ток воз­буждения

5. Противо-э. д. с. в обмотке якоря

6. Суммарные потери в двигателе

7. Потери в обмотках якоря и возбуждения:

Пример 20. Четырехполюсный двигатель с параллельным возбуждением (рис.90) присоединен к сети с Uном=110В и потребляет ток I=157 А. На якоре находится обмотка с сопротивлением Rа=0,0427 Ом и числом проводников N=360, обра­зующих четыре параллельных ветви (а=2). Сопротивление обмотки воз­буждения Rв=21,8 Ом. Магнитный поток полюса Ф= 0,008 Вб. Опреде­лить: 1) токи в обмотках возбужде­ния Iв и якоря Iа; 2) противо-э. д. с. Е; 3) электромагнитный момент Mэм; 4) электромагнитную мощность Rэм; 5)частоту вращения якоря n; 6) потери мощности в обмотках якоря Ра и возбуждения Рв.

Решение. 1. Токи в обмотках возбуждения и якоря

Iа = I — Iв = 157 — 5,05 = 151,95 А.

2. Противо-э. д. с. в обмотке якоря

3. Электромагнитный момент

4. Электромагнитная мощность

Рэм = ЕIа = 103,5·151,95 = 15 727 Вт = 15,727 кВт.

Зная Рэм, можно найти электромагнитный момент по формуле

Мэ = Рэм /w = Рэм / =60·15 727/ (2·3,14·2156) = 69,7 Н·м,

что и было получено выше.

Здесь частота вращения якоря

5. Потери мощности в обмотках якоря и возбуждения:

Ра = Rа = 151,95 2 · 0,0427=986 Вт;

Пример 21. Электродвигатель постоянного тока с последователь­ным возбуждением (рис. 91) присоединен к сети с напряжением Uном = 110 В и вращается с частотой n= 1500 об/мин, Двигатель развивает полезный момент (на валу) M=120 Н·м. К. п. д. двигателя ηдв = 0,84. Суммарное сопротивление обмоток якоря и возбуждения Rа+-Rпс = 0,02 Ом. Определить: 1) полезную мощность Р2; 2) потребляемую мощность Р1; 3) потребляемый из сети ток I; 4) сопротивление пуско­вого реостата, при котором пусковой ток ограничивается до 2,5I; 5) противо-э. д. с. в обмотке якоря.

Решение. 1. Полезную мощность двигателя определяем из формулы полезного момента

Р2 =Mn /9,55= 120·1500/9,55 = 18 848 Вт= 18,85 кВт.

2. Мощность, потребляемая из сети:

3. Ток, потребляемый из сети:

4. Необходимое сопротивление пускового реостата

Источник