Меню

Однофазные цепи переменного тока основные элементы цепи

Цепи переменного тока. Определение и основные характеристики.

Цепи переменного тока

Приветствую всех на нашем сайте в рубрике “Основы электроники”!

В предыдущей статье мы обсудили понятия тока, напряжения и сопротивления, но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным 🙂 Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока. А область довольно-таки обширна! Смотрите сами – все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов. Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные “махинации” с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Зачем вообще нужно изменять напряжение переменного тока? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Распространение переменного тока

Как видите, с электростанции “выходит” высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели – а именно потребителей. Возникает вопрос – к чему такие сложности? Что же, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про сопротивление). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит.

Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны “толстые” провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно 🙂 А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули – преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока – его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока…

Генератор переменного тока.

Итак, генератор – это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

Генератор

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.

Магнит создает поле, вектор индукции которого B изображен на рисунке. Проводящая рамка площадью S равномерно вращается вокруг своей оси с угловой скоростью w. Поскольку рамка вращается, угол между нормалью к плоскости рамки и магнитным полем постоянно меняется. Запишем формулу для его расчета:

Здесь \alpha_0 – это угол в начальный момент времени (t = 0). Примем его равным 0, таким образом:

Вспоминаем курс физики и записываем выражение для магнитного потока, проходящего через рамку:

Величина магнитного потока, как и угол \alpha зависит от времени. Согласно закону Фарадея при вращении проводника в магнитном поле в нем (в проводнике) возникает ЭДС индукции, которую можно вычислить по следующей формуле:

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы – зависимость тока от времени будет иметь синусоидальный характер:

Переменный ток

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Основные параметры синусоидального сигнала.

Сигнал

На этом рисунке изображено два сигнала (красный и синий 🙂 ). Отличаются они только одним параметром – а именно начальной фазой. Начальная фаза – это фаза сигнала в начальный момент времени, то есть при t = 0. При обсуждении генератора мы приняли величину \alpha_0 равной нулю, так вот это и есть начальная фаза. Для данных графиков уравнения выглядят следующим образом:

Синий график: i(t) = I_msin(wt)

Красный график: i(t) = I_msin(wt + \beta)

Для второй формулы (wt + \beta) это фаза переменного тока, а \beta – это начальная фаза. Часто для упрощения расчетов принимают начальную фазу равной нулю.

Значение i(t) в любой момент времени называют мгновенным значением переменного тока. Вообще все эти термины справедливы для любых гармонических сигналов, но раз уж мы обсуждаем переменный ток, то будем придерживаться этой терминологии 🙂 Максимальное значение функции sin(x) равно 1, соответственно, максимальная величина тока в нашем случае будет равна I_m – амплитудному значению.

Следующий параметр сигнала – циклическая частота переменного тока w – она, в свою очередь, определяется следующим образом:

Где f – частота переменного тока. Для привычных нам сетей 220 В частота равна 50 Гц (это значит, что 50 периодов сигнала укладываются в 1 секунду). А период сигнала равен:

Среднее значение тока за период можно вычислить следующим образом:

Эта формула представляет собой ни что иное как суммирование всех мгновенных значений переменного тока. А поскольку среднее значение синуса за период равно 0:

На этом мы на сегодня и заканчиваем, надеюсь, что статья получилась понятной и окажется полезной. В скором времени мы продолжим изучать электронику в рамках нашего нового курса, так что следите за обновлениями и заходите на наш сайт!

Источник

Однофазные цепи переменного тока

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

ОДНОФАЗНЫЕ ЦЕПИ

ПЕРЕМЕННОГО ТОКА

Методические указания к лабораторным работам 6,7 по курсу «Электротехника и электроника»

для студентов химико-технологических

и технологических специальностей

редакционно-издательским советом

Саратовского государственного

технического университета

Лабораторная работа 6

ИССЛЕДОВАНИЕ ОДНОФАЗНОЙ ЦЕПИ

ПЕРЕМЕННОГО ТОКА С ПОСЛЕДОВАТЕЛЬНЫМ

СОЕДИНЕНИЕМ РЕЗИСТОРА, ИНДУКТИВНОЙ

КАТУШКИ И КОНДЕНСАТОРА

Цель работы: экспериментальное изучение линейной цепи синусоидального тока, состоящей из последовательно соединенных резистора, индуктивной катушки и конденсатора; изучение основных закономерностей в такой цепи; получение резонанса напряжений и изучение свойств цепи в этом режиме.

ОСНОВНЫЕ ПОНЯТИЯ

Рассмотрим цепь, состоящую из последовательно соединенных резистора (R), индуктивной катушки (L, Rк) и конденсатора С. Схема цепи показана на рис.1.

Рис.1. Последовательное соединение элементов R, L и С

Пусть цепь включена на синусоидальное напряжение , начальная фаза которого равна нулю. Тогда по цепи потечет ток, амплитуда которого будет определяться амплитудой напряжения Um и полным сопротивлением цепи Z, а начальная фаза тока будет зависеть от соотношений реактивных сопротивлений индуктивности XL и емкости XC. Возможны три случая: если XL >XC, то ток отстает от напряжения на угол j; если XL XC векторная диаграмма показана на рис.2.

Рис. 2. Векторная диаграмма

При построении вектор напряжения в масштабе mU откладывают по направлению тока I, затем к концу вектора прибавляют вектор напряжения на активном сопротивлении катушки , затем к концу вектора прибавляют вектор напряжения на индуктивности . Этот вектор опережает ток на 90°. Вектор напряжения на емкости прибавляют к концу вектора , отстающим от тока на 90°. Вектор напряжения сети проводят из качала вектора в конец вектора . При правильном построении длина вектора , умноженная на масштаб mU, должна быть равна напряжению на зажимах цепи. Вектор напряжения на катушке равен геометрической сумме векторов и . Величина этого напряжения равна

Векторные диаграммы для последовательной цепи при XL , то в режиме резонанса напряжения на катушке и конденсаторе будут больше напряжения сети, что приводит к опасности пробоя изоляции в катушке или конденсаторе, поэтому в силовых цепях такой режим недопустим.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

В радиотехнике, где абсолютные величины напряжений не велики, резонанс напряжений может использоваться для усиления сигнала. При

Читайте также:  Физика изучение законов постоянного тока

XL >>R; UL>>U сети.

Для цепи (рис.1) справедливы следующие соотношения для мощностей:

— активная мощность (Вт, кВт);

— реактивная мощность (В×Ар; кВ×Ар);

— полная мощность (В×А кВ×А); или ; ; ; ; .

МЕТОДИКА ЭКСПЕРИМЕНТА

Описание экспериментальной установки

Исследование последовательной цепи проводится на лабораторном стенде под названием «Однофазный ток». На стенде имеется схема опыта, необходимые приборы, изображены схемы замещения резистора, индуктивной катушки и конденсатора. От каждого из элементов выведены два зажима, необходимые для сборки цепи. Схема опыта представлена на рис.5.

Для изменения величины емкости в цепи батарея конденсаторов имеет несколько тумблеров и два щеточных переключателя, позволяющих включать десятки или единицы микрофарад емкости. Суммарная емкость батареи конденсаторов — 110 мкФ.

Напряжение источника питания стенда 24 и 36 вольт.

Приборы и методика измерений

Амперметры и вольтметры, постоянно установленные на стенде, имеют электромагнитную систему измерительного механизма. Приборы измеряют действующие значения переменных величин. Класс точности приборов 1,5. Переносной многопредельный лабораторный ваттметр класса точности 0,5 ферродинамической системы. Он имеет три переключателя: переключатель тока, переключатель напряжения, переключатель рода работы (измерение тока, или измерение напряжения, или измерение мощности). Предел измерения ваттметра определяется положением его переключателей

где I — ток, на который установлен переключатель тока;

U — напряжение, на которое установлен переключатель напряжения.

Цена деления ваттметра определяется по формуле

где n — число делений шкалы прибора.

Мощность, измеряемая ваттметром, будет равна Р = С× n’, где n’ — число делений шкалы, показываемое стрелкой прибора.

В данной лабораторной работе при измерениях используется метод непосредственного отсчета с прямыми однократными измерениями.

Точность прямых измерений оценивается определением абсолютной максимальной погрешности по формуле

где Am – верхний предел измерения прибора;

К — класс точности прибора.

Результат измерения записывается в виде

А±DА,

где А — показание прибора.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

1. Перед сборкой схемы убедитесь в том, что стенд отключен от сети. Ручка пакетного выключателя при этом находится в положении “откл”, а сигнальная лампа не горит.

2. Стенд включается только преподавателем или лаборантом после проверки схемы.

3. При измерениях не касайтесь оголенных токоведущих частей. Провода, подключенные к переносным приборам, держите за изолированные части.

4. Не прикасайтесь к зажимам отключенных конденсаторов, так как заряд на них может сохраняться длительное время.

5. По окончании измерений выключите стенд.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Ознакомиться со стендом и схемой опыта.

Рис. 5. Схема опыта

2. Собрать схему опыта (рис. 5).

3. Записать технические характеристики применяемых приборов, указав: наименование прибора, его марку, тип измерительного механизма, предел измерения, класс точности, заводской номер,

4. Собранную схему показать преподавателю для проверки. После проверки включить стенд в работу, при этом загорится сигнальная лампочка.

5. Изменяя величину емкости конденсаторов, добиться в цепи максимального тока; при этом должно выполняться условие Uк >UC. При этом условии в цепи наступит резонанс напряжений.

Записать показания всех приборов в табл.1, в четвертой строке.

U, B

C, мкФ

I, A

UR, B

UК, В

UC, B

P, Вт

R, Ом

RК, Ом

ХC, Ом

ХL, Ом

ZК, Ом

jК,

S, B×A

cosj

6. Произвести измерения тока, мощности и напряжений на элементах цепи при трех значениях емкости батареи конденсаторов меньших, чем при резонансе. Данные занести в табл.1, строки 1¸3. При этом необходимо следить, чтобы при записи данных в табл.1 от первой строки (для С= О) к последней (С= 110 мкФ) емкость монотонно увеличивалась.

7. Произвести измерения тока, мощности и напряжения на элементах для трех значений емкости больших, чем при резонансе. Данные занести в табл.1,строки 5, 6, 7.

ОБРАБОТКА РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ

1. По данным наблюдений вычислить величины:

R (Ом); RК (Ом); L (Гн); ХL (Ом); ХС (Ом); ZК (Ом);jК ; Z (Ом); cosj.

Вычисления провести для всех строк табл.1, имея в виду, что величины R; RК; L; XL; ZК; jК — постоянные, поэтому их достаточно вычислить один раз для режима резонанса напряжений. Остальные величины — переменные, и их вычисления следует проводить для каждой строки табл.1. Вычисления проводить по формулам:

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

где Р – мощность, измеряемая ваттметром Вт; IРЕЗ — ток в цепи в режиме резонанса.

R= UR/IРЕЗ,

где UR — падение напряжения на резисторе в режиме резонанса.

RК=RS R, Ом,

где f=50 Гц; СРЕЗ – в мкФ.

где С – текущее значение емкости в мкФ.

Z= U/I, где U – напряжение в начале цепи.

cosj = RS/z.

2. По результатам наблюдений в одной и той же системе координат построить следующие кривые: I = f(C); Uк= f(C); UC = f(C).

3. По данным измерений и вычислений построить векторные диаграммы для трех случаев: а) XL > XC, б) XL = XC, в) XL XC, б) XL = XC, в) XL I3. Это и будет резонанс токов. Записать показания всех приборов в табл.2, в четвертой строке.

Источник



Цепи однофазного переменного тока (ОПТ)

date image2015-04-01
views image11753

facebook icon vkontakte icon twitter icon odnoklasniki icon

Элементы цепи ОПТ и их свойства

Однофазным переменным током называют ток, меняющийся по закону синуса / косинуса:

Здесь Im — амплитуда колебаний тока; ω=2πν — циклическая частота колебаний; φI — начальная фаза колебаний.

Источниками переменного тока являются генераторы переменного тока, чье напряжение меняется по аналогичному закону. Цепи переменного тока формируются так же, как и цепи постоянного тока, т.е содержат источник электрической энергии и потребителей этой энергии. Эти цепи могут быть простыми и сложными , разветвленными и неразветвленными, с одним или несколькими источниками напряжения. Для токов и напряжений в таких цепях также справедливы первый и второй законы Кирхгофа, законы Ома, Джоуля-Ленца и т.д.

Однако физические процессы в таких цепях намного сложнее и разнообразнее, чем в цепях постоянного тока. Здесь уместна их аналогия с фото и видео: хотя любое видео, технологически, сводится к большой совокупности фотографий, его информационные возможности несопоставимо богаче информационных возможностей фотографий.

Соответственно, математическое описание переменного тока требует более сложного математического аппарата и графического инструментария.

Основными элементами цепи переменного тока являются:

1) источники переменного напряжения, E (U)

4) катушки (индуктивности), L

Первые два типа элементов присутствуют и в цепях постоянного тока. Однако два последних в них не используются : 1) конденсаторы создают разрывы в цепи и не пропускают постоянный ток; 2) катушки пропускают постоянный ток, но обладают в нем нулевым сопротивлением , и, следовательно, не оказывают на распределение токов и напряжений никакого влияния.

Если конденсатор включить в цепь с переменным напряжением, то амперметр зарегистрирует наличие тока. Это значит, что он пропускает переменный ток. Как такое возможно? Причина заключается в том , что разрыв, создаваемый конденсатором в цепи, не является препятствием для электрического поля, через которое заряды на одной пластине конденсатора влияют на заряды другой. При постоянном токе это взаимодействие прекращает ток — заряды, набежавшие на пластину ближайшую к источнику тока, останавливают набегающие от источника заряды путем их отталкивания.

В переменном токе это взаимодействие, наоборот, поддерживает ток, приводя в движение заряды по другую сторону разрыва. Что касается взаимодействия набежавших и набегающих зарядов на пластине, обращенной к источнику тока, то оно вызывает не прекращение тока, а лишь его торможение. В результате конденсатор оказывает сопротивление току и создает на себе падение напряжения.

Если , аналогично, включить в цепь переменного тока катушку, то вольтметр зарегистрирует на ней падение напряжения, что является признаком появления у ней сопротивления. Откуда оно взялось — ведь в постоянном токе катушка обладает нулевым сопротивлением?

Ответ кроется в явлении электромагнитной индукции (ЭМИ). При изменении тока в катушке, изменяется ее магнитное поле, а согласно закону ЭМИ изменение последнего порождает вихревое электрическое поле. Согласно правилу Ленца вихревое поле ЭМИ всегда противофазно полю создающему ток и , следовательно, оказывает ему сопротивление.

Появление в цепях переменного тока катушек и конденсаторов кардинально меняет их (цепей) электрические свойства.

Это проявляется в:

1) расфазировке (рассогласовании) колебаний тока и напряжения;

2) реактивном характере потребления энергии

Первое свойство означает несовпадение динамики изменения тока и напряжения как на конденсаторе, так и на катушке, а именно: когда напряжение по модулю максимально, ток равен нулю, и наоборот. Второе свойство означает принципиально новую форму потребления энергии — и катушка и конденсатор, забирая энергию у источника тока, возвращают ее затем ему обратно.

Реактивностью, реакцией, как известно, называют свойство объекта формировать отклик (реакцию) на внешнее воздействие. Например реактивное движение возникает как результат ответного влияния отбрасываемого объекта на отбрасывающий объект ( ракета, морские моллюски и т.д.). Реактивный характер потребления энергии выражается в последующем отбрасывании от себя полученной энергии.

Читайте также:  При измерении силы тока в каком то элементе электрической цепи амперметр подсоединяют

Расфазировка колебаний тока и напряжения на конденсаторе определяется противоположным характером влияния накопленного им заряда на ток и напряжение:

1) чем больше заряда оказывается на конденсаторе, тем меньше к нему ток, так как набежавшие заряды отталкивают набегающие;

2) чем больше заряда на конденсаторе, тем силнее его электрическое поле, — и тем больше напряжение

Расфазировка колебаний тока и напряжения на катушке определяется противоречивым характером влияния тока на величину вихревого поля ЭМИ:

а) наибольшую ЭДС ЭМИ ток создает при нулевом значении ( в этот момент он, — а следовательно и магнитное поле, — изменяется быстрее всего);

б) наименьшую ЭДС ЭМИ (ноль) ток создает при максимальном значении, когда его рост прекращается.

Наиболее наглядно точный характер расфазировки колебаний тока и напряжения можно показать на временных диаграммах (рис.6, рис.7) Сплошными линиями на графиках показаны синусоиды колебания напряжения, пунктирными — тока.

Рисунок 6 показывает как соотносятся колебания этих параметров на катушке, а рисунок 7 — на конденсаторе. Сдвиг в фазах в обоих случаях одинаков и составляет 90 0 , однако при одной и той же фазе напряжения , фазы токов в катушке и конденсаторе противоположны. Говорят, что напряжение в катушке опережает ток на 90 0 , а на конденсаторе — отстает . Это следует из того, что ток на катушке идет в область положительных значений, с некоторым запаздыванием по отношению к напряжению, а у конденсатора — с опережением.

Физически это объяснимо:

1) в катушке при большом внешнем напряжениивозникает противоположная по знаку эдс ЭМИ — в результате ток в ней подавляется; он начинает нарастать лишь по мере ее ослабевания;

2) в конденсаторе, наоборот — даже при нулевом значении напряжения ток уже достигает максимальной величины, что есстественно: отсутствие напряжения означает отсутствие на конденсаторе зарядов и, как следствие, – отсутствие какого-либо сопротивления набегающим зарядам.

Наконец на рисунке 8 показаны ко-лебания тока и напряжения на резисторе. Здесь никакой расфазировки не наблюдается, так как падение напряжения создается самим током (а не зарядами или ЭДС, как у конденсатора или катушки).

Векторные диаграммы цепей ОПТ

Рассогласование колебаний тока и напряжения на реактивных элементах ОПТ (т.е. катушке и конденсаторе) резко усложняет их математическое и даже наглядное описание. Действительно, если электрическая цепь состоит из большого количества таких разнородных элементов, то, например, при втекании в один провод пяти расфазированных токов, суммарный ток будет представлять «кашу» из синусоид и определение суммарного тока может оказаться весьма сложной задачей ( ситуация оказывается похожей на описание поведения поверхности воды под дождем).

Для решения этой проблемы используется метод векторных диаграмм (ВД). На них колебания каждого электрического параметра ассоциируют с вращающимся вектором ( например, вращающийся на нити шарик создает на стене, — при его освещении, — колеблющуюся тень). Если в один провод втекает несколько токов, то на ВД для такого провода рисуют соответствующее количество векторов. Так как все токи колеблются , то соответствующие им вектора на ВД должны находиться в совместном вращении. Однако важнейшей особенностью колебаний любых электрических параметров в цепях ОПТ является одинаковость их периодов.

На ВД это выражается в одинаковой скорости вращения всех векторов. Последнее означает неподвижность этих вектров относительно друг друга, а следовательно непринципиальность самого факта вращения. Это позволяет изобразить все колеблющиеся электрические параметры в виде неподвижных векторов.

Наличие вращения, тем не менее, учитывают через:

1) увязывание угла, под которым рисуется вектор на графике, с циклической частотой и фазой колебания всех электрических параметров φ = ω?t + φ =2πν?t + φ ;

2) выбором положительного отсчета углов и направления вращения векторов ( теперь уже «воображаемого» ) против часовой стрелки.

Если требуется учесть колебания всех электрических параметров цепи, то независимо от того на каких участках полной цепи они появляются, все их можно отобразить на одно й диаграмме, поскольку принципиальное значение имеет лишь временная расфазировка

Пространственная расфазировка в цепях ОПТ отсутствует из-за огромной скорости распрос-транения электромагнитных взаимодействий, т.е. в любой точке цепи в заданны й момент времени все значения рассматриваемого параме-тра имеют одну и туже фазу колебания.

Предположим, что втекающие в один провод несколько токовмы изобразили в виде нескольких векторов а, b, c (рис.9) . Каким образом можно найти полный ток ? Ответ на этот вопрос теперь уже не представляет сложности — для этого используем правило векторного сложения, которое имеет несколько вариантов применения:

1) в виде известного правила «параллелограма»;

2) в виде правила последовательного соединения складываемых векторов друг за другом (начало последующего вектора соединяем с концом предыдущего — итоговый вектор соединяет начало самого первого вектора с концом самого последнего (рис.9).

Если все сказанное применить теперь к векторному способу отображения колебаний тока и напряжения на катушке, конденсаторе и резисторе, то получим ВД на рис.10, рис.11, рис.12. (длинный вектор соответствует напряжению, короткий — току). На рис. 10 видно, что в катушке значениям тока и напряжения, отмеченным черными кружками на временнóй диаграмме, соответствует положения векторов на левой круговой диаграмме; правая круговая диаграмма иллюстрирует точную ориентацию и угол между векторами напряжения и тока для катушки. Аналогичное соответствие между временными значениям тока и напряжения, и положениями векторов на векторных диаграммах, иллюстрируют графики для конденсатора (рис.11) и резистора (рис.12)

Законы Ома для элементов R-L-C цепей ОПТ

Математический анализ зависимости тока и напряжения на различных эле-ментах переменной цепи показывает, что для них справедлив закон Ома.

1. На резисторе закон Ома записывается точно также как и для постоянного тока — формула справедлива для любого момента времени:

2. На катушке закон Ома соблюдается только для амплитудных значений, или для тех значений тока и напряжения, которые имеют одну и ту же фазу:

где — индуктивное сопротивление катушки

Из формулы следует , что сопротивление катушки тем больше, чем больше ее индуктивность и циклическая частота переменного тока. Это согласуется и с физической природой сопротивления катушки переменному току. Действительно, индуктивность L является показателем величины магнитного поля , создаваемого током ( Ф = LI), а ω — показателем скорости его изменения. И то и другое в прямой пропорции увеличивают вихревую ЭДС, создающую сопротивление току.

2. На конденсаторе закон Ома также соблюдается только для амплитудных значений, или для тех значений тока и напряжения, которые имеют одну и ту же фазу:

, где — емкостное сопротивление конденсатора

В этом случае из формулы вытекает, что сопротивление конденсатора наоборот уменьшается — как с ростом частоты, таки с ростом емкости конденсатора. Это объясняется тем, что с ростом частоты заряды не успевают набежать на обкладки конденсатора и, следовательно, — создать заметное сопротивление набегающим зарядам. Рост емкости, также вызывает уменьшение сопротивления, поскольку он означает снижение, тем или иным способом, величины взаимного отталкивания зарядов.

Указанные графические методы и математические формулы позволяют перейти к описанию и анализу конкретных цепей переменного тока. Для образовательных целей наиболее принципиальными среди них являются последовательная и параллельная R-L-C-цепи.

Последовательная R-L-C цепь ОПТ

Для цепей ОПТ, как и для цепей постоянного тока, расчет сводится к определению токов и напряжений на всех участках цепи. В данном случае, при известном напряжении на генераторе (U) , его циклической частоте ω, требуется определить ток в цепи (I) и напряжения на всех ее участках(UR, UL, UC). Слож-ность расчета заключается в неодинако-вости фаз колебаний рассматриваемых параметров. Как уже указывалось выше, учет этих фаз можно осуществить через построение векторов.

Из схемы (рис.13) следует, что через все элементы цепи проходит один и тот же ток — следовательно, с него и надо начинать построение диаграммы. Так как в реальности все вектора вращаются, то рассмотрим схему в тот момент, когда вектор общего тока находится в горизонтальном положении и направлен вправо (рис.14): для всех последующих расчетов это не имеет никакого значения.

Выбор ориентации вектора тока предопределяет ориентацию напряжений на резисторе (всегда параллелен току), на катушке (направляем вверх – опережает при вращении ток) и на конденсаторе (направляем вниз — отстает при вращении от тока).

Общее напряжение на генераторе (U) получим, сложив все напряжения векторным образом, а связь между суммарным напряжением и составляющими найдем из получившегося треугольника напряжений по теореме Пифагора:

Читайте также:  Как по резине проходит ток

Используя законы Ома для отдельных элементов

и подставляя их в полученную формулу, получим:

Так как ток во всех элементах одинаков, его можно вынести за квадратный корень, индуктивное и емкостное сопротивления выразить через Lи С:

Полученное выражение можно рассматривать как закон Ома для последовательной R-L-C цепи. Параметр Zназывают полным или комплексным сопротивлением всей цепи.

Зная значение Z, нетрудно рассчитать напряжения на всех участках цепи:

Из чертежа видно, что между векторами напряжения на генераторе и полным током существует угол φ, который по своему физическому смыслу представляет собой не что иное, как сдвиг фаз между колебаниями тока и напряжения. Из чертежа следует, что он может быть вычеслен через тангенс треугольника напряжений:

Или сокращая , ток и переходя к основным параметрам элементов, получим окончательное выражение:

Из чертежа видно, что по модулю угол φ, в общем случае, может меняться от 0 до . По установленным в математике правилам угол считается положительным, если он отсчитывается от горизонтальнойоси ОХ, направленной вправо, против часовой стрелки. В электротехнике сдвиг фаз считается положительным, если при вращении против часовой стрелке вектор напряжения оказывается впереди (левее) вектора тока, т.е. если напряжение опережает по фазе ток. Поскольку такое положение вещей всегда имеет место в катушке – индуктивности — то любая цепь, где напряжение опережает ток называется активно-индуктивной , а сдвиг фаз считается положительным

0 ХС угол φ оказывается отрицательным, а из векторной диаграммы — что ток при этом опережает напряжение по фазе. Это соответствует активно-емкостной цепи.

При ХL 0 ( положительный знак φ означает, что формула для тока непосредственно описывает активно-емкостную цепь; для активно-индуктивной цепи φ надо взять со знаком «- »). Тогда обозначая непоглощаемую, т.е. реактивную мощность буквой Q, запишем:

Далее используем известную алгебраическую формулу:

Аналогичным образом формула мощности содержит постоянную ( знак «-» связан с выбором опережающего характера тока) и переменную составляющие.

Так как переменные составляющие не представляют интереса , мы приходим окончательно к двум важнейшим формулам мощности переменного тока:

Учитывая известное выражение , введем понятие полной мощности переменного тока:

Из формул следует что реальные мощности оказываются в 2 раза меньше максимально возможных. В связи с этим в электротехнике введены понятия действующих значений тока и напряжения:

Во всех дальнейших формулах подразумеваются только действующие значения токов и напряжений и индексы при них не ставятся.

Источник

Однофазные и трехфазные электрические цепи

Однофазный переменный ток

Переменный электрический ток по сравнению с постоянным имеет большое преимущество в быту и на производстве. Преимущество переменного тока обусловлено в первую очередь в том, что напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии и передавать на большие расстояния. Именно поэтому переменный ток и напряжение широко применяется в промышленности.

В промышленности (на электростанциях) переменный электрический ток вырабатывается генераторами переменного тока, в которых используется явление электромагнитной индукции. Простейшая схема получения переменного тока и напряжения показана на рис.7:

Тоэ -10 пер ток

Проволочная рамка (виток) вращается в однородном магнитном потоке с постоянной скоростью. Изменения проходящего через поверхность рамки (витка) магнитного потока будет происходить непрерывно, при этом поток создаваемый электромагнитом (индуктивной катушкой и стальным сердечником), будет оставаться неизменным. В рамке возникает ЭДС индукции, которую измеряет вольтметр.

Для наглядного убеждения рассмотрим положения рамки в разные моменты времени на Рис. 8. В начальный момент (Рис. 8, а) плоскость рамки перпендикулярна магнитным линиям, соответственно магнитный поток через рамку максимален, через четверть периода (Рис. 8, в) рамка расположена параллельно магнитным линиям и магнитный поток равен нулю:

Тоэ -11 пер ток

Но ЭДС индукция определяется не самим потоком, а скоростью его изменения, в первом положении рамки (Рис. 8, а) ЭДС будет равна 0, а соответственно в третьем положении (Рис. 8, в) ЭДС индукции будет иметь максимальное значение. При других значениях ЭДС индукции меняет также своё значение и знак, т.е. будет переменной.

Ток, возникающий в рамке под действием ЭДС индукции, с течением времени будет изменяться как и сама ЭДС. Такой ток называется переменным синусоидальным током.

Промежуток времени, в течение которого ток совершает одно полное колебание (один оборот), называется периодом переменного тока. Период колебания обозначают Т, число колебаний за 1 сек. Называют частотой тока и обозначается буквой f. Единицей частоты обозначают в герцах (Гц):

f = 1/Т или Т = 1/f.

Заметим, что в нашей стране и в большинстве других стран в промышленности и в быту применяют переменный ток с частотой 50 Гц.

Например, если генератор вращается со скоростью 3000 оборотов в минуту (60 сек.), и имеет один полюс (Рис. 7), то тогда:

f = 3000/60 = 50 Гц.

Уравнения и графики синусоидальных величин

Рассмотрим более подробно анализ электрических цепей переменного тока синусоидальных величин с помощью уравнений и графиков.

В любой точке воздушного зазора, положение которой определяется углом β, отчитанным от нейтральной плоскости (нейтрали) против движения часовой стрелки, магнитная индукция выражается уравнением:

В = Вmsinβ, где

В – магнитная индукция; Вm – амплитудная (наибольшая величина) магнитной индукции; sinβ – угол магнитного поля.

Нейтральная плоскость перпендикулярна оси полюсов и делит магнитную систему на симметричные части, из которых одна условно северная, а другая — южная. Наибольшую величину (см. Рис. 9) магнитная индукция имеет под серединой полюсов, т.е. при углах β = 900 и β = 2700, а на нейтрали β = 00 и β = 1800 магнитная индукция равна нулю.

Приведем характеристики и определения синусоидальных величин к синусоидальной ЭДС:

Тоэ -11 пер ток 2

Мгновенная величина (или мгновенное значение) ЭДС (е) – величина ЭДС в рассматриваемый момент времени. Мгновенное ЭДС определяется уравнением:

e=Еmsin (ωt ± ψ)

при подстановке в него времени t, прошедшего от начала отчета до данного момента.

Амплитуда Еm – наибольшая величина, которую принимает ЭДС в течении периода. Амплитуда является одной из мгновенных величин, которая соответствует аргументу ωt ± ψ, равному + 900, где k любое целое число или нуль.

Фаза (фазовый угол ωt ± ψ) – аргумент синусоидальной ЭДС, отчитываемый от ближайшей предшествующей точки перехода ЭДС через нуль к положительному значению. Фаза в любой момент времени определяет стадию гармонического изменения синусоидальной ЭДС.

Начальная фаза ψфаза синусоидальной ЭДС в начальный момент времени. Сдвиг по фазе – две синусоидальные величины, имеющие разные начальные фазы. Угловая частота ω, (или угловая скорость) – угол поворота (α) генератора в ед. времени (t). За время одного периода Т угол поворота ротора равен в радианах, следовательно:

ω = α/t = 2π/Т = 2π/f.

Трехфазные цепи Основные понятия:

Многофазной системой называется совокупность электрических цепей, называемых фазами, в которой действуют синусоидальные напряжения одной частоты, отличающиеся друг от друга по фазе. Чаще всего применяются симметричные многофазные системы, напряжения которых равны по величине и сдвинуты по фазе на угол 2π/m, где m – число фаз. Наибольшее распространение имеет трехфазная система (созданная русским ученым М.О. Доливо-Добровольским в 1891 году), он также изобрел и разработал все звенья этой системы (генераторы, трансформаторы, линии электропередач и двигатели трехфазного тока). Трехфазной системой называют систему, состоящую из трех цепей, в которой действуют переменные ЭДС, имеющие одинаковые амплитуды и частоту, но сдвинутые по фазе друг относительно друга на 120° или на 1/3 периода (так называемый электрический угол) см. Рис. 10.:

Тоэ -1 трех фаз

Для получения связанной трехфазной цепи (несвязанные трехфазные цепи в настоящее время не применяются) используют трехфазный генератор. Простейший трехфазный генератор схематически показанный на Рис. 11, где обмотки фаз сдвинуты друг относительно друга на угол 120°/р, где р — число пар полюсов. В случае двухполюсного генератора (Рис. 11) р = 1 и угол равен 120° (2р/3). При вращении ротора в силу идентичности трех обмоток генератора в них наводится ЭДС сдвинуты по фазе по отношению друг к другу на одну треть периода. Векторы, изображающие эти ЭДС, равны по модулю и расположены под углом 120° (2р/3), см. Рис. 12.:

Тоэ -1 трех треугольник

Для примера приведем формулы расчет потерь электроэнергии в линии:

1. Проверка линии по длительно допустимому току:

Ip= Рр / (√3 х Uн х cos φ), (А); где:

2. Расчет линии на потерю напряжения:

∆U% = (100 / ﻻ х Uн²) х (Рр х Lo / Sпр), (∆U%); где: 3. Расчет линии на потерю мощности: ∆Р(%) = Ip²х 3 х (ro x Lo) / Pp х 100, (∆Р); где: 4. Расчет линии на потерю полной мощности: S кВА = P/cos φ, (кВА).

Источник