Меню

Назначение бесконтактного коммутатора тока

Бесконтактный коммутатор тока

Выполняет те же функции, что и реле ТШ-5.

Схема БКТ включает два силовых диода VD1 и VD2, разделительные диоды VD3 и VD4 в цепях управления тиристоров, резисторы R1 и R2, подключенные параллельно входам тиристоров, и нелинейное сопротивление (Варистор) R3.

Диод VD1 и тиристор VS1 соединены встречно и параллельно. Они образуют несимметричный ключ переменного тока. Диод VD2 и тиристор VS2 образуют аналогичный ключ.

Оба ключа соединены последовательно друг с другом и имеют среднюю точку (вывод 33).

Выводом БКТ являются выводы 11(12) и 71(72).

Резисторы R1 и R2 стабилизируют работу схемы при изменении температуры окружающей среды и отклонении токов управления тиристоров.

Варистор R3 используется для защиты диодов от пробоя при воздействии импульсных помех большей амплитуды.

При разомкнутой цепи управления (выводы 33 и 53) тиристоры VS1 и VS2 заперты. Переменный ток между выводами 11 и 71 не приходит, т.к. тиристоры включены встречно.

При замыкании цепи управления контактом реле Т (выв.33,53) и положительной и отрицательной полуволн переменного тока поочередно открываются тиристоры VS1 и VS2, и переменный ток начинает проходить через них.

Если мгновенная положительная полярность от тр-ра Т приложена к выводу 11, то возникает цепь управления.

Тиристорам VS2: нижний вывод тр-ра Т, вывод 53, диод VD4, выводы 51 и 52, управляющий диод тиристора VS2, катод VS2, выводы 71 и 72, нагрузка (ДТ), реактор L, верхний вывод обмотки тр-ра Т.

При достижении током управления величины тока отпирания тиристор VS2 открывается и совместно с диодом VD1 пропускает ток нагрузки по цепи: обмотка тр-ра Т, вывод 11, диод VD1, тиристор VS2,выводы 71 и 72, нагрузка, реактор L, верхний вывод тр-ра Т.

При отрицательной полуволне переменного тока создается аналогичная цепь для управления тиристором VS1 (T-L –нагрузка, 71(72)-VD2-33/53-VD3-31/32-VS1-11/12-T), он открывается вместе с диодом VD2 образует через нагрузку рабочую цепь для отрицательной полуволны переменного тока. Таким образом, пока замкнута цепь управления (33/53), тиристоры, поочередно открываются, пропуская переменный ток через дроссель-тр-р(ДТ).

После размыкания контакта Т цепи управления тиристорами размыкаются, при прохождении тока нагрузки через «0» тиристоры закрываются и остаются запертыми до следующего замыкания цепи управления контактом реле Т.

Бесконтактное параметрическое реле.

Принцип его действия основан на свойстве возбуждения колебаний в контуре путем периодического изменения его параметров (L или C). Чаще используют бесконтактное параметрическое реле, в которых под воздействием входного сигнала изменяется индуктивность.

Индуктивность контура (обмотки W3) изменяется при протекании тока по обмоткам возбуждения W1 и W2, которые включены встречно для исключения прямой трансформации тока на выходную обмотку W3. При возбуждении тока частотой f индуктивность параметрического контура изменяется дважды за период (от положительного и отрицательного полуволн) т.е. с частотой 2f, в контуре возбуждаются колебания также с частотой 2f. Параметрические возбуждения нарастают лавинообразно (скачкообразно) при достижении входным сигналом определенного значения. Если входной сигнал снизить до некоторого уровня, то колебания прекращаются. Это свойство и позволяет использовать такую схему в качестве параметрического реле.

Коэффициент возврата его

где Uвх. и Uвх.ср.-соответствует напряжению срабатывания и отпускания(прекращения генерации бесконтактного реле).

Реле работает под воздействием тока, поступающего на вход РЦ. В этом отношении оно аналогично контактному путевому реле.

Недостатки: ограничены рабочий диапазон(из-за перенасыщения сердечника), возможность работы в режиме трансформатора при замыкании одной из входных обмоток, что недопустимо.

Элемент релейного действия на туннельном диоде.

ВАХ туннельного диода имеет три области.

Область А соответствует протеканию туннельного тока. Область B-это область отрицательного сопротивления.

При увеличении напряжения U>Umax уменьшается число электронов, способных совершать туннельный переход, и ток резко убывает. При U=Umin туннельный ток исчезает. В области С возрастает обычный диффузионный ток диода.

Схема реле на туннельном диоде имеет 2 устойчивых состояния, определяемых точками 1 и 2 нагрузочной характеристики.

В исходном состоянии (iвх=0) туннельный диод открыт (точка 1), и по нагрузке протекает ток I1 (реле включено). При подаче на вход схемы импульса положительной полярности возрастает напряжение на диоде до значения Umax, и диод закрывается. Ток в нагрузке скачком уменьшается до I2(точка2).

Реле выключается. Для включения диода на вход схемы подается импульс отрицательной полярности. Это вызывает уменьшение напряжения на диоде до Umin, и ток в нагрузке скачком увеличивается до значения I1 (точка1).

Достоинство туннельных диодов- высокая рабочая частота (десятки MГц), поскольку туннельный переход электронов происходит практически мгновенно за время = секунды.

Недостаток туннельных диодов- отсутствие входного электрода, что вызывает трудности при соединении в схемах диодов друг с другом. Поэтому часто используют транзисторно-диодные релейные элементы

В них туннельный диод служит для запоминания информации, а транзистор для усиления сигналов.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник

Коммутатор — это. Схема коммутатора. Как проверить коммутатор зажигания

Коммутатор – это электронный компонент для обеспечения работы бесконтактной системы зажигания. Она является переходной между контактной и микропроцессорной. Последняя, наиболее совершенная, позволяет управлять моментом при помощи данных, считываемых с датчиков – кислорода, скорости, оборотов двигателя и других. Но на дорогах все еще немало автомобилей, в которых установлены и контактные прерыватели, и бесконтактные. Поэтому для обслуживания и диагностики нужно знать назначение всех элементов, а также методы поиска неисправностей и их основные признаки. Перед тем как проверить коммутатор, внимательно изучите все детали.

Бесконтактная система зажигания

коммутатор это

Всего существует три огромные группы систем – контактная, бесконтактная, микропроцессорная. Первая делится на две подгруппы – контактная и с применением транзистора, работающего в режиме ключа. В конструкции бесконтактной системы зажигания тоже применяются транзисторы. Использоваться активно такая схема стала в начале 80-х годов прошлого века. И она имеет ряд преимуществ, о которых будет рассказано несколько ниже. Схема коммутатора несложная, она может быть реализована как на транзисторах, так и на контроллере.

Читайте также:  Нет тока в модуле зажигание

Но у бесконтактной системы зажигания имеется и много недостатков, если сравнивать ее с микропроцессорной. Последняя позволяет контролировать практически все параметры двигателя. БСЗ делать это не позволяет, также не может она нормально использоваться на инжекторных моторах. Причина устаревания бесконтактной системы заключается не только в развитии электроники и автомобилестроения, но и в принятии жестких мер по обеспечению экологичности двигателей внутреннего сгорания. К сожалению, уменьшить количество вредных веществ в выхлопе позволяет только микропроцессорное управление.

Основные элементы системы

коммутатор ваз

Конечно, первыми стоит указать свечи зажигания. Они установлены в головке блока цилиндров, электроды выходят с внутренней части. Это те элементы, которые позволяют воспламенить топливовоздушную смесь. Но с помощью одних только свечей двигатель работать не сможет. Необходимо контролировать положение коленчатого вала, чтобы знать, в каком положении находятся поршни в цилиндрах.

Для этой цели используется индуктивный датчик, работающий на эффекте Холла. Он входит в конструкцию другого элемента – распределителя зажигания. Датчик выдает импульс, который поступает на коммутатор. Это устройство позволяет слабый сигнал усилить до напряжения в 12 Вольт, чтобы затем подать его на катушку. Катушка – не что иное, как простой трансформатор (повышающий). У него вторичная обмотка имеет большее число витков, нежели первичная. За счет этого происходит повышение напряжения и уменьшение силы тока. Напряжение в БСЗ на свечи подается при значении 30-35 кВ (в зависимости от модели автомобиля).

Чем БСЗ лучше контактной?

схема коммутатора

Внимательно прочитав предыдущий раздел, можно увидеть, что в системе применен индуктивный бесконтактный датчик Холла. Преимущество очевидно – нет трения и коммутации. Для сравнения обратите внимание на контактную систему. В ней прерыватель коммутирует напряжение, величина которого равна 12 Вольт. Как ни крути, но металлические контакты все время соприкасаются друг с другом, постепенно стираются, покрываются нагаром.

По этим причинам необходимо постоянно следить за прерывателем, регулировать зазор, проводить своевременную замену. БСЗ лишена этих недостатков, поэтому без стороннего вмешательства система работает значительно дольше. Датчик Холла выходит из строя очень редко, как и коммутатор. Это повышает надежность системы, но требуется и соблюдать меры предосторожности, в частности, соединение коммутатора с кузовом должно быть максимально плотным, чтобы обеспечить эффективный теплообмен. Кроме того, БСЗ позволяет улучшить работу двигателя, увеличить, хоть и незначительно, его мощность, наряду с повышением надежности.

Как работает коммутатор

коммутатор зажигания

По сути, коммутатор – это простой усилитель сигнала. Можно сравнить даже со сборкой Дарлингтона, которая используется в микроконтроллерной технике для преобразования слабого сигнала с порта выхода до необходимого уровня. Основа этой сборки – полевые транзисторы, работающие в режиме ключа. На них подается рабочее напряжение, на управляющий вывод поступает сигнал, который усиливается и снимается с коллектора.

Коммутатор зажигания имеет практически аналогичную схему работы. Только используется сигнал с датчика Холла. Он имеет три вывода – управление, общий, плюс питания. При появлении в области датчика металлической пластины происходит генерация тока, который подается на вход коммутатора. Далее происходит усиление сигнала, а также подача его на первичную обмотку катушки. Питание всей системы происходит только лишь после включения зажигания (после поворота ключа).

Основные элементы коммутатора

как проверить коммутатор

Схема коммутатора достаточно простая, но самостоятельное изготовление этого блока бессмысленно, так как готовый вариант купить окажется намного проще. Монтаж должен выполняться максимально грамотно, иначе работа устройства окажется неправильной. Кроме того, при использовании транзисторов нужно тщательно выбирать их по параметрам, а для этого необходимо иметь качественную измерительную аппаратуру. К сожалению, у двух одинаковых полупроводников разброс характеристик может быть очень большим. А это влияет на работу устройства.

Коммутатор ВАЗ, имеющий обозначение 76.3734, состоит из одного основного элемента – контроллера L497. Он создан специально для использования в бесконтактных системах зажигания. Отечественный аналог этого контроллера — КР1055ХП2. Параметры у них практически идентичные, что позволяет использовать любой из контроллеров. Кроме того, эта микросхема позволяет провести подключение тахометра, расположенного на приборной панели автомобиля. Но можно применить и более простую схему, которая представляет собой усилительный блок из двух каскадов. Правда, надежность такого устройства на порядок ниже.

Подключение коммутатора

Случаи бывают разными, не исключено, что придется вам менять проводку. Поэтому потребуется принимать во внимание назначение всех выводов на штекере коммутатора. Это позволит правильно провести подключение, причем риска вывести его из строя не будет. Первый вывод коммутатора – это выход. Другими словами, с него снимается усиленный сигнал. Его нужно соединять с выводом катушки «К». Второй контакт соединяется с массой – минусом аккумуляторной батареи.

Все три провода от датчика Холла идут на коммутатор ВАЗ. Причем сигнальный провод соединяется с шестым выводом коммутатора. Пятый – это вывод для питания (на нем напряжение стабильно 12 Вольт). Третий вывод коммутатора – масса (минус питания). Третий соединен внутри блока со вторым. А вот между четвертым, на который подается питание от АКБ, и пятым имеется постоянное сопротивление и стабилизатор напряжения.

Как осуществить проверку

подключение коммутатора

Ничего сложного нет в этой процедуре. Самый простой способ – это использовать заведомо исправный узел, так как проверить коммутатор таким образом можно буквально за считанные минуты. Но если такового нет, а нужно определить точно, неисправность в катушке либо же в коммутаторе, разумнее использовать другие способы. Потребуется простая лампа накаливания. Если не знаете, где взять ее, то выкрутите из плафона освещения салона либо же из габаритных огней.

Один вывод лампы соединяете с минусом аккумуляторной батареи. Второй подключаете к выводу «1» коммутатора. Это тот самый вывод, с которого снимается усиленный сигнал. Если лампа загорается, то устройство исправно. Более совершенный метод проверки осуществляется при помощи осциллографа. На экране можно видеть величину и форму сигнала, а также сравнить его с эталонным.

Настройка зажигания

какой коммутатор

При настройке зажигания вам потребуется сделать самое главное – установить валы по меткам, чтобы газораспределение функционировало синхронно с работой поршневой группы. Это первое, что следует сделать перед тем как начать регулировку зажигания. Стоит заметить, что особых трудностей при настройке возникнуть не должно, особенно на автомобилях ВАЗ 2108-21099. Все дело в том, что распределитель зажигания на двигатели этих машин установить можно только в одном положении. Причем коммутатор зажигания при данной процедуре не подвергается никаким настройкам, так как их у него нет.

Читайте также:  Ток находится из уравнения

Корпус трамблера вращается вокруг своей оси, чтобы производить более точную регулировку. И этого оказывается достаточно. Чтобы точно установить момент, можно использовать простейшую схему, в качестве индикатора используется в ней простой светодиод. Датчик Холла отключается от системы, на его минусовой вывод подается плюс питания. Между «+» и сигнальным включается светодиод, для снижения напряжения последовательно с ним включается сопротивление 2 кОм. А вот плюс датчика Холла соединяется с массой. Теперь остается только медленно вращать корпус распределителя. Момент, когда засветится диод, будет являться искомым.

Выводы

Много преимуществ дает такой простой узел в бесконтактной системе зажигания, как коммутатор. Это и повышение мощности, пусть даже незначительное, и уменьшение расхода топлива, и значительное улучшение двигателя с точки зрения надежности. А главное – отпадает необходимость в постоянном контроле и своевременной настройке системы. Современному водителю не хочется заниматься ремонтом автомобиля, ему нужно средство передвижения. Причем надежное, которое не подведет в самый ответственный момент. Независимо от того, какой коммутатор используется в БСЗ, эффективность у него намного выше, нежели у контактного прерывателя.

Источник



Бесконтактные реле

date image2015-06-26
views image2012

facebook icon vkontakte icon twitter icon odnoklasniki icon

Трансмиттерное реле ТШ-5 (рис. 7.5) имеет переключающее устройство на тиристорах VS1 и VS2, предназначенное для комму­тации тока рельсовых цепей частотой 25, 50 и 75 Гц при напряжении до 250 В и мощности до 500 В×А.

Амплитуда предельно допустимо­го коммутируемого напряжения не должна превышать 400 В, при более высоком напряжении тиристоры могут открываться без управ­ляющего сигнала, т. е. теряется их управляемость. Детали реле размещены в корпусе реле НШ. Внутри кожуха имеется реле Р типа КДР1, контакты которого используются в схеме включения дешифраторной ячейки и в цепи управления тиристорами. Реле управляется контактами трансмиттера КПТ. Диод VD7 и резистор R5 образуют искрогасительный контур.

Рис. 7.5. Электрическая схема реле ТШ-5

Ток рельсовой цепи коммутируется тиристорами VS1 и VS2. В интервалах кода цепь управления тиристоров разомкнута, и они не проводят ток. В импульсах замыкается контакт трансмиттера КПТ срабатывает реле Р, замыкая контактом цепи управления тиристоров.

При положительной полярности тока на аноде тиристора VS1 ток управления проходит по цепи: ПХ220, диод VD6, резистор R4, фронтовой контакт реле Р, управляющий электрод тиристора VS1, катод VS1, фронтовой контакт контрольного реле К, первичная обмотка путевого трансформатора ПТ, 0Х220. Под действием тока управления тиристор VS1 открывается и пропускает положитель­ную полуволну переменного тока.

При отрицательной полуволне переменного тока тиристор VS1 будет закрыт, так как на его аноде будет отрицательное по отношению к катоду напряжение. В этот полупериод напряжение положительной полярности будет на аноде тиристора VS2 и по его цепи управления будет протекать ток: 0Х220, обмотка трансфор­матора ПТ, фронтовой контакт реле К, диод VD5, контакт реле Р, цепь управления тиристора VS2, ПХ220; тиристор VS2 открывается и пропускает вторую полуволну переменного тока. Таким образом, на все время импульса, пока замкнута цепь управления тиристоров, последние, поочередно открываясь, пропускают переменный ток, который через трансформатор ПТ поступает в рельсовую цепь.

После окончания импульса и размыкания цепи управления за­крытый тиристор больше не открывается, а открытый тиристор закрывается во время прохождения переменного тока через нулевое значение. Оба тиристора оказываются закрытыми, и ток в рельсо­вую цепь не поступает до момента следующего замыкания цепи управления.

Для исключения посылки в рельсовую цепь непрерывного тока в случае пробоя одного из тиристоров установлено контрольное реле К. Оно получает питание во время интервалов кода от диодно­го моста, который подключен параллельно тиристорам. Для непре­рывного удержания якоря реле при импульсном питании парал­лельно обмотке реле включены электролитические конденсаторы С1 и С2. В случае пробоя одного из тиристоров или обоих одновре­менно напряжение переменного тока на входе моста исчезает, реле К отпускает якорь и контактом размыкает цепь питания рельсовой цепи.

При включении реле ТШ-5 контрольное реле К первоначально получает питание через собственный тыловой контакт и дополнитель­ную нагрузку, состоящую из резисторов R2 и R3. После срабатыва­ния реле К подключается рельсовая цепь, а резисторы R2 и R3 отключаются. В тех случаях, когда непрерывный ток не представляет опасности ложной работы устройств, контрольное реле не устанавли­вают.

Бесконтактный коммутатор тока БКТ предназначен для выполне­ния тех же функций, что и реле ТШ-5. Схема БКТ (рис. 7.6) содер­жит два силовых диода VD1 и VD2, тиристоры VS3 и VS4, раздельные диоды VD5 и VD6 в цепях управления тиристоров, резисторы R1 и R2, подключенные параллельно входам тиристоров, и нелиней­ный резистор (варистор) R3.

Рис. 7.6. Принципиальная схема БКТ

Диод VD1 и тиристор VS3, соединенные встречно и параллельно, образуют несимметричный ключ переменного тока. Диод VD2 и ти­ристор VS4 образуют другой аналогичный ключ. Оба ключа соеди­нены последовательно друг с другом и имеют среднюю точку (вывод 33). Выходом БКТ являются выводы 11(12) и 71(72).

Резисторы R1 и R2 установлены для стабилизации работы схемы при изменении температуры окружающей среды и отклонении токов включения (управления) тиристоров. Варистор R3 включен для защиты диодов от пробоя при воздействии импульсных помех с большой амплитудой.

При разомкнутой цепи управления (выводы 33 и 53) тиристоры VS3 и VS4 закрыты, переменный ток между выводами 11 и 71 не проходит, так как тиристоры закрыты, а диоды VD1 и VD2 включены встречно. При замыкании цепи управления контактом реле Т (выводы 33-53) от положительной и отрицательной полуволн переменного тока поочередно открываются тиристоры VS4 и VS3, и переменный ток начинает проходить через открытые тиристоры. Если мгно­венная положительная полярность от трансформатора Т приложена к выводу 11, то возникает цепь управления тиристором VS4: ниж­ний вывод трансформатора Т, вывод 11 БКТ, диод VD1, вывод 33, контакт реле Т, вывод 53, диод VD6, выводы 51 и 52, управляющий электрод тиристора VS4, катод VS4, выводы 71 и 72, нагрузка (ДТ), реактор L, верхний вывод обмотки трансформатора Т. При достиже­нии током управления значения тока включения тиристор VS4 откры­вается и совместно с диодом VD1 пропускает ток нагрузки по цепи: обмотка трансформатора Т, вывод 11, диод VD1, тиристор VS4, выво­ды 72 и 71, нагрузка L, верхний вывод путевого трансформатора Т.

Читайте также:  Что называется мгновенным значением переменного тока называется

При отрицательной полуволне переменного тока создается цепь управления тиристором VS3, он открывается и совместно с диодом VD2 образует рабочую цепь (через нагрузку) для отрицательной полуволны переменного тока. Таким образом, пока замкнута цепь управления (выводы 53-33), тиристоры, поочередно открываясь, пропускают переменный ток в нагрузку. После размыкания контакта Т цепи управления тиристорами размыкаются, при прохождении тока нагрузки через нулевое значение тиристоры закрываются и остаются закрытыми для следующего замыкания цепи управления контактом реле Т.

При повреждении (пробое) тиристоров или диодов VD1 и VD2 теряется управляемость БКТ и в нагрузку (рельсовую цепь) будет поступать непрерывный переменный ток. Считается, что вероятность опасного отказа автоблокировки при этом мала, поэтому применяют прямое включение БКТ в цепь кодирования. Если же требуется надежно исключить возможность попадания непрерывного перемен­ного тока в рельсовую цепь в случае повреждения элементов БКТ, то потребуется установить контрольное реле и включать БКТ по схеме, аналогичной схеме включения ТШ-5.

Разработан и проходит широкие эксплуатационные испытания бесконтактный трансмиттер БКПТ, предназначенный для применения взамен трансмиттеров типа КПТШ. В трансмиттере БКПТ для формирования и контроля правильности посылки кодовых сигналов применены интегральные микросхемы.

Вопросы для самоконтроля по пункту: Бесконтактные реле

1) Работа трансмиттерного реле ТШ-5 и назначение реле К в составе ТШ-5 (рис. 7.5).

3) Назначение и работа бесконтактного коммутатора тока БКТ (рис.7.6).

Источник

Бесконтактный коммутатор тока

Выполняет те же функции, что и реле ТШ-5.

Схема БКТ включает два силовых диода VD1 и VD2, разделительные диоды VD3 и VD4 в цепях управления тиристоров, резисторы R1 и R2, подключенные параллельно входам тиристоров, и нелинейное сопротивление (Варистор) R3.

Диод VD1 и тиристор VS1 соединены встречно и параллельно. Они образуют несимметричный ключ переменного тока. Диод VD2 и тиристор VS2 образуют аналогичный ключ.

Оба ключа соединены последовательно друг с другом и имеют среднюю точку (вывод 33).

Выводом БКТ являются выводы 11(12) и 71(72).

Резисторы R1 и R2 стабилизируют работу схемы при изменении температуры окружающей среды и отклонении токов управления тиристоров.

Варистор R3 используется для защиты диодов от пробоя при воздействии импульсных помех большей амплитуды.

При разомкнутой цепи управления (выводы 33 и 53) тиристоры VS1 и VS2 заперты. Переменный ток между выводами 11 и 71 не приходит, т.к. тиристоры включены встречно.

При замыкании цепи управления контактом реле Т (выв.33,53) и положительной и отрицательной полуволн переменного тока поочередно открываются тиристоры VS1 и VS2, и переменный ток начинает проходить через них.

Если мгновенная положительная полярность от тр-ра Т приложена к выводу 11, то возникает цепь управления.

Тиристорам VS2: нижний вывод тр-ра Т, вывод 53, диод VD4, выводы 51 и 52, управляющий диод тиристора VS2, катод VS2, выводы 71 и 72, нагрузка (ДТ), реактор L, верхний вывод обмотки тр-ра Т.

При достижении током управления величины тока отпирания тиристор VS2 открывается и совместно с диодом VD1 пропускает ток нагрузки по цепи: обмотка тр-ра Т, вывод 11, диод VD1, тиристор VS2,выводы 71 и 72, нагрузка, реактор L, верхний вывод тр-ра Т.

При отрицательной полуволне переменного тока создается аналогичная цепь для управления тиристором VS1 (T-L –нагрузка, 71(72)-VD2-33/53-VD3-31/32-VS1-11/12-T), он открывается вместе с диодом VD2 образует через нагрузку рабочую цепь для отрицательной полуволны переменного тока. Таким образом, пока замкнута цепь управления (33/53), тиристоры, поочередно открываются, пропуская переменный ток через дроссель-тр-р(ДТ).

После размыкания контакта Т цепи управления тиристорами размыкаются, при прохождении тока нагрузки через «0» тиристоры закрываются и остаются запертыми до следующего замыкания цепи управления контактом реле Т.

Бесконтактное параметрическое реле.

Принцип его действия основан на свойстве возбуждения колебаний в контуре путем периодического изменения его параметров (L или C). Чаще используют бесконтактное параметрическое реле, в которых под воздействием входного сигнала изменяется индуктивность.

Индуктивность контура (обмотки W3) изменяется при протекании тока по обмоткам возбуждения W1 и W2, которые включены встречно для исключения прямой трансформации тока на выходную обмотку W3. При возбуждении тока частотой f индуктивность параметрического контура изменяется дважды за период (от положительного и отрицательного полуволн) т.е. с частотой 2f, в контуре возбуждаются колебания также с частотой 2f. Параметрические возбуждения нарастают лавинообразно (скачкообразно) при достижении входным сигналом определенного значения. Если входной сигнал снизить до некоторого уровня, то колебания прекращаются. Это свойство и позволяет использовать такую схему в качестве параметрического реле.

Коэффициент возврата его

где Uвх. и Uвх.ср.-соответствует напряжению срабатывания и отпускания(прекращения генерации бесконтактного реле).

Реле работает под воздействием тока, поступающего на вход РЦ. В этом отношении оно аналогично контактному путевому реле.

Недостатки: ограничены рабочий диапазон(из-за перенасыщения сердечника), возможность работы в режиме трансформатора при замыкании одной из входных обмоток, что недопустимо.

Элемент релейного действия на туннельном диоде.

ВАХ туннельного диода имеет три области.

Область А соответствует протеканию туннельного тока. Область B-это область отрицательного сопротивления.

При увеличении напряжения U>Umax уменьшается число электронов, способных совершать туннельный переход, и ток резко убывает. При U=Umin туннельный ток исчезает. В области С возрастает обычный диффузионный ток диода.

Схема реле на туннельном диоде имеет 2 устойчивых состояния, определяемых точками 1 и 2 нагрузочной характеристики.

В исходном состоянии (iвх=0) туннельный диод открыт (точка 1), и по нагрузке протекает ток I1 (реле включено). При подаче на вход схемы импульса положительной полярности возрастает напряжение на диоде до значения Umax, и диод закрывается. Ток в нагрузке скачком уменьшается до I2(точка2).

Реле выключается. Для включения диода на вход схемы подается импульс отрицательной полярности. Это вызывает уменьшение напряжения на диоде до Umin, и ток в нагрузке скачком увеличивается до значения I1 (точка1).

Достоинство туннельных диодов- высокая рабочая частота (десятки MГц), поскольку туннельный переход электронов происходит практически мгновенно за время = секунды.

Недостаток туннельных диодов- отсутствие входного электрода, что вызывает трудности при соединении в схемах диодов друг с другом. Поэтому часто используют транзисторно-диодные релейные элементы

В них туннельный диод служит для запоминания информации, а транзистор для усиления сигналов.

Источник