Меню

Неразветвленная цепь переменного тока что это такое

Лекция по теме: » Переменный ток»

Учебная дисциплина ОП.03 Электротехника и электроника

« ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА. НЕРАЗВЕТВЛЁННАЯ ЦЕПЬ ПЕРЕМЕННОГО ТОКА С АКТИВНО-ИНДУКТИВНЫМ, ЕМКОСТНЫМ СОПРОТИВЛЕНИЕМ. ВЕКТОРНЫЕ ДИАГРАММЫ. МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА. КОЭФФИЦИЕНТ МОЩНОСТИ ».

План лекции:

1.Переменный ток и его значение.

2. Характеристики переменного тока.

3.Максимакльное (амплитудное) и действующее (мгновенное) значение напряжения и силы тока.

4. Преобразование переменного тока в постоянный.

5.Основные элементы цепи переменного тока.

6. Резистор в цепи переменного тока.

7.Конденсатор в цепи переменного тока.

8.Катушка индуктивности в цепи переменного тока.

9. Мощность переменного тока. Коэффициент мощности.

10. Полное сопротивление в цепи переменного тока, содержащей резистор, конденсатор и катушку.

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным.

А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного?

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Переменный токэлектрический ток , который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя свое направление в электрической цепи неизменным.

Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.

Для чего нужен такой “переменчивый “ переменный ток , почему не использовать только постоянный?

Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов .

Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

На рисунке обратное направление – это область графика ниже нуля.

hello_html_m1924ce78.jpg

Характеристики переменного тока:

Период — это время одного полного колебания.

Т – период, с

Амплитуда – это наибольшее положительное или отрицательное значение силы тока или напряжения.

Частота — это времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц).

В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. В США частота промышленного тока 60 Гц.

Эта величина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.

Амплитуда – характеризует состояние переменного тока с течением времени.

Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами ( e, i, u, p ).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Е m , напряжения — U m , тока — I m .

Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.

Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в hello_html_m16692f20.jpgраз.

hello_html_5a4e029c.jpg

hello_html_m8bbad8d.jpg

hello_html_m41c499.jpg

Преобразование переменного тока в постоянный.

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” .

Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

hello_html_m7e8c9f90.jpg

hello_html_23aab47a.jpg

hello_html_m1f5c0fe7.jpg

hello_html_620361b1.jpg

Колебания силы тока в цепи резистора совпадают по фазе с колебаниями напряжения.

hello_html_m4795a48e.jpg

hello_html_m6817a23b.jpg

hello_html_m4b53575c.jpg

hello_html_m10080772.jpg

hello_html_m6e03a215.jpg

hello_html_7faa1aaf.jpghello_html_51f415cc.jpg

hello_html_abfd77f.jpg

Видео по теме:«Переменный электрический ток. Получение переменного тока» см. по ссылке:

Вопросы для самоконтроля:

1.Что такое переменный электрический ток?
2. Почему переменный ток получил такое широкое распространение?
3. Поясните, почему передача электроэнергии осуществляется с использованием переменного тока?
4.Что такое период, частота и фаза переменного тока?

5.Что называется действующим значением переменного тока? Какова связь действующих значений ЭДС, напряжения и тока с их амплитудными значениями?

6.По какой формуле определяется индуктивное сопротивление цепи переменному току?

7.По какой формуле определяется емкостное сопротивление цепи переменному току?

8.По какой формуле определяется сдвиг фаз между током и напряжением в цепях переменного тока?

9.По какой формуле вычисляется мощность переменного тока? Что называется коэффициентом мощности?

10.Как используется диод для выпрямления переменного тока?

Рассмотрим примеры решения задач:

Примеры решения расчетных задач

Задача 1. Определите сдвиг фаз колебаний напряжения и силы тока для электрической цепи, состоящей из последовательно включенных проводников с активным сопротивлением R = 1000 Ом, катушки индуктивностью L = 0,5 Гн и конденсатора емкостью С = 1 мкФ. Определите мощность, которая выделяется в цепи, если амплитуда напряжения U = 100 В, а частота = 50 Гц.

Решение:

Сдвиг фаз между током и напряжением в цепях переменного тока определяется соотношением

здесь = 2 — циклическая частота. Следовательно,

Мощность, которая выделяется в цепи, определится по формуле

Для цепи переменного тока справедливо соотношение

где Z — полное сопротивление (импеданс) цепи:

Следовательно, мощность, которая выделяется в цепи

Подставив численные значения в (1), получим (минус означает, что напряжение отстает по фазе). Тогда . Подставив численные значения в (2), получим P = 0,5 Вт.

Читайте также:  Shg6004c 101h уменьшить ток подсветки

Задача 2. Конденсатор неизвестной емкости, катушка с индуктивностью L и сопротивлением R подключены к источнику переменного напряжения (рис. 1). Сила тока в цепи равна . Определите амплитуду напряжения между обкладками конденсатора.

Решение:

Из условия задачи видно, что сила тока и напряжение в цепи меняются синфазно. Это означает, что совпадают индуктивное и емкостное сопротивления.

Напряжение на конденсаторе будет равно

Подставляя (5) в (4), получим:

С учетом (3) соотношение (6) примет вид:

Поэтому амплитудное значение напряжения между обкладками конденсатора будет равно

Задача 3. В электрической цепи из двух одинаковых конденсаторов емкости С и катушки с индуктивностью L , соединенных последовательно, в начальный момент времени один конденсатор имеет заряд q , а второй не заряжен (рис. 2). Как будут изменяться со временем заряды конденсаторов и сила тока в контуре после замыкания ключа К ?

Решение:

Цепь, приведенная на рис. 2, представляет собой колебательный контур. Сила тока в нем будет меняться по закону

Чтобы ответить на вопрос задачи, нужно найти максимальное значение силы тока I и частоту колебаний . Частоту колебаний можно определить по формуле

где С экв — емкость системы из двух последовательно соединенных конденсаторов емкостью С :

Подставляя значение С экв в (8), получим, что частота колебаний в контуре будет равна

Подставим значение частоты (9) в выражение для силы тока (7), тогда получим, что сила тока в цепи будет меняться по закону

Для определения I можно воспользоваться законом сохранения энергии. Пусть в некоторый момент времени заряд одного из конденсаторов равен q 1 , тогда заряд второго конденсатора будет q 2 = q q 1 . В начальный момент времени энергия контура сосредоточена в электрическом поле заряженного конденсатора, в произвольный момент времени она перераспределяется между энергией электрического поля двух заряженных конденсаторов и энергией магнитного поля, сосредоточенного в катушке индуктивности. Следовательно, согласно закону сохранения энергии,

Отсюда можно найти зависимость силы тока от заряда q 1 .

Чтобы найти максимальное значение силы тока, нужно взять производную от I по q 1 и приравнять ее к нулю.

Из последнего выражения видно, что максимальное значение силы тока достигается при . Следовательно,

Подставляя полученное значение для максимального значения силы тока в (10), получим, что сила тока в цепи будет меняться по закону

Чтобы найти закон изменения зарядов на пластинах конденсатора, воспользуемся выражением . Преобразовав его, получим квадратное уравнение для q 1 :

Решая уравнение, получим:

Разные знаки означают, что в начальный момент времени любой конденсатор может либо иметь заряд q , либо быть незаряженным. Пусть

Задача 4. Имеются два колебательных контура с одинаковыми катушками и конденсаторами. В катушку одного из контуров вставили железный сердечник, увеличивший ее индуктивность в n = 4 раза. Найдите отношение резонансных частот контуров и их энергий, если максимальные заряды на конденсаторах одинаковы.

Решение:

Резонансные частоты контуров могут быть определены по формуле Томсона:

Задача 5. Два сопротивления R 1 и R 2 и два диода подключены к источнику переменного тока с напряжением U так, как показано на рис. 3. Найдите среднюю мощность, выделяющуюся в цепи.

Решение:

Ток половину периода идет через один диод (например, 1). За это время на сопротивлении R 1 выделяется средняя мощность

В течение второго полупериода ток идет через диод 2, выделяя на нем среднюю мощность

Таким образом, за полный период выделяется средняя мощность

Задачи для самостоятельного решения:

№ 1. В ц.п.т. с напряжением 220 В включена активная нагрузка сопротивлением 40 Ом. Определите ток цепи.

№ 2. Определите сопротивление конденсатора емкостью 5 мкФ при частоте 50 Гц.

№ 3. Определите сопротивление катушки индуктивностью 0,01 Гн при частоте 50 Гц.

№ 4. Определите ток, проходящий через катушку, индуктивное сопротивление которой 5 Ом, а активное сопротивление 1 Ом, если напряжение сети переменного тока 12 В.

№ 5. В ц.п.т. с напряжением 220 В включена эл.лампа, по спирали которой течет ток 5 А. Вычислите активную мощность этой лампы.

№ 6. В электрическую цепь напряжением 220 В последовательно включены реостат сопротивлением 5 Ом, катушка с активным сопротивлением 6 Ом и индуктивным сопротивлением 4 Ом, конденсатор с емкостным сопротивлением 3 Ом. Определите ток в цепи. Постройте векторную диаграмму токов и напряжений.

№ 7. В ц.п.т. с напряжением 220 В включены конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите реактивную мощность цепи.

Постройте векторную диаграмму токов и напряжений.

№ 8. В ц.п.т. с напряжением 380 В включены активное сопротивление 50 Ом и конденсатор емкостью 1000 мкФ. Определите полную мощность цепи.

Постройте векторную диаграмму токов, напряжений и мощностей.

№ 9. В ц.п.т. напряжением 110 В последовательно включены активное сопротивление 30 Ом, емкостное – 45 Ом и индуктивное — 50 Ом. Определите полное сопротивление этой цепи.

№ 10. В ц.п.т. с напряжением 220 В включены активное сопротивление 20 Ом, конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите полную мощность цепи. Постройте векторную диаграмму токов, напряжений, мощностей.

Домашнее задание:

1.Выучить и законспектировать лекцию.

2. Разобрать и записать в тетрадь примеры решения задач, которые приведены в конце лекции.

3. Ответить на вопросы для самоконтроля.

4. Выполнить на оценку задания в тестовой форме:

hello_html_61a97888.pnghello_html_39ad8b4f.png

hello_html_5e842b30.pnghello_html_m6007d484.png

Ответы (указав фамилию, имя, название теста и группу) прислать по следующему адресу в контакте: http :// vk . com / id216653613

Источник

Однофазная неразветвлённая цепь переменного тока

Изучите материал по Л1.§4.1-4.14; Л2.§2.1-.2.9; Л3.§5.1-5.9.

Полное сопротивление цепи и угол сдвига фазы между током и напряжением;
Напряжение всей цепи, и на отдельных сопротивлениях;
Активная, реактивная и полная мощности; Q = I 2 (XL – XC) = I (UL – UC) = UI sin φ

Пример 3. 1. Дана неразветвлённая цепь переменного тока с активными, индуктивными и ёмкостными сопротивлениями.

1. Z — полное сопротивление цепи;

2. I — ток в цепи;

3. U- напряжение приложенное к цепи;

4. UR, UC — активные и реактивные напряжения;

5. φ — угол сдвига фазы между током и напряжением;

6. P, Q, — активную и реактивную мощности цепи;

7. Построить в масштабе векторную диаграмму, из диаграммы

определить угол сдвига фазы и напряжение всей цепи.

Рис. R Ом XC1 Ом XC2 Ом Дополнительный параметр.
3.6 S = 480 ВА

Преобразуем приведённую схему. ( рис.3.6.)

1.Полное сопротивление цепи:

2. Угол сдвига фазы между током и напряжением.

( Знак – означает, что ток опережает напряжения.)

4. Напряжение приложенное к цепи:

U = I ∙ Z = 4 ∙30 = 120 В

5. Напряжения на отдельных элементах цепи:

UR = I ∙ R = 4 ∙ 24 = 96 B

6. Активная и реактивная мощности в цепи:

Читайте также:  Аналоговый цифровой преобразователь тока

Р = UR ∙ I = 96 ∙ 4 = 384 Вт

QC = UC ∙ I = 72 ∙ 4 = 288 вар.

7. Ответ.Z = 30 Ом, φ = -36,13◦, I = 4 А, U = 120 В, Р = 384 Вт, Q = 288 вар.

8. Векторная диаграмм показана на рис.3.6а.

Пример 3. 2. Дана неразветвлённая цепь переменного тока с активными, индуктивными и ёмкостными сопротивлениями.

Рис. R1 Ом R2 Ом XL Ом XC Ом Дополнительная параметр.
3.3. QC = 208 вар

1. Z – полное сопротивление цепи;

2. I – ток в цепи;

3. U – напряжение, приложенное к цепи;

4. φ – угол сдвига фазы между током и напряжением;

5. S – полную, Р – активную, Q – реактивную мощности цепи;

6. Построить в масштабе векторную диаграмму, из диаграммы определить

напряжение цепи и угол сдвига фазы.

1. Полное сопротивление цепи:

2. Угол сдвига фазы между током и напряжением:

4. Напряжение, приложенное к зажимам цепи, и на отдельных сопротивлениях:

U = I∙ Z = 4∙ 10 = 40 В.

UR2 = I∙ R2 = 4∙ 5 = 20 В. Uc = I∙ Xc = 4∙ 13 = 52 В.

5. Активная, реактивная и полная мощности:

Q = I2 ∙ (XL – XC ) = 42 ∙ (7 – 13 ) = – 96 вар.

(знак – означает, что нагрузка носит ёмкостный характер):

S = U∙ I = 40∙ 4 = 160 ВА.

6. Векторная диаграмма показана на рисунке 3.4:

Ответ: Z = 10 Ом. U = 40 В. I = 4 A. φ = – 36,87°. S =160 ВА. Р = 128 Вт.

Задача 3. 1.Дана неразветвлённая цепь переменного тока с активными, индуктивными и ёмкостными сопротивлениями.

1. Z — полное сопротивление цепи;

2. I — ток в цепи;

3. U — напряжение, приложенное к цепи;

4. UR , UL, Uc — активные и реактивные напряжения;

5. φ — угол сдвига фазы между током и напряжением;

6. P, Q, S — активную, реактивную и полную мощности цепи;

7. Построить в масштабе векторную диаграмму; из диаграммы

определить угол сдвига фазы и напряжение всей цепи.

( Указание: объединить активные и реактивные элементы и

обозначить R , XL , или XC.) Данные выбрать из таблицы 3.1.

вар рис. R1 Ом R2 Ом XL1 Ом XL2 Ом XС1 Ом XС2 Ом Дополнитель- ный параметр.
3.5 3.6 3.7 – – – – – – – – S = 90 ВА U = 60 В I = 2 А
3.8 3.9 3.10 – – – – – – U = 80 В S = 160 ВА U = 60 В
3.11 3.12 3.5 – – – – – – I = 4 А I = 4 А U = 40 В
3.6 3.7 3.8 – – – – – – – – I = 3 А S = 225 ВА U = 100 В
3.9 3.10 3.11 – – – – I = 2 А U = 40 В S = 180 ВА
3.12 3.5 3.6 – – – – – U = 60 В I = 2 А U = 60 В
3.7 3.8 3.9 – – – – – S = 160 ВА I = 5 А U = 90 В
3.10 3.11 3.12 – – – 4,5 – I = 3 А U =50 В S = 270 ВА
3.5 3.6 3.7 – – – – – – – – U = 60 В S = 270 ВА U = 60 В
3.8 3.9 3.10 – – – – – – I = 6 А S = 180 ВА U = 60 В
3.11 3.12 3.5 4,5 – – – – – – S = 180 ВА I = 4 А I = 4 А
3.6 3.7 3.8 — — — — — — — — I = 4 А U = 40 B U = 50 B
3.9 3.10 3.11 — — U = 60 B U = 40 B S = 125 ВА
3.12 3.5 3.6 — — — — — U = 90 B I = 3 А I = 3 А
3.7 3.8 3.9 — — — — — U = 80 B I = 4 А I = 4 A
3.10 3.11 3.12 — — — — U = 30 B I = 5 A U = 45 B
3.5 3.6 — — Р = 120 Вт S = 120 ВА

Задача 3.2.Дана электрическая цепь переменного тока с активными и реактивными элементами. Используя заданную величину определить:

1. Z — полное сопротивление цепи;

2. İ — ток в цепи;

3. φ — угол сдвига фазы между током и напряжением;

4. U — напряжение, приложенное к цепи;

5. UR , UL, UC — активные и реактивные напряжения;

6. P, Q, S — активную, реактивную и полную мощности цепи;

7. Построить в масштабе топографическую векторную диаграмму; из

диаграммы определить угол сдвига фазы и напряжение всей цепи.

Источник



Большая Энциклопедия Нефти и Газа

Неразветвленная электрическая цепь

Неразветвленная электрическая цепь характеризуется тем, что на всех ее участках протекает один и тот же ток, а разветвленная содержит одну или несколько узловых точек, при этом на участках цепи протекают разные токи. [1]

Неразветвленная электрическая цепь синусоидального тока с последовательно соединенными приемниками, характеризуемыми сосредоточенными параметрами г, L, С ( рис. 41), которые не зависят от тока и напряжений на зажимах соответствующих элементов, называется линейной цепью. [3]

Расчет неразветвленных электрических цепей с любым числом источников ЭДС ( рис. 5), а также сложных цепей с одним источником ЭДС производят разными методами и, в частности, применяя первый и второй законы Кирхгофа. На рис. 6 токи / ь / 2, / з приходят к узлу А по трем проводникам, а уходят по двум. [4]

В неразветвленной электрической цепи ток в различных сечениях проводников имеет одинаковое значение. [6]

В неразветвленной электрической цепи ток в различных сечениях проводников имеет одинаковое значение. Если допустить, что величина постоянного тока в сечениях 5ц и 52 неодинакова ( рис. 2 — 2), то заряды, которые проходят за единицу времени через сечения St и S2 были бы различными. В результате в объеме проводника между этими сечениями накапливался бы положительный или отрицательный заряд. [7]

В неразветвленной электрической цепи электрический ток в различных сечениях проводников имеет одинаковое значение. Если, наоборот, допустить, что величина постоянного тока в сечениях 5 ] и 52 неодинакова ( фиг. [8]

В неразветвленной электрической цепи переменного тока протекает периодический несинусоидальный ток, выражение для мгновенного значения которого имеет вид г [ 141 sino / 84 6sin3oW 56 4sin5co / ] А. [9]

В неразветвленной электрической цепи переменного тока при заданных: напряжении и частоте питающей сети и параметрах R, L, С ( возможно отсутствие любого из них или попарно) — определить ток, напряжения на отдельных участках, мощности, угол сдвига фаз и коэффициент мощности. [10]

В неразветвленную электрическую цепь переменного тока включены резистор R и конденсатор С. [11]

Если в неразветвленной электрической цепи имеется несколько различных ( по физическому смыслу) сопротивлений, мы будем применять метод сосредоточенного распределения этих сопротивлений. Так, например, в реальной катушке приходится учитывать два сопротивления, активное и индуктивное, которые равномерно распределяются по всей длине катушки и одновременно преодолеваются проходящим через нее током. [12]

Читайте также:  Если напряжение меняется с частотой то сила тока в этой же цепи будет

Исследование режимов неразветвленной электрической цепи синусоидального тока , находящейся под неизменным действующим значением напряжения постоянной частоты, при изменении одного из ее параметров, сказывающемся на величине активного или реактивного сопротивления, возможно выполнить графически методом линейных и круговых диаграмм. Эти диаграммы являются геометрическими местами концов векторов, изображающих определенные электрические величины, характеризующие режим электрической цепи. [13]

Экспериментальное исследование линейной неразветвленной электрической цепи синусоидального тока выполняют на установке ( рис. 4G) с последовательно соединенными резистором с активным сопротивлением г, индуктивной катушкой гк и конденсатора неизменной емкости С, параллельно которым присоединены разрезные однополюсные штепсельные гнезда Ша, Шк, ШС — В эти гнезда можно одновременно вставлять не более двух однополюсных вилок Вкдля получения электрических цепей с различными параметрами. [15]

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

30.03.2013

Неразветвленная цепь переменного тока

Рассмотрим электрическую цепь, изображенную на рис. 1.

Пусть к источнику постоянной э. д. с. присоединена катушка индуктивности L (ее электрическое сопротивление мы относим к общему сопротивлению r цепи). В первые моменты времени после включения ток в катушке почти равен нулю, но скорость его изменения велика, поэтому велика э. д. с. самоиндукции

равная по величине напряжению на зажимах катушки и направленная навстречу ему. По мере нарастания тока скорость изменения тока уменьшается, падает и э. д. с. самоиндукции и, наконец, становится равной нулю. Соответственно этому по мере падения э. д. с. самоиндукции, направленной навстречу э. д. с. источника тока, ток в цепи растет и становится равным E/r.

Графики напряжения на катушке индуктивности и тока, протекающего в рассматриваемой цепи, представлены на рис. 2.

Из графиков следует, что при наличии в цепи индуктивности нарастание тока происходит не мгновенно, а постепенно. Процесс нарастания тока до величины I = E/r носит название неустановившегося процесса.

Пусть теперь к источнику постоянной э. д. с. подключается конденсатор емкости С. В момент включения напряжение на конденсаторе равно нулю. Заряды на обкладках конденсатора отсутствуют, в первый момент ток I = E/r. По мере увеличения напряжения на конденсаторе (т. е. между обкладками) и заряда на обкладках ток в цепи падает.

Когда значение напряжения на обкладках приближается к Е, ток в цепи приближается к нулю. Из графиков (рис. 2 статьи «Конденсаторы и емкость») следует, что при наличии в цепи емкости нарастание напряжения происходит не мгновенно, а постепенно. Представим себе, что в силу каких-то причин э. д. с. Е в схеме, представленной на рис. 1, уменьшилась, значит, уменьшился и ток I.

Следовательно, изменилось магнитное поле катушки. Вследствие этого в катушке индуктивности возникла э. д. с. самоиндукции, которая существует, пока ток изменяется. Эта э. д. с. вызывает появление дополнительного тока, который протекает в сопротивлениях цепи и совершает при этом работу, т. е. выделяется дополнительное тепло в сопротивлении г. Количество тепловой энергии точно соответствует количеству энергии, на которое уменьшилась энергия магнитного поля.

Если Е падает до нуля, то энергия, выделяющаяся в форме тепла в сопротивлении цепи г, численно равна энергии, предварительно запасенной в магнитном поле катушки.

Если в силу каких-то причин уменьшится или исчезнет э. д. с. Е в схеме, представленной на рис. 1 статьи «Конденсаторы и емкость», то начнется перемещение зарядов в цепи, соединяющей обкладки конденсаторов, и возникает ток.

Этот ток постепенно исчезнет (когда напряжение на конденсаторе Uc станет равным Е). Если Е источника э. д. с. упадет до нуля, работа, совершенная током разрядки конденсатора, будет численно равна предварительно запасенной энергии электрического поля конденсатора. Таким образом, и катушка индуктивности, и конденсатор являются накопителями энергии, которую они при определенных условиях возвращают в цепь.

В цепях переменного тока с включенными емкостью и индуктивностью ток проходит все время: происходят непрерывные процессы зарядки и разрядки конденсатора и создание и исчезновение магнитного поля катушки индуктивности.

При этом емкость и индуктивность в течение всего времени прохождения тока оказывают влияние на его величину.

Неразветвленная цепь переменного тока представлена на рис. 3. Около каждого элемента цепи — сопротивления r, катушки индуктивности L, конденсатора емкости С и источника переменной э. д. с. — представлены соответствующие графики I, II, III, IV сдвига фаз между током и напряжением.

Напряжение на сопротивлении совпадает по фазе с током. Напряжение на конденсаторе при синусоидальных токах отстает от тока на π/2 т. е. на 90°. Напряжение на катушке индуктивности опережает ток на π/2 (на 90°). Это значит, что в любой момент времени напряжения на конденсаторе и на катушке индуктивности будут иметь противоположные направления.

Когда магнитное поле индуктивности будет накапливать энергию, конденсатор, находящийся в той же цепи, будет разряжаться — отдавать свою энергию в цепь.

Действующий ток в неразветвленной цепи переменного тока определяется по формуле

Эта величина обозначается буквой z и называется полным, или кажущимся сопротивлением.

Электрическое сопротивление r в цепях переменного тока называется активным сопротивлением.

Величина ωL обозначается xL и называется реактивным сопротивлением индуктивности, или просто индуктивным сопротивлением.

Величина 1/ωC обозначается xC и называется реактивным сопротивлением емкости, или просто емкостным сопротивлением.

Величина ωL — 1/ωC обозначается х и называется реактивным сопротивлением.

Полное сопротивление z и реактивные сопротивления измеряются в омах.

Источник