Меню

Найти напряжение магнитного поля создаваемого отрезком ab прямолинейного проводника с током

Магнитное поле прямолинейного проводника с током

Дата публикации: 09 августа 2013 .
Категория: Статьи.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Рисунок 1. Магнитное поле вокруг проводника с током
Рисунок 2. Направление магнитных индукционных линий

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по «правилу буравчика» Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по «правилу буравчика»

Магнитная индукция

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Магнитная индукция
Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

Читайте также:  Удар током может привести

В абсолютной практической рационализованной системе единиц МКСА

где µмагнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ = 4 × π × 10 -7 (генри/метр);

генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ называется напряженностью магнитного поля и обозначается буквой H:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H:

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр):

Напряженность магнитного поля H, как и магнитная индукция B, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс):

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Источник

Индукция магнитного поля отрезка прямолинейного проводника с током

Для всех бесконечно малых элементов dl отрезка векторы dl и rлежат в плоскости листа. Поэтому векторы dB, созданные в выбранной нами точке различными элементами проводника направлены одинаково – перпендикулярно плоскости листа. Следовательно, сложение векторов dB можно заменить сложением их модулей dB.

Из рисунка видно, что r = b/sina
(b – расстояние от проводника до инте-ресующей нас точки), и

.

Тогда индукция, созданная элементом проводника dl, равна

.

Индукция магнитного поля, созданного всем проводником, может быть найдена как интеграл от dB в пределах от a1 до + a2:

Иногда удобнее воспользоваться другим выражением:

(обратите внимание на рисунок, показывающий углы q1 и q2).

Обратите также внимание на то, что если точка расположена так, как показано на следующем рисунке, то q2 меняет знак и формула для расчёта магнитного поля прямолинейного отрезка записывается следующим образом:

.

Индукция магнитного поля бесконечно длинного

Прямолинейного проводника с током

Если длина прямого проводника бесконечно велика, то a1 = 0, а a2 = p.

В этом случае индукция магнитного поля, созданного проводником, будет равна

.

Таким образом, индукция магнитного поля, созданного бесконечно длинным проводником прямо пропорциональна току в проводнике и обратно пропорциональна расстоянию от проводника до интересующей нас точки.

Дополнительно рассмотрим магнитное поле, созданное бесконечным проводником, который изогнут под прямым углом.

Ограничимся получением расчётной формулы для точки А, расположенной на продолжении одной из половин проводника.

Участок DB в точке А не создаёт магнитного поля, так как для него a1 и a2 равны 0.

Читайте также:  Зарядка током для шуруповерта

Для участка ВС a1 = 90 0 , a2 = -180 0 . Поэтому индукция, созданная этим участком, равна

.

Таким образом, индукция магнитного поля в точке А равна половине индукции, созданной прямым бесконечно длинным проводником с таким же током.

Индукция магнитного поля в центре квадрата

Рассмотрим квадрат со стороной а, в котором течёт ток I.

Все стороны квадрата создают в его центре одинаковое магнитное поле. Поэтому если индукция, созданная одной стороной, равна В, то магнитная индукция, созданная всеми сторонами, равна 4В.

В рассматриваемом случае a1 = 45 0 , а a2 = 135 0 (см. рисунок).

Индукция магнитного поля, созданного одной стороной, равна:

.

Соответственно индукция магнитного поля, созданного всеми сторонами, равна

.

В показанном на рисунке случае индукция магнитного поля направлена перпендикулярно плоскости квадрата на нас.

Источник



Расчёт магнитных полей с помощью закона Био–Савара–Лапласа. Магнитное поле в веществе (Главы 3-4 учебного пособия по общей физике)

Страницы работы

Содержание работы

где v – скорость направленного движения свободных носителей заряда. Умножив В на количество свободных носителей заряда в элементе проводника dl, получим индукцию магнитного поля, созданную этим элементом проводника с током,

поскольку env= j*,

;

поскольку dl.j = dl.j (dl и j совпадают по направлению),

.

Таким образом, индукция магнитного поля, созданного элементом dl проводника с током I на расстоянии r от элемента проводника, определяется выражением

.

Это выражение и представляет собой закон Био–Савара–Лапласа.

Из закона видно, что вектор магнитной индукции dB всегда перпендикулярен плоскости, в ко-торой лежат векторы dl и r. Его направление определяется по правилу правого винта.

Модуль вектора dB определяется из выражения

,

где a – угол между векторами dl и r.

* Здесьj – вектор плотности тока.

Необходимо учесть, что полученное выражение позволяет рассчитать индукцию магнитного поля, созданную одним бесконечно малым элементом проводника dl с током I.

Для того чтобы найти магнитную индукцию, созданную всемпроводником, необходимо использовать принцип суперпозиции, т. е. просуммировать векторы dB, созданные каждым элементом проводника в интересующей нас точке.

3.4. Расчёт магнитных полей с помощью закона

Био–Савара–Лапласа

3.4.1. Индукция магнитного поля отрезка прямолинейного проводника с током

Для всех бесконечно малых элементов dl отрезка векторы dl и r лежат в плоскости листа. Поэтому векторы dB, созданные в выбранной нами точке различными элементами проводника направлены одинаково – перпендикулярно плоскости листа. Следовательно, сложение векторов dB можно заменить сложением их модулей dB.

Из рисунка видно, что r = b/sina
(b – расстояние от проводника до инте-ресующей нас точки), и

.

Тогда индукция, созданная элементом проводника dl, равна

.

Индукция магнитного поля, созданного всем проводником, может быть найдена как интеграл от dB в пределах от a1 до + a2:

Иногда удобнее воспользоваться другим выражением:

(обратите внимание на рисунок, показывающий углы q1 и q2).

Обратите также внимание на то, что если точка расположена так, как показано на следующем рисунке, то q2 меняет знак и формула для расчёта магнитного поля прямолинейного отрезка записывается следующим образом:

.

3.4.2. Индукция магнитного поля бесконечно длинного

прямолинейного проводника с током

Если длина прямого проводника бесконечно велика, то a1 = 0, а a2 = p.

В этом случае индукция магнитного поля, созданного проводником, будет равна

.

Таким образом, индукция магнитного поля, созданного бесконечно длинным проводником прямо пропорциональна току в проводнике и обратно пропорциональна расстоянию от проводника до интересующей нас точки.

Дополнительно рассмотрим магнитное поле, созданное бесконечным проводником, который изогнут под прямым углом.

Ограничимся получением расчётной формулы для точки А, расположенной на продолжении одной из половин проводника.

Участок DB в точке А не создаёт магнитного поля, так как для него a1 и a2 равны 0.

Для участка ВС a1 = 90 0 , a2 = -180 0 . Поэтому индукция, созданная этим участком, равна

Читайте также:  Линия постоянного тока 1500 кв

.

Таким образом, индукция магнитного поля в точке А равна половине индукции, созданной прямым бесконечно длинным проводником с таким же током.

3.4.3. Индукция магнитного поля в центре квадрата

Рассмотрим квадрат со стороной а, в котором течёт ток I.

Все стороны квадрата создают в его центре одинаковое магнитное поле. Поэтому если индукция, созданная одной стороной, равна В, то магнитная индукция, созданная всеми сторонами, равна 4В.

В рассматриваемом случае a1 = 45 0 , а a2 = 135 0 (см. рисунок).

Индукция магнитного поля, созданного одной стороной, равна:

.

Соответственно индукция магнитного поля, созданного всеми сторонами, равна

.

В показанном на рисунке случае индукция магнитного поля направлена перпендикулярно плоскости квадрата на нас.

3.4.4. Расчёт магнитного поля замкнутого кругового тока

(витка с током).

Пусть радиус витка равен R, а ток в нём – I.

Вначале рассмотрим расчёт поля в центре витка.

Каждый элемент тока будет создавать индукцию, направленную вдоль оси витка. Поэтому, как и в предыдущем случае, сложение dB алгебраическое и

,

(в каждой точке a = 90 0 )

.

Поле на оси витка на расстоянии b от центра витка рассчитывается несколько сложнее. В этом случае векторы dB не параллельны друг другу.

При суммировании составляющие векторов dB, перпендикулярные оси, уничтожаются, а параллельные оси – складываются.

Из рисунка видно, что

;

.

Проинтегрировав это выражение по всему контуру, получаем

.

Источник

6.2. Магнитное поле прямолинейного проводника с током

Вычислим поле, создаваемое током, текущим по тонкому прямолинейному проводу бесконечной длины.

Индукция магнитного поля в произвольной точке А (рис. 6.12), создаваемого элементом проводника dl, будет равна

Рис. 6.12. Магнитное поле прямолинейного проводника

Поля от различных элементов имеют одинаковое направление (по касательной к окружности радиусом R, лежащей в плоскости, ортогональной проводнику). Значит, мы можем складывать (интегрировать) абсолютные величины

Выразим r и sin через переменную интегрирования l

Тогда (6.7) переписывается в виде

Картина силовых линий магнитного поля бесконечно длинного прямолинейного проводника с током представлена на рис. 6.13.

Рис. 6.13. Магнитные силовые линии поля прямолинейного проводника с током:
1 — вид сбоку; 2, 3 — сечение проводника плоскостью, перпендикулярной проводнику

Для обозначения направления тока в проводнике, перпендикулярном плоскости рисунка, будем использовать следующие обозначения (рис. 6.14):

Рис. 6.14. Обозначения направления тока в проводнике

Для обозначения направления тока в проводнике, перпендикулярном плоскости рисунка, будем использовать следующие обозначения (рис. 6.14):

Напомним выражение для напряженности электрического поля тонкой нити, заряженной с линейной плотностью заряда

Сходство выражений очевидно: мы имеем ту же зависимость от расстояния до нити (тока), линейная плотность заряда заменилась на силу тока. Но направления полей различны. Для нити электрическое поле направлено по радиусам. Силовые линии магнитного поля бесконечного прямолинейного проводника с током образуют систему концентрических окружностей, охватывающих проводник. Направления силовых линий образуют с направлением тока правовинтовую систему.

На рис. 6.15 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг прямолинейного проводника с током. Толстый медный проводник пропущен через отверстия в прозрачной пластинке, на которую насыпаны железные опилки. После включения постоянного тока силой 25 А и постукивания по пластинке опилки образуют цепочки, повторяющие форму силовых линий магнитного поля.

Вокруг прямого провода, перпендикулярного пластинке, наблюдаются кольцевые силовые линии, расположенные наиболее густо вблизи провода. При удалении от него поле убывает.

Рис. 6.15. Визуализация силовых линий магнитного поля вокруг прямолинейного проводника

На рис. 6.16 представлены опыты по исследованию распределения силовых линий магнитного поля вокруг проводов, пересекающих картонную пластинку. Железные опилки, насыпанные на пластинку, выстраиваются вдоль силовых линий магнитного поля.

Рис. 6.16. Распределение силовых линий магнитного поля
вблизи пересечения с пластинкой одного, двух и нескольких проводов

Источник