Меню

Нормы величины сопротивления обмоток двигателей переменного тока

Методика испытания и измерения электродвигателей переменного тока

Целью проведения пуско-наладочных работ является проверка возможности включения электродвигателей в работу без предварительной ревизии и сушки, а также снятие электрических характеристик на холостом ходу и под нагрузкой .

Применяемые приборы: Мегаомметры М4100/4, Ф4102/2, мост Р333, токоизмерительные клещи Ц4505, испытательная установка АИД-70, набор щупов.

Испытания и измерения электродвигателей переменного тока может производить бригада в составе не менее 2 человек из лиц ЭТЛ. Производитель работ при высоковольтных испытаниях и измерениях должен иметь группу по электробезопасности не ниже IV, а остальные не ниже III группы.

Перед началом испытаний должен быть проведен внешний осмотр электродвигателя. При этом проверяют состояние и целостность изоляции, отсутствие вмятин на корпусе, затяжку контактных соединений, а также комплектность машины (наличие всех деталей, паспортного и клеммного щитков и необходимых указаний на них; заполнение подшипников до заданного уровня и отсутствие течи масла; состояние коллектора, токосъемных колец, щеткодержателей и щеток; наличие заземляющей проводки и качество соединения ее с электродвигателем).

1. Измерение сопротивления изоляции.

Для измерения сопротивления изоляции применяются мегаомметры на 250, 500, 1000 и 2500 В.

Измерение сопротивления изоляции вспомогательных измерительных цепей производят мегаомметром на 250 В.

Сопротивление изоляции измеряется при номинальном напряжении обмотки до 0,5 кВ включительно мегаомметром на напряжение 500 В, при номинальном напряжении обмотки свыше 0,5 кВ до 1 кВ мегаомметром на напряжение 1000 В, а при номинальном напряжении обмотки выше 1 кВ – мегаомметром на напряжение 2500 В.

Во время подключения прибора испытываемое оборудование должно быть заземлено. Отсчет производится через 15 и 60 секунд после нажатия кнопки «Высокое напряжение», или начала вращения рукоятки мегаомметра со скоростью 120 оборотов в минуту.

Измерение сопротивления изоляции производят при отсутствии электрического напряжения на обмотках машины по методике испытания изоляции.

После измерений сохранившийся на обмотке потенциал следует разделить на корпус проводником, предварительно соединенным с корпусом. Продолжительность разряда для обмоток с номинальным напряжением 3000 В и выше должна быть не менее 15 сек для машин до 1000 кВт и 60 сек для машин мощностью больше 1000 кВт.

Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производит поочередно для каждой электрически независимой цепи при соединении всех прочих цепей с корпусом машины.

Показания мегаомметра зависят от времени приложения напряжения к проверяемой обмотке. Чем больше время, предшествующее от момента приложения напряжения к изоляции до момента отчета (15 и 60с), тем больше получается измеренное значение сопротивления изоляции.

При измерении сопротивления изоляции необходимо измерять и температуру обмотки. С повышением температуры сопротивление изоляции уменьшается. Измерение изоляции следует выполнять при температуре обмотки, соответствующей номинальному режиму работы машины или привести к температуре 75°С. Температура обмотки, при которой производят измерения , не должна быть ниже 10°С. Если температура ниже указанной, то обмотку перед измерением необходимо подогреть.

Наименьшее значение сопротивления изоляции при рабочей температуре обмоток и через 60 сек. после приложения напряжения определяется по формуле:

R60 = Uн / (1000 + Pн / 100)

где Uн – номинальное напряжение обмотки, В;

Pн – номинальная мощность, кВт, для машин переменного тока, кВА.

О степени влажности изоляции судят по величине коэффициента абсорбции, который представляет собой отношение показаний мегаомметра после приложения напряжения через 15 и 60 сек:

Следует учесть, что величина Ка даже при хорошем состоянии изоляции в значительной степени зависит от температуры машины и вида применяемых изоляционных материалов. С повышением температуры коэффициент абсорбции для машин, имеющих неувлажненную изоляцию, уменьшается. Для неувлажненной обмотки при температуре 10-30 °С коэффициент абсорбции Ка = 1,3¸2,0, для увлажненной обмотки коэффициент абсорбции близок к единице.

Допустимые значения сопротивления изоляции и коэффициента абсорбции приводятся в таблицах 5.1.; 5.2.; 5.3. РД 34.45-51.

Электродвигатели переменного тока включаются без сушки, если сопротивления изоляции обмоток и коэффициента абсорбции не ниже указанных в табл. 5.1. – 5.3.

2. Испытание повышенным напряжением промышленной частоты.

Испытания электрической прочности изоляции обмоток относительно корпуса и между обмотками производят синусоидальным переменным напряжением частотой 50 Гц, используя установку АИД-70. Продолжительность испытания 1 минута.

Испытательное напряжение подводится к каждой фазе обмотки, при заземленном корпусе электродвигателя и двух других фазах. При невозможности выделить испытываемую фазу производится испытание всех 3х фаз одновременно, относительно корпуса электродвигателя. Испытательные напряжения для обмоток электродвигателей переменного тока приведены в табл. 5.4. РД 34.45-51.

Испытания должны проводить лица, прошедшие специальную подготовку и имеющие практический опыт проведения испытаний.

Перед началом испытания необходимо проверить стационарное заземление корпусов испытываемого оборудования и надежно заземлить испытательную установку. Место испытаний, а также соединительные провода , находящиеся под испытательным напряжением, должны быть ограждены или у места испытания должен быть выставлен наблюдающий.

Провод, с помощью которого повышенное напряжение от испытательной установки подводится к испытываемому оборудованию, должен быть надежно закреплен с помощью промежуточных изоляторов, изолирующих подвесок и т.п., чтобы было исключено случайное приближение этого провода к находящимся под рабочим напряжением токоведущим частям или сокращения воздушных промежутков, которые должны быть не менее следующих значений:

Испытательное напряжение, кВ до 20 30 40 50 60

Расстояние до заземленных предметов, см 5 10 20 25 30

до токоведущих частей, см 25 25 30 30 35

Присоединение установки к сети напряжением 380/220 В должно осуществляться через коммутационный аппарат с видимым разрывом, допускается присоединение через штепсельную вилку, расположенную у испытательной установки.

При сборке испытательной схемы, прежде всего, выполняются защитное и рабочее заземления испытательной установки. Перед присоединением испытательной установки к сети 380/220 В на вывод высокого напряжения установки накладывается заземление с помощью специальной заземляющей штанги. Сечение медного провода, с помощью которого заземляется вывод, должно быть не менее 4 мм 2 .

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

— проверить все ли члены его бригады находятся на местах, указанным им производителем работ, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

— предупредить бригаду о подаче напряжения словами «Подано напряжение» и, убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки и подать на нее напряжение 280/220 В.

С момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода считается находящейся под напряжением, и проводить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается.

После окончания испытаний производитель работ должен снизить напряжение испытательной установки до нуля, отключить ее от сети 380/220 В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде словами «Напряжение снято». Только после этого можно пересоединять провода на испытательной установке или в случае полного окончания испытания отсоединить их и снимать ограждения.

До испытания изоляции, а также после испытания необходимо разрядить испытываемое оборудование на землю и убедиться в полном отсутствии на нем заряда. Наложение и снятие заземления заземляющей штангой, подсоединение и отсоединение проводов от испытательной установки и испытываемого оборудования должны проводиться одним и тем же лицом и выполняться в диэлектрических перчатках.

Провод, соединяющий испытательную установку с испытуемым оборудованием должен быть удален от электрооборудования, находящегося под рабочим напряжением до 10 кВ, на расстоянии не менее 1 м.

3. Измерение сопротивления обмоток постоянному току.

3.1. Общие замечания.

Измерение сопротивлений производят с целью проверки соответствия сопротивления расчетному значению, проверки надежности паек определения повышения температуры над температурой окружающей среды. Сопротивление может быть измерено в холодном и нагретом состоянии. Холодным состоянием считают такое состояние обмотки, при котором температура обмотки и окружающей среды отличается не больше чем на 3°С. нагретое состояние – это состояние обмоток при рабочей температуре. При определении температуры в холодном состоянии или необходимо за 30 мин до испытания заложить в машину термометры. В практике наладочных работ применяют следующие методы измерения сопротивления постоянному току: амперметра-вольтметра, одинарного моста и двойного моста. Основным методом измерения является метод амперметра-вольтметра.

Для измерения применяют электроизмерительные приборы магнитоэлектрической системы: вольтметры класса не ниже 0,5 со встроенными добавочными сопротивлениями или наружным добавочным сопротивлением класса 0,1 и милливольтметры класса не ниже 0,5 с шунтами класса не ниже 0,1.

По схеме 4 а производят измерение малых сопротивлений.

Точный расчет измеряемого сопротивления, Ом, производят по формуле:

где Rв – внутреннее сопротивление вольтметра.

Измерение больших сопротивлений рекомендуется производить по схеме 4 б. Сопротивление рассчитывают по формуле:

где Rа – внутреннее сопротивление амперметра.

Читайте также:  Расчет электрических цепей методом контурных токов пример

3.2. Измерений сопротивлений обмоток машин переменного тока.

Измерение сопротивлений многофазных обмоток при наличии выводов начала и конца всех фаз следует производить пофазно. В случае, если фазы обмотки статора соединены в «звезду» и не имеют вывода нулевой точки (рис. 5 а), то измерение сопротивления производится между каждыми двумя выводами (фазами).

Результат измерений дает сумму сопротивлений двух фаз:

Сопротивление каждой фазы в отдельности:

В случае соединения фаз в «треугольник» (рис. 5 б) сопротивление каждой фазы:

Если расхождение измеренных значений не превышает 2 % при соединении фаз в “звезду” и 1,5 % при соединении фаз в «треугольник», то сопротивление одной фазы можно определить упрощенно:

При соединении в «звезду»

при соединении фаз в “треугольник”

Измерение сопротивления обмотки ротора в двигателях с фазным ротором производят аналогично измерениям обмоток статора. Соединение обмоток ротора может быть в «звезду» и в «треугольник». Напряжение измеряют в контактных кольцах, чтобы исключить влияние переходного сопротивления контактов щеток.

Согласно ПУЭ предельно допустимые отклонения сопротивления постоянному току обмотки различных фаз статора для генераторов мощностью меньше 100 МВт не должны отличаться друг от друга больше чем на 2 %.

Измеренные сопротивления обмотки ротора не должны отличаться от заводских данных больше чем на 2 %. Сопротивления гашения поля пускорегулирующие сопротивления проверяют на всех ответвлениях. Значения сопротивлений не должны отличаться от заводских данных больше чем на 10 %.

4. Проверка электродвигателя на холостом ходу или с ненагруженным механизмом.

Проверка производится в электродвигателях напряжением 3 кВ и выше. Значение тока ХХ для вновь вводимых электродвигателей не нормируется.

Значение тока холостого хода после капитального ремонта электродвигателя не должно отличаться больше чем на 10 % от значения тока, измеренного перед его ремонтом, при одинаковом напряжении на выводах статора.

Продолжительность проверки электродвигателей должна быть не менее 1 часа.

5. Измерение воздушного зазора между сталью ротора и статора.

Измерение зазоров должно производиться, если позволяет конструкция электродвигателя. При этом у электродвигателей мощностью 100 кВт и более, у всех электродвигателей ответственных механизмов, а также у электродвигателей с выносными подшипниками скольжения величины воздушных зазоров в местах, расположенных по окружности ротора и сдвинутых друг относительно друга на угол 90°, или в местах, специально предусмотренных при изготовлении электродвигателя, не должны отличаться больше чем на 10 % от среднего значения.

6. Измерение зазоров в подшипниках скольжения.

Увеличение зазоров в подшипниках скольжения более значений, приведенных в табл. 5.5. РД 34.45-51, указывает на необходимость перезаливки вкладыша.

7. Измерение вибрации подшипников электродвигателя.

Измерение производится у электродвигателей напряжением 3 кВ и выше, а также у всех электродвигателей ответственных механизмов.

8. Измерение разбега ротора в осевом направлении.

Измерение производится у электродвигателей, имеющих подшипники скольжения.

9. Проверка работы электродвигателя под нагрузкой.

Проверка производится при неизменной мощности, потребляемой электродвигателем из сети не менее 50 % номинальной, и при соответствующей установившейся температуре обмоток.

Проверяется тепловое и вибрационное состояние электродвигателя.

10. Гидравлическое испытание воздухоохладителя.

Испытание производится избыточным давлением 0,2-0,25 МПа в течение 5-10 мин, если отсутствуют другие указания завода –изготовителя.

11. Проверка исправности стержней короткозамкнутых роторов.

Проверка производится у асинхронных электродвигателей при капитальных ремонтах осмотром вынутого ротора или специальными испытаниями, а в процессе эксплуатации по мере необходимости – по пульсациям рабочего или пускового тока статора.

Измерения по п.п. 5-8, 10, 11 выполняют подразделения технологических служб, связанных с монтажом и ремонтом электрических машин.

НТД и техническая литература:

  • Межотраслевые правила по охране труда (ПБ) при эксплуатации электроустановок.
  • ПОТ Р М — 016 — 2001. — М.: 2001.
  • Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание
  • Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.
  • Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.
  • Сборник методических пособий по контролю состояния электрооборудования. — М.: ОРГРЭС, 1997.

Рубрики блога

  • База тестов по Электробезопасности для ДНД ЭБ и ТБ 4
  • Другие материалы 22
  • Методики испытаний (измерений) 54
  • Новости 99
  • Программы испытаний (измерений) 25
  • Руководство по программе ДНД ЭТЛ Профессионал .Нет 15
  • Справка по работе с программным комплексом ДНД Конструктор Однолинейных Схем 3
  • Справка по работе с программой ДНД Наряд-Допуск ПРО 15
  • Справка по работе с программой ДНД Электробезопасность и ТБ 7
  • Справка по работе с программой ДНД ЭТЛ Профессионал .Нет 24
  • Справка по работе с редактором тестов к ДНД Электробезопасность и ТБ 4
  • Статьи 6

Последнее видео на нашем YouTube канале

Источник

ПУЭ-7 п.1.8.15 Нормы приемо-сдаточных испытаний. Электродвигатели переменного тока

Электродвигатели переменного тока

Электродвигатели переменного тока напряжением до 1 кВ испытываются по пп.2, 4б, 5, 6.

Электродвигатели переменного тока напряжением выше 1 кВ испытываются по пп.1-6.

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ.

Электродвигатели переменного тока включаются без сушки, если значение сопротивления изоляции и коэффициента абсорбции не ниже указанных в табл.1.8.9.

Таблица 1.8.9 Допустимые значения сопротивления изоляции и коэффициента абсорбции для обмоток статора электродвигателей

Мощность, номинальное напряжение электродвигателя, вид изоляции обмоток

Критерии оценки состояния изоляции обмотки статора

Значение коэффициента абсорбции

1. Мощность более 5 МВт, термореактивная и микалентная компаундированная изоляция

При температуре 10-30 °С сопротивление изоляции не ниже 10 Мом на 1 кВ номинального линейного напряжения

2. Мощность 5 МВт и ниже, напряжение выше 1 кВ, термореактивная изоляция

3. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью от 1 до 5 МВт включительно, а также двигатели меньшей мощности наружной установки с такой же изоляцией напряжением выше 1 кВ

4. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью более 1 МВт, кроме указанных в п.3

5. Напряжение ниже 1 кВ, все виды изоляции

6. Обмотка ротора

7. Термоиндикаторы с соединительными проводами, подшипники

В соответствии с указаниями заводов-изготовителей

2. Измерение сопротивления изоляции.

Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать нормам, приведенным в табл.1.8.10.

Таблица 1.8.10 Наименьшие допустимые значения сопротивления изоляции для электродвигателей (табл.1.8.9, пп.3, 4)

Сопротивление изоляции , МОм, при номинальном напряжении обмотки, кВ

У синхронных электродвигателей и элекродвигателей с фазным ротором на напряжение 3 кВ и выше или мощностью более 1 МВт производится измерение сопротивления изоляции ротора мегаомметром на напряжение 1000 В. Измеренное значение сопротивления должно быть не ниже 0,2 МОм.

3. Испытание повышенным напряжением промышленной частоты.

Производится на полностью собранном электродвигателе.

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.

Значения испытательных напряжений приведены в табл.1.8.11. Продолжительность приложения испытательного напряжения 1 мин.

Таблица 1.8.11 Испытательные напряжения промышленной частоты для обмоток электродвигателей переменного тока

1. Обмотка статора

2. Обмотка ротора синхронных электродвигателей, предназначенных для непосредственного пуска, с обмоткой возбуждения, замкнутой на резистор или источник питания.

8-кратное системы возбуждения, но не менее 1,2 и не более 2,8

3. Обмотка ротора электродвигателя с фазным ротором.

1,5*, но не менее 1,0

4. Резистор цепи гашения поля синхронных двигателей.

5. Реостаты и пускорегулирующие резисторы.

1,5*, но не менее 1,0

* напряжение на кольцах при разомкнутом неподвижном роторе и номинальном напряжении на статоре.

4. Измерение сопротивления постоянному току.

Измерение производится при практически холодном состоянии машины.

а) Обмотки статора и ротора*

* Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором.

Измерение производится у электродвигателей на напряжение 3 кВ и выше. Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных более чем на 2%.

б) Реостаты и пускорегулировочные резисторы

Для реостатов и пусковых резисторов, установленных на электродвигателях напряжением 3 кВ и выше, сопротивление измеряется на всех ответвлениях. Для электродвигателей напряжением ниже 3 кВ измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек.

Значения сопротивления не должны отличаться от исходных значений более чем на 10%.

5. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом.

Продолжительность проверки не менее 1 часа.

6. Проверка работы электродвигателя под нагрузкой.

Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. Проверяется тепловое и вибрационное состояние двигателя.

Читайте также:  Электрический ток представляет собой упорядоченное движение заряженных частиц в металлах это

Источник



Объем и нормы испытаний электродвигателей переменного тока

Электродвигатели переменного тока напряжением до 1000В, вводимые в эксплуатацию после монтажа, подвергают приемосдаточным испытаниям в объеме, предусмотренном ПУЭ.
Измерение сопротивления изоляции обмоток относительно корпуса и между обмотками, а также сопротивления изоляции заложенных в электродвигатель температурных индикаторов осуществляют мегаомметрами. Если в электродвигателях выведены начало и конец каждой фазы, сопротивление изоляции обмотки измеряют отдельно для каждой фазы относительно корпуса и между обмотками. В многоскоростных многообмоточных электродвигателях это сопротивление должно быть измерено на выводах каждой обмотки в отдельности, в асинхронных электродвигателях с фазным ротором — отдельно для обмоток статора и обмоток ротора.

Допустимые сопротивления изоляции электродвигателей напряжением до 1000 В приведены в таблице 1.
Измерение сопротивления обмоток постоянному току двигателей мощностью 300 кВт и более производят при неподвижном роторе. Сопротивление многофазных обмоток при наличии выводов начала и конца всех фаз измеряют пофазно. В электродвигателях с фазным ротором должно быть измерено также сопротивление обмотки ротора.

Таблица 1. Допустимые значения сопротивления изоляции электродвигателей переменного тока

Испытываемый объект Напряжение мегаом метра, В Сопротивление изоляции
Обмотка статора напряжением до 1000 В Не менее 0,5 МОм при 10—30 °С
Обмотка ротора синхронного двигателя и электродвигателя с фазным ротором Не менее 0,2 МОм при температуре 10—30 °С
Термоиндикатор Не нормируется

Если фазы обмотки статора соединены в «звезду» и не имеют вывода нулевой точки, сопротивление измеряют между каждыми двумя выводами (двумя фазами) электродвигателя. При измерении сопротивления обмотки ротора электродвигателя подключают измерительную схему непосредственно к концам обмотки, чтобы исключить влияние переходного сопротивления контактов щеток. Согласно ПУЭ измеренные сопротивления постоянному току обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2 %.
Во всех случаях измеряют сопротивление постоянному току реостатов и пускорегулировочных резисторов, общее сопротивление и проверяют целость отпаек. Эти сопротивления составляют десятые и сотые доли ома, поэтому измерение пусковых сопротивлений в цепи ротора электродвигателя обычно осуществляют мостовым методом или микроомметром. Значение измеренного сопротивления должно отличаться от паспортных данных не более чем на 10 %. Ошибка при измерениях пусковых сопротивлений может привести к ненормальному пусковому режиму электродвигателя.
Проверка правильности соединений выводов обмоток электродвигателей сводится к определению начал и концов каждой из них. Полярность выводов трехфазных электродвигателей проверяют несколькими способами, наиболее распространенные из которых приведены ниже.
Вначале определяют выводы каждой обмотки в отдельности с помощью мегаомметра, моста или пробника УП-71, ПУ-82.
Для проверки правильности соединений выводов используют источник постоянного тока (аккумулятор или сухой элемент) и вольтметр постоянного тока (милливольтметр или гальванометр).

Рис.1 Схемы проверки выводов обмотки статора с помощью источника постоянного тока а—подключение к источнику одной обмотки, 6, в — подключение к источнику двух обмоток, /, //, /// обмотки, /(, Н концы и начала обмоток
Схемы проверки выводов обмотки показаны на рис. 1. К одной из обмоток кратковременно подключают источник питания, к двум другим — поочередно вольтметр (рис. 1а), чтобы в момент подачи напряжения от источника питания стрелка отклонилась вправо. При этом « + » батареи и «—» вольтметра соединены с одноименными выводами обмоток. Маркировку выводов проверяют попарным включением обмоток. Две обмотки включают последовательно и кратковременно подключают к источнику питания. К третьей обмотке подсоединяют вольтметр. Если две обмотки соединены последовательно одноименными выводами (рис. 1б), стрелка вольтметра при включении выключателя S не будет отклоняться. При соединении обмоток разноименными выводами (рис. 1в) в момент включения и отключения выключателя S стрелка вольтметра отклоняется. Так же определяют соответствие выводов третьей обмотки с выводами первой или второй.
Проверку полярности выводов можно выполнить на переменном токе (рис. 2). Соединяют последовательно две обмотки, а к третьей обмотке подключают вольтметр PV или лампу накаливания. При соединении между собой одноименных выводов вольтметр имеет показания, близкие к нулю (рис. 2, а).

Рис 2 Схемы проверки выводов обмотки статора с помощью источника переменного тока:
а подключение к источнику одной обмотки, б — подключение к источнику двух обмоток


Рис 3 Схемы проверки соединений составных частей обмотки а — определение составных частей обмотки, 6 — определение полярности обмоток
Установив одноименные выводы первой и второй обмоток, повторяют проверку, соединяя между собой первую и третью обмотки и подключая вольтметр ко второй для определения полярности выводов третьей обмотки. При соединении двух обмоток разноименными выводами вольтметр покажет наличие напряжения на третьей обмотке (рис.2, б). Проверку полярности выводов обмоток выполняют на пониженном 5—10% Uном напряжении.
Правильность соединений отдельных частей составной обмотки проверяют по схеме, показанной на рис. 3. Подавая переменный ток в одну часть обмотки, по наибольшему из измеренных напряжений находят другую часть обмотки, принадлежащей этой же фазе (рис. 3, а). Так же определяют части обмоток, принадлежащие остальным двум фазам. Полярность составных частей обмотки проверяют по схеме, показанной на рис. 3, б. В случае соединения разноименных выводов частей обмотки, принадлежащей одной фазе, напряжение U при включении двух одинаковых обмоток, измеренное вольтметром, примерно в 2 раза больше напряжения U.
Проверку работы электродвигателя на холостом ходу или с ненагруженным механизмом осуществляют таким образом. После проверки действия защиты и сигнальной аппаратуры выполняют пробный пуск двигателя с отключением и прослушиванием стука, шума, вибрации. Затем запускают, проверяют разгон до номинальной частоты вращения и нагрев подшипников, включают электродвигатель на различные частоты вращения (многоскоростные двигатели), измеряют ток холостого хода всех фаз. Продолжительность проверки, как правило, не менее 1 ч. Работу электродвигателя под нагрузкой проверяют при включении технологического оборудования в момент сдачи в эксплуатацию.

Неисправность Причина Способ устранения
Перегрев активной стали статора Напряжение сети выше номинального Снизить напряжение до номинального
Перегрев обмотки статора Перегрузка двигателя или нарушение его вентиляции Проверить нагрузку и систему вентиляции
Напряжение на зажимах двигателя ниже номинального Установить номинальное напряжение
Неравномерный ток в фазах Неправильное соединение одной или нескольких катушек в фазе Проверить сопротивление фаз, правильность соединения катушек в фазе, сопротивление изоляции между фазами
Перегрев обмотки ротора Напряжение на зажимах статора ниже номинального Установить номинальное напряжение на обмотке статора
Неудовлетворительное охлаждение ротора Проверить систему вентиляции
Двигатель не разгоняется, гудит Нарушение контактов в обмотке ротора, неисправность реостата в цепи ротора Обрыв в одной фазе статора Найти место плохого контакта в цепи ротора и устранить его Проверить сопротивление фаз, при обнаружении обрыва устранить его
Двигатель не разгоняется, ток в трех фазах равномерный Неправильное соединение обмотки статора Отсутствие питания в одной фазе Обрыв в обмотке ротора Проверить соединение обмотки статора Проверить питание, подводимое к двигателю Проверить цепь ротора
Двигатель вращается с пониженной частотой на холостом ходу, сильно гудит Неправильное соединение одной фазы обмотки статора Правильно соединить выводы обмотки статора
Искрят щетки и об гора ют контактные кольца Недостаточная пришлифовка щеток к контактным кольцам Пришлифовать щетки

При первом опробовании электродвигателей возможны неисправности. Причины и способы наиболее распространенных неисправностей асинхронных электродвигателей приведены в таблице 2.

Охарактеризуйте содержание проверки заземляющих устройств.

В объем испытаний заземляющей сети входит проверка:

— правильности выполнения заземляющей проводки;

— состояния элементов заземляющего устройства;

— соответствия сечений заземляющих проводников ПУЭ;

— состояния пробивных предохранителей;

— наличия цепи между заземлителями и заземляемыми элементами.

Последние два испытания проводят электрическими методами, а остальные — внешним осмотром.
При проверке правильности выполнения заземляющих устройств устанавливают соответствие испытываемой сети требованиям ПУЭ и СНиП, данным проекта, ГОСТу, ПТЭ и ПТБ.
Проверка состояния элементов заземляющих устройств заключается в их внешнем осмотре и контроле надежности сварных соединений простукиванием молотком, а болтовых — осмотром и затягиванием гаек.
Для правильной оценки качества заземлителей их сопротивления измеряют в периоды наименьшей проводимости грунта — зимой и летом. При испытаниях вновь смонтированной установки результаты измерения сопротивления заземления необходимо пересчитать с учетом сезонных изменений удельного сопротивления грунта с помощью поправочного коэффициента для средней полосы, приведенного в табл. 6. В других районах эти коэффициенты утверждаются местными органами Госэнергонадзора.
Сопротивление заземляющих устройств измеряют методом амперметра — вольтметра или переносными приборами.

Охарактеризуйте содержание проверки проводов и кабелей.

По окончании строительных и монтажных работ проводят приемосдаточные испытания кабельных линий. При этом проверяют целость жил, измеряют сопротивление изоляции, испытывают ее повышенным напряжением постоянного тока и проверяют фазировку линий.
При испытании силовых кабелей мегаомметром на 2500 В выявляют грубые нарушения целости изоляции — заземление фаз, резкую асимметрию в изоляции отдельных фаз и т. д. Для силовых кабелей до 1000 В сопротивление изоляции должно быть не менее 0,5 МОм, для кабелей выше 1000 В оно не нормируется.
Силовые кабели выше 1000 В испытывают повышенным напряжением выпрямленного тока для выявления местных сосредоточенных дефектов, которые могут быть не обнаружены мегаомметром.
В соответствии с ПУЭ силовые кабели после прокладки испытывают постоянным током выпрямленного напряжения 6Uном (для кабелей от 1 до 10 кВ) и 5 Uном (для кабелей 20 и 35 кВ). Продолжительность испытания каждой фазы 10 мин. Кабель считается выдержавшим испытание, если не произошло пробоя, не было скользящих разрядов и толчков тока или его нарастания после того, как он достиг установившегося значения. При испытании напряжение плавно (1—2 кВ/с) поднимают до предусмотренного нормами и поддерживают неизменным в течение всего периода. Отсчет времени начинают с момента приложения полного испытательного напряжения. На последней минуте испытаний каждой фазы кабеля отсчитывают по показаниям микроамперметра значения тока утечки. Определяют отношение большего тока к меньшему (коэффициент асимметрии). Для кабелей с хорошей изоляцией это отношение меньше двух, для кабелей с удовлетворительной изоляцией токи утечки находятся в следующих пределах: до 300—500 (для кабельных линий 6—10 кВ) и до 700 мкА (для линий 20 35 кВ). После испытаний повышенным напряжением кабель снова измеряют мегаомметром, выполняют фазировку и включают линию под рабочее напряжение.
Если при испытаниях кабельной линии были отмечены толчки тока, испытание прекращают и отыскивают место повреждения.

Читайте также:  Урок защита от электрического тока

Для отыскания места повреждения в кабелях требуется снизить переходное сопротивление в этом месте, для чего кабели прожигают. Специальных установок для прожигания кабелей промышленность не выпускает, поэтому они не рассматриваются в данном пособии. После окончания процесса прожигания сопротивление в месте пробоя снижается до нескольких десятков ом.
Для отыскания мест повреждения силовых кабелей используют следующие методы: относительные (с помощью которых определяют расстояние от места измерения до места повреждения) и абсолютные (с помощью которых достаточно точно указывают место повреждения непосредственно на трассе кабельной линии). В наладочной практике обычно применяют оба метода, при этом относительный метод позволяет быстро (но не точно) оценить расстояние, на которое должен отправиться оператор, и, пользуясь абсолютным методом , уточнить место для раскопок Из относительных методов наиболее распространен импульсный, из абсолютных — индукционный.
Импульсный метод основан на измерении времени прохождения импульса от одного конца линии до места повреждения и обратно.

Дата добавления: 2015-04-16 ; просмотров: 41 ; Нарушение авторских прав

Источник

Изоляция электродвигателя

Изоляция электродвигателя

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение «мегаомы»;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около «0»;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра — 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях — 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

  • 220В — 1,85мОм;
  • 440В — 3,7мОм;
  • 660В — 5,45мОм.

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать — снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:

  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

Источник