script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Найти силу тока в участке цепи если его сопротивление 40 ом а напряжение

Закон Ома

Дата публикации: 28 марта 2013 .
Категория: Статьи.

Закон Ома для участка цепи

Соберем электрическую цепь (рисунок 1, а), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2, двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5. Установим в цепи при помощи реостата сопротивление, равное 2 Ом. Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А. Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2
4
6
2
2
2
1
2
3

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Зависимость тока в цепи от сопротивления при неизменном напряжении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2
2
2
1
2
3
2
1
2/3

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

Видео 1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

Потеря напряжения

Потеря напряжения
Рисунок 3. Потеря напряжения вдоль электрической цепи

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух медных проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r.

Так как сопротивление r проводов неизвестно, определяем его по формуле:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»); длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

Читайте также:  Какими электродами варить нержавейку переменным током

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

Сопротивление проводов линии должно быть равно:

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье «Электрическое сопротивление и проводимость»).

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»).

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

Закон Ома для полной цепи

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Следовательно, электродвижущая сила (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r – сопротивление внутренней цепи в омах, U – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

Видео 2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E, замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает:
а) при замкнутой электрической цепи – напряжение сети;
б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Пример 10. Электродвижущая сила элемента 1,8 В. Он замкнут на сопротивление r =2,7 Ом. Ток в цепи равен 0,5 А. Определить внутреннее сопротивление r элемента и внутреннее падение напряжения U.

Так как r = 2,7 Ом, то

Из решенных примеров видно, что показание вольтметра, включенного на зажимы источника э. д. с., не остается постоянным при различных условиях работы электрической цепи. При увеличении тока в цепи увеличивается также внутреннее падение напряжения. Поэтому при неизменной э. д. с. на долю внешней сети будет приходиться все меньшее и меньшее напряжение.

В таблице 3 показано, как меняется напряжение электрической цепи (U) в зависимости от изменения внешнего сопротивления (r) при неизменных э. д. с. (E) и внутреннем сопротивлении (r) источника энергии.

Зависимость напряжения цепи от сопротивления r при неизменных э. д. с. и внутреннем сопротивлении r

E r r U = I × r U = I × r
2
2
2
0,5
0,5
0,5
2
1
0,5
0,8
1,33
2
0,4
0,67
1
1,6
1,33
1

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник

§ 107. Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

При решении задач, связанных с расчётом работы и мощности тока, надо применять формулы (15.13) и (15.15).

Для определения силы тока в замкнутой цепи надо использовать закон Ома для полной цепи, а в случае нескольких источников правильно определить суммарную ЭДС.

Задача 1. Аккумулятор с ЭДС Ε = 6,0 В и внутренним сопротивлением r — 0,1 Ом питает внешнюю цепь с сопротивлением R = 12,4 Ом. Какое количество теплоты Q выделится во всей цепи за время t = 10 мин?

Р е ш е н и е. Согласно закону Ома для замкнутой цепи сила тока в цепи равна Количество теплоты, выделившейся на внешнем участке цепи, Q1 = I 2 Rt, на внутреннем — Q2 = I 2 rt. Полное количество теплоты

Полное количество теплоты

Задача 2. Разность потенциалов в сети зарядной станции равна 20 В. Внутреннее сопротивление аккумулятора, поставленного на зарядку, равно 0,8 Ом; в начальный момент времени его остаточная ЭДС равна 12 В. Какая мощность будет расходоваться станцией на зарядку аккумулятора при этих условиях? Какая часть этой мощности будет расходоваться на нагревание аккумулятора?

Читайте также:  Байланыс техникасында пайдаланылатын айнымалы ток жиілігі қанша гц

Р е ш е н и е. При зарядке аккумулятора зарядное устройство и аккумулятор соединены разноимёнными полюсами навстречу друг другу. Сила тока, идущего через аккумулятор, I = (U — Ε)/R. Мощность, расходуемая станцией:

Р1 = UI = U(U — Ε)/R = 200 Вт.

Мощность, расходуемая на нагревание аккумулятора:

Мощность, расходуемая на нагревание аккумулятора

Задача 3. При подключении вольтметра сопротивлением RV = 200 Ом непосредственно к зажимам источника он показывает U = 20 В. Если же этот источник замкнуть на резистор сопротивлением R = 8 Ом, то сила тока в цепи I2 = 0,5 А. Определите ЭДС и внутреннее сопротивление источника.

Р е ш е н и е. По закону Ома для полной цепи в первом случае сила тока во втором случае Показания вольтметра — падение напряжения на его внутреннем сопротивлении, т. е. U = I1RV. Из соотношения I1(RV + r) = I2(R + r) найдём внутреннее сопротивление источника:

Внутреннее сопротивление источника

Для ЭДС источника запишем: Ε = I2(R + r) = 24 В.

Задача 4. Определите силу тока короткого замыкания для источника, который при силе тока в цепи I1 = 10 А имеет полезную мощность Р1 = 500 Вт, а при силе тока I2 = 5 А — мощность Р2 = 375 Вт.

Р е ш е н и е. Сила тока короткого замыкания Полезная мощность Р = IU, где U — напряжение на зажимах источника, или падение напряжения на внешнем участке цепи. Напряжения на зажимах источника в первом и во втором случаях

Напряжения на зажимах источника в первом и во втором случаях

Вычтем почленно из первого выражения второе:

Вычтем почленно из первого выражения второе

откуда определим

ЭДС источника тока

ЭДС источника тока

Окончательно для силы тока короткого замыкания

Силы тока короткого замыкания

Конденсатор ёмкостью 2 мкФ включён в цепь содержащую три резистора и источник постоянного тока с ЭДС 3,6 В и внутренним сопротивлением 1 Ом

Задача 5. Конденсатор ёмкостью 2 мкФ включён в цепь (рис. 15.12), содержащую три резистора и источник постоянного тока с ЭДС 3,6 В и внутренним сопротивлением 1 Ом. Сопротивления резисторов R1 = 4 Ом, R2 = 7 Ом, R3 = 3 Ом. Чему равен заряд на правой обкладке конденсатора?

Р е ш е н и е. Участок цепи, в котором находится конденсатор, разомкнут, и ток через резистор R3 не идёт.

Разность потенциалов между пластинами конденсатора равна падению напряжения на резисторе R2: U = IR2.

Сила тока, идущего по цепи, согласно закону Ома равна

Заряд на обкладках конденсатора

Заряд на обкладках конденсатора

На правой обкладке конденсатора накопится отрицательный заряд, так как она подключена к отрицательному полюсу источника.

Задача 6. Определите параметры источника тока, если известно, что максимальная мощность, равная 40 Вт, выделяется при подключении резистора сопротивлением 10 Ом.

Р е ш е н и е. Максимальная мощность выделяется при равенстве внешнего и внутреннего сопротивлений, следовательно, R = r = 10 Ом.

Мощность определяется формулой Р = I 2 R, или с учётом закона Ома:

Мощность определяется формулой

Тогда ЭДС источника

Тогда ЭДС источника

Задачи для самостоятельного решения

1. За некоторый промежуток времени электрическая плитка, включённая в сеть с постоянным напряжением, выделила количество теплоты Q. Какое количество теплоты выделят за то же время две такие плитки, включённые в ту же сеть последовательно? параллельно? Изменение сопротивления спирали в зависимости от температуры не учитывать.

2. Чему равно напряжение на клеммах гальванического элемента с ЭДС, равной Ε, если цепь разомкнута?

3. Чему равна сила тока при коротком замыкании аккумулятора с ЭДС Ε = 12 В и внутренним сопротивлением r = 0,01 Ом?

4. Батарейка для карманного фонаря замкнута на резистор переменного сопротивления. При сопротивлении резистора, равном 1,65 Ом, напряжение на нём равно 3,30 В, а при сопротивлении, равном 3,50 Ом, напряжение равно 3,50 В. Определите ЭДС и внутреннее сопротивление батарейки.

5. Источники тока с ЭДС 4,50 В и 1,50 В и внутренними сопротивлениями 1,50 Ом и 0,50 Ом, соединённые, как показано на рисунке (15.13), питают лампу от карманного фонаря. Какую мощность потребляет лампа, если известно, что сопротивление её нити в нагретом состоянии равно 23 Ом?

6. Замкнутая цепь питается от источника с ЭДС Ε = 6 В и внутренним сопротивлением 0,1 Ом. Постройте графики зависимости силы тока в цепи, напряжения на зажимах источника и мощности от сопротивления внешнего участка.

7. Два элемента, имеющие одинаковые ЭДС по 4,1 В и одинаковые внутренние сопротивления по 4 Ом, соединены одноимёнными полюсами, от которых сделаны выводы, так что получилась батарейка. Какую ЭДС и какое внутреннее сопротивление должен иметь элемент, которым можно было бы заменить такую батарейку?

Образцы заданий ЕГЭ

C1. Резисторы поочерёдно подключают к источнику постоянного тока. Сопротивления резисторов равны соответственно 3 Ом и 12 Ом. Мощность тока в резисторах одинакова. Чему равно внутреннее сопротивление источника тока?

C2. ЭДС источника постоянного тока Ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключённом к источнику, Р = 0,75 Вт. Чему равна сила тока в цепи?

C3. Электрическая цепь состоит из источника тока и реостата. ЭДС источника б В, его внутреннее сопротивление r = 2 Ом. Сопротивление реостата можно изменять в пределах от 1 до 5 Ом. Чему равна максимальная мощность, выделяемая на реостате?

C4. К однородному медному цилиндрическому проводнику длиной 10 м приложили разность потенциалов 1 В. Определите промежуток времени, в течение которого температура проводника повысится на 10 К. Изменением сопротивления проводника и рассеянием тепла при его нагревании можно пренебречь. Плотность меди 8900 кг/м 3 , удельное сопротивление меди 1,7 • 10 -8 Ом • м, удельная теплоёмкость меди 380 Дж/(кг • К).

Повторите материал главы 15 по следующему плану

1. Выпишите основные понятия и физические величины и дайте им определение.

Читайте также:  Справочная таблица по току

2. Сформулируйте законы и запишите основные формулы.

3. Укажите единицы физических величин и их выражение через основные единицы СИ.

4. Опишите основные опыты, подтверждающие справедливость законов.

«Источники постоянного тока и их применение»

1. Первые источники тока — химические источники.

2. Фотоэлектрический эффект. Фотоэлементы.

3. Термоэлектрический эффект. Термоэлементы.

4. Применение источников постоянного тока в современной технике.

«Экспериментальная проверка закона Ома для полной цепи»

«Создание экспериментальной установки для исследования тепловых действий тока»

Источник



Закон Ома

Закон Ома для участка цепи

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Онлайн калькулятор

Найти силу тока

Напряжение: U = В
Сопротивление: R = Ом

Сила тока

Формула

Пример

Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

Сила тока на этом участке I = 12 /2= 6 А

Найти напряжение

Сила тока: I = A
Сопротивление: R = Ом

Напряжение

Формула

Пример

Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:

Напряжение на этом участке U = 6⋅2 = 12 В

Найти сопротивление

Напряжение: U = В
Сила тока: I = A

Сопротивление

Формула

Пример

Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:

Электрическое сопротивление на этом участке R = 12 /6 = 2 Ом

Закон Ома для полной цепи

Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Онлайн калькулятор

Найти силу тока

ЭДС: ε = В
Сопротивление всех внешних элементов цепи: R = Ом
Внутреннее сопротивление источника напряжения: r = Ом

Формула

Пример

Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

Сила тока I = 12 /4+2 = 2 А

Найти ЭДС

Сила тока: I = А
Сопротивление всех внешних элементов цепи: R = Ом
Внутреннее сопротивление источника напряжения: r = Ом

Формула

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

ЭДС ε = 2 ⋅ (4+2) = 12 В

Найти внутреннее сопротивление источника напряжения

Сила тока: I = А
ЭДС: ε = В
Сопротивление всех внешних элементов цепи: R = Ом

Внутреннее сопротивление источника напряжения: r =

Формула

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:

Внутреннее сопротивление источника напряжения r = 12/2 — 4 = 2 Ом

Найти сопротивление всех внешних элементов цепи

Сила тока: I = А
ЭДС: ε = В
Внутреннее сопротивление источника напряжения: r = Ом

Сопротивление всех внешних элементов цепи: R =

Формула

Пример

Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:

Сопротивление всех внешних элементов цепи: R = 12/2 — 2 = 4 Ом

Источник

Найти силу тока в участке цепи если его сопротивление 40 ом а напряжение

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

ohms_law-01.jpg

Путем преобразования основной формулы можно найти и другие две величины:

ohms_law-02.jpg ohms_law-03.jpg

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

ohms_law-04.jpg

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

ohms_law-05.jpg

Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.

ohms_law-06.png

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

ohms_law-07.png

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

ohms_law-08.png

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

ohms_law-09.png

Этот круг также, как и треугольник можно назвать магическим.

Источник