Меню

Ограничение тока коллектора транзистора

Как представить образно процесс влияния резистора в базе на ограничение тока коллектора в транзисторе?

Самый непонятный вопрос, как физически в такой схеме, ток базы влияет на ток эмиттера и значит коллектора, если ток базы это всего-лишь ответвление тока эмиттера, а эмиттерный переход это попросту диод, к которому приложено прямое напряжение, которое и определяет ток в эмиттерном переходе. Ясно, что коэффициент бетта стабилен и ток коллектора больше тока базы на его величину. Но физического объяснения это соотношение напрямую не дает, только математическую пропорцию, используемую для расчета ограничения тока коллектора или рабочей точки. А физически ток эмиттера задает именно напряжение на эмиттерном переходе. Чем оно выше, тем и выше ток эмиттера, дальше ток идет в основном в коллектор, и один процент допустим в базу. Но как ответвление в базу влияет на сам исходный ток эмиттера, который зависит только от напряжения на переходе? То есть почему ограничение тока ответвления в базу влияет на ток эмиссии эмиттера-на свой исток собственный? Я сам думаю. что это ответвление в базу влияет на напряжение на базе в данной схеме, так как при большем резисторе напряжение на базе падает ниже и меньше открывает эмиттерный переход, то есть транзистор управляется все же напряжением на эмиттерном переходе, оно становиться меньше, отсюда и ограничение тока коллектора, но расчитать по характеристикам эмиттерного перехода, как диода, это маловозможно, слишком мало изменение напряжение на базе, есть какая-то хитрая зависимость между ответвлением тока на базу и напряжением на базе именно в данной схеме, которое определяет ток эмиттера. Наверно закон ома все же определяет падение напряжения на резисторе, а тот в свою очередь изменяет напряжение на базе. Но считают все это иначе, просто по бетта, но через это физическое управление не ясно никак, хотя может оно и есть, но очень тонко это все можно понять. Так как все таки ток коллектора ограничен в данной схеме током базы? Запомнить такие соотношения для расчета можно. а вот понять сразу очень трудно. Как вы это все себе представляете внутри одним словом, вот в чем вопрос.

Я думаю все намного проще чем мне пишут, просто резистор меняет рабочую точку на вах эмиттерного перехода так, что при повышении падения напряжения на резисторе он закрывает р-т переход, тем самым ток ограничивает, не давая току коллектора быть выше чем в бэтта раз больше расчетного.

В этой схеме транзистор управляет яркостью свечения лампочки. Иными словами, он регулирует ток, протекающий через лампочку. Поскольку лампочка подключена к коллектору транзистора, то и ток, текущий через нее является током коллектора.

Управляющий ток базы ограничивается резистором R1. Зная этот ток и коэффициент усиления транзистора (h21э), можно легко узнать ток коллектора. С другой стороны, зная, какой нам нужен ток коллектора, мы всегда можем вычислить ток базы и подобрать соответствующий резистор.

Ну, что ты столько понакатал -это просто база-эмитер или открывает или закрывает переход эмитер-колектор, резистор на базе регулирует ток на переходе база эмитер- тем самым регулирует открытость или усиление тока эмитер- колектор и если подать на базу еще и полезный сигнал= переход эмитер колектор его усилит. если образно то транзистор надо нарисовать как электронно -дырочный переход и там будет видно как электроны переходят в дыры -и как это зависит от тока база эмитер! выдумщик ты ..вот смтри приблизительно так.

У москвичей есть такой странный дефект. Если поездить долго, тогда что-то внутри от огнедышащего мотора разогревается через металлический корпус, и потом начинает глючить стартёр. Иной раз встанешь после длительной поездки и машина ни в какую не хочет заводиться. Есть общеизвестная народная хитрость. Перемкнуть чем-то металлическим (отвёрткой, открывашкой, ручками плоскогубцев без изоляции) два болта на стартере. Крутанул втягивающее реле. А потом машина заводится. Сколько спрашивал про смысл поломки, так никто и не смог объяснить. В общем, я думаю, что там какие-то зубцы не верно были просчитаны, и металл от нагрева расширяется и стартёр намертво клинит до момента его полного остывания.

В общем, это было большее отступление. Поясню, к чему оно здесь. У меня в машине отродясь никогда не было светодиодных ламп. Однажды я их накупил целый ворох и поставил под капотом, в багажник. И заметил такую довольно странную особенность, каждый раз, как только при включённой светодиодной лампе пытаешься запустить внахаловку стартёр, то эта лампа тут же перегорает. Моментально. Смысл в том, что замыкая два болта, цепь оказывается замкнута в обход реле (где-то какое-то защитное реле имеется), аккумулятор подвергаешь риску закорачивания. При этом «фокусе» в бортовой сети резко падает напряжение. Ясное дело, что ток в контуре должен резко повыситься. И от высокого тока получается, выгорают все светодиоды. Но, что же такое ток. Что вообще можно считать за электрический ток.

А теперь всё это надо переложить на понимание физического смысла «механизм работы транзистора»: https://otvet.mail.ru/question/191558672

Вот, как-то так получилось. Слишком многословно. Но, по-другому, думаю, вряд ли получится объяснить это явление. ¯\_(ツ)_/¯

Источник

Транзисторы для начинающих

Безопасная зона работы

Ток коллектора

В начале вопрос: может ли быть ток коллектора бесконечно большим? Теоретически, увеличением тока базы, вы можете свободно увеличивать ток коллектора.

Тем не менее, в той или иной схеме максимальный ток коллектора транзистора только в состоянии насыщении и, главное, не определяется транзистором, а только напряжением питания и сопротивлением нагрузки. При снижении сопротивления нагрузки увеличивается ток.

Как вы догадались, этот ток нельзя увеличивать произвольно. Каждый транзистор имеет максимальный ток коллектора, обозначается в каталогах производителей — ICmax.

Значение этого тока, зависит от конструкций и толщины переходов транзистора.

При протекании тока через сопротивление, выделяется тепло. Вы наверное, догадываетесь, или, может быть, вы видели своими глазами, что связи между слоями кремния транзистора и проводники сделаны из тонкой проволоки. Хотя ее часто делают из золотой проволоки, они при избыточном токе ведут себя как самые обычные предохранители – разогреваются и перегорают.

Не только проводники. Кремниевая структура транзистора так же имеет не большие геометрические размеры. Если пропустить большой ток через эту структуру имеющую малое сечение, мы получим, ток очень большой плотности. Не забывайте, мы имеем дело с чувствительной структурой полупроводника и чрезмерное увеличение плотности тока приводит не только к повышению температуры, а также целый ряд других негативных явлений. Я буду говорить только об уменьшении коэффициента усиления по току (β) с ростом тока коллектора.

Таким образом. Ограничение коллекторного тока производителем обосновано допустимой плотностью тока, и температурой плавления структуры, вы не можете ее превышать.

Если вы думаете о мгновениях, то можно придти к выводу, что если транзистор будет работать в импульсном режиме, открылся, пропустил ток только на короткое мгновение, за это мгновение структура не успевает разогреться и расплавиться. Таким образом, ток в импульсе может быть и больше максимальной ток в не прерывном режиме.

Вы правы! В каталогах часто приводят максимальном токе коллектора при непрерывной работе и максимальный ток коллектора для импульса. Вы можете это увидеть в характеристиках силового транзистора.

Но сейчас, мы не будем связываться с этим вопросом. Как вы думаете или если не превышать ток Icmax каталога, и напряжения UCEmax, ваш транзистор не находится в опасности?

Рассеиваемая мощность

Мы начинаем обсуждать важную и, как выясняется – трудную тему. Но вы должны понять ее! Самую сложную информацию я дам вам в следующем месяце, а сейчас все элементарно.

Наверное, вы слышали такой термин: мощность транзистора.

Что такое мощность транзистора? И что такое общая мощность?

Термин мощность относиться ко многим устройствам:
Двигатель имеет мощность 100 Вт,
Электрический обогреватель имеет мощность до 2000 Вт,
Паяльник 40 Вт,
У нас есть две лампочки в 60 Вт, одна на 220 Вольт, другая на автомобильные 12 Вольт.

Все эти машины используют электроэнергию от источника и конвертируют ее в другие формы энергии: тепло в механическую энергию (двигатель) энергию света (лампа).

Чем больше мощность, тем больше энергии потребляет в каждый момент это устройство. Обе эти лампы потребляют ту же мощность 60 Вт. В чем разница? Конечно, что одна работает при напряжении 12 вольт и потребляет 5 ампер тока (12Вх5A=60W) а другая, которая работает при напряжении 220 В, потребляет немного больше чем 0,27 ампер (что также дает 220×0,27=60 Вт).

Таким образом, одни и те же мощности могут быть достигнуты с различными токами и напряжениями. Вот простые формулы, необходимые для расчета мощности. Я беру электрические оборудование, работающего на постоянном токе (переменный ток работающий на активное сопротивление). Запомните раз и навсегда:

Возвращаясь к вопросу о мощности транзистора: это мощность, рассеиваемая нагрузкой? Может мощность, рассеиваемая транзистором? Или, может быть даже что-то еще? Ранее я объяснил вам, что коллекторная цепь – это регулируемый источник тока, а не переменный резистор, однако это не меняет тот факт что, когда через структуру транзистора будет течь ток будут потери мощности на тепло. Величина этих потер, определяется по формуле: P UCE IC Где Uce это напряжение между коллектором и эмиттером, Ic – ток коллектора. Строго говоря, мы должны так взять во внимание потери мощности в базовой цепи Ube*Ib, но так как эта мощность очень маленькая, по сравнению с мощностью рассеваемой на коллекторе, она не учитывается.

И что происходит дальше с этим теплом? Если оно остается в транзисторе?

Ни в коем случае! У вас нет ни каких сомнений, что если транзистор не будет хорошо термоизолирован от окружающей среды, это выделяемое тепло приведет к повышению температуры. И это вредное тепло необходимо рассеять во внешней среде. Смотри рисунок 43.

Тут работает простой принцип: тепло передается от горящего к холодному.

Вы уже знаете, что такое потери мощности транзистора. Но именно здесь, кроиться кардинальная ошибка начинающих. Они рассуждают следующим образом: если транзистор может работать при максимальном напряжении коллектора UCE0 и максимальном токе коллектора Icmax, максимальная «мощность транзистора» равна Р = UCE0 × ICmax.

Это абсолютная ерунда, нельзя так просто рассчитать мощность. Посмотрите в каталог любого транзистора и найдите там его мощность, она обозначается Ptot. Запомните раз и навсегда: общая мощность транзистора всегда меньше чем произведение Р = UCE0 × ICmax.

А теперь вычислите. Какая мощность рассеивается на транзисторе, а какая на нагрузке схем на рисунке 44. Возьмем схему 44а, сначала рассчитаем напряжение на резисторе, потом на транзисторе, а потом обе мощности. Напряжение на резисторе:

Мощность рассеиваемая на резисторе:

(То же самое можно вычислить по формуле ) Напряжение на транзисторе:

Мощность рассеиваемая на транзисторе:

Для других схем на рисунке 44, рассчитайте самостоятельно.

Как вы можете видеть, расчеты совсем не сложные. Таким образом, мы идем дальше. Вы уже знаете три условия работы транзистора:
1 Напряжение питания не должно быть больше, чем указанное в каталоге напряжение UCE0. Самое высокое напряжение присутствует на коллекторе транзистора в состоянии отсечки.
2 Ток коллектора не может быть больше, чем ICmax. Самый большой ток протекает через транзистор в состоянии насыщения.
3 Рассеиваемая мощность транзистора, ни при каких обстоятельствах не превышает допустимую Ptot.

Рассмотрим эти три ограничений на примере транзистора с параметрами (UCE0 = 25В, ICmax = 100mA, Ptot = 500 мВт) смотри рисунок 45. Если напряжение и ток на графике это прямые лини, тогда линия, представляющая мощность Р = U × I) будет иметь вид гиперболы, как это показано на рисунке 45. Однако если ток и напряжение отложить на логарифмических шкалах, то кривая мощности станет прямой. Что видно на рисунке 46. Тут нет никакого мошенничества — рисунки 45 и 46 показывают одни и те же значения, но не много по разному: в линейном масштабе, и в логарифмическом. В каталогах приводятся характеристики похожие на рисунок 46. На Рисунке 47 вы можете найти копии конкретных характеристик транзисторов BD243 и BD244, взятых из каталога. Тут для вас есть масса информации, если транзистор будет работать в импульсном режиме, то мгновенный ток и мгновенную мощность можно будет взять больше чем при постоянной работе. Заметим, однако, что характеристика на рисунке 47 имеет еще одно ограничение по сравнению с рисунком 46. Это «отсечение», что является дополнительным ограничением, связанным с явлением так называемого вторичного пробоя (второй пробой). Появление вторичного пробоя приводит к повреждению транзистора. Подробнее об этом можно найти в книгах. Я не буду сейчас объяснять, потому что это сейчас не нужно. В любом случае, у нас есть еще одно ограничение.

В любом случае, мы достигли пиковой точки нашего сегодняшнего обсуждения: проектируемая схема должны вписываться в безопасную рабочую область транзистора. В каталогах она часто обозначается SOAR или SOA. Это сокращение от английского область безопасной работы (Area). Рисунок 47 показывает безопасную рабочую область для транзистора BD243 и BD244.

Строго говоря, при проектировании схемы вы должны найти график показывающий область безопасной работы транзистора (такой, как на рисунке 47), выполнять расчеты, или выбрать на графике ток транзистора и убедиться что мощность находиться в разрешенной зоне. Примеры, которые мы обсуждали несколько минут назад это простейшие случай – транзистор работает на активное сопротивление нагрузки. Во многих схемах, дело обстоит сложнее. Так, например, транзисторы в усилителе мощности выходного каскада также должны работать в безопасной зоне работы при любых условиях — даже в случае короткого замыкания на выходе, подключении к емкостной нагрузкой (длинный кабель) или индуктивной (динамик). В базовый курс мы не будет иметь дело с такими расчетами. Я просто хочу, чтобы указать, на проблему, а вы получите для себя со временем достаточно знаний, чтобы справиться с более сложными задачами.

Читайте также:  Модуль магнитного момента витка с током

На данный момент, вы можете придерживаться простого правила: используйте транзисторы с параметрами выше необходимого минимума. На практике, как правило, для безопасной работы используют транзисторы с параметрами на 50…100% выше, чем расчетные, напряжение, ток, мощность. Тогда у нас есть запас прочности, и не придется беспокоиться о надежности. Использование транзисторов «больше и сильнее» также выгодно по ряду других причин при возможной небольшая разнице в цене, которая не имеет значения. Но не подобает использовать силовые транзисторы и транзисторы высокого напряжения, там где это не нужно.

Казалось бы, что все просто и легко, при выборе условий работы транзистора (напряжение питания и сопротивление нагрузки) и можете сами установить транзистор в разрешенный диапазон. Действительно учесть напряжение и максимальный ток, это просто, но потери мощности определить не так просто. На кону здесь два важных вопроса вы должны понять:
— Зависимость потерь мощности от напряжения питания и сопротивления нагрузки,
— Вопрос отвода тепла от транзистора.

Сегодня мы ответим только на первый вопрос.

Часто, не требуется считать потери мощности указанным выше способом. На практике, как правило, нас интересует самый худший случай. Если рассчитать потери мощности в худшем случае нет необходимости проводить дальнейшие расчеты.

Рисунок 48 помогает понять, что я имею в виду, говоря о худшем случае. Транзистор работает с сопротивлением нагрузки RL при постоянном напряжении питания (в данном случае, RL = 250 Ом, Usup = 20В).



Что можно понять из того рисунка?

Рисунок 48b это то же самое что и на рисунке 44г. Когда нет базового тока, то нет и коллекторного тока и напряжение на коллекторе равно напряжению питания. Когда вы пустите ток в базу, и начнете его увеличивать, увеличиться ток коллектора а напряжение на нем уменьшиться. Зная напряжение питания и сопротивление нагрузки RL можно выполнять вычисления для нескольких или нескольких десятков значений напряжения UT. Вы можете рассчитывать не только ток коллектора, но и мощность, рассеиваемая на нагрузке, и на транзисторе для различных напряжений коллектора (т.е. различных токах базы). По этим значениям можно построит график такой как на рисунке 48г.

На этом рисунке синей линей я изобразил зависимость тока от напряжения Uсе (напряжение на транзисторе), шкала тока находиться слева. Здесь простая нагрузка Rl. Красная линия – потери мощности на транзисторе. Фиолетовая, какая мощность рассеивается на нагрузочном резисторе. (Внимание! Шкала мощности нарисована справа).

Примечание: в отсутствие тока базы и тока коллектора, потери мощности транзистора равны нулю, потому что P = Usup × 0. На рисунке 48б показана точка А. Очевидно в состоянии отсечки ток не течет, и нет потери мощности на транзистор и на нагрузке.

Теперь обратите внимание на то, что происходит в состоянии насыщения – посмотрите на точку B. Хотя сейчас ток очень большой, но напряжение на транзисторе очень мало (Ucesat напряжения насыщения десятки или сотни милливольт). Таким образом, рассеивание тепла в режиме насыщения транзистора мало, можно сказать, близко к нулю, потому что P = Ucesat × I. Вы удивлены?

Оказалось, что в состоянии насыщения, когда ток самый большой, рассеиваемая мощность транзистора практически равна нулю! Да, это так! Высокая мощность (P = Usup × I) рассеивается, на сопротивлении нагрузки, а не на транзисторе. Короче говоря, если транзистор работает как переключатель, во время открытия и насыщения он выделяет очень мало тепла. Прямо сейчас вы должны знать, что потери при импульсе будут только на короткое время переключения. К этой проблеме мы еще вернемся. В настоящее время нас интересует работа в линейном режиме.

Как вы можете видеть на рисунке 48b, сама большая мощность рассеивается на транзисторе когда напряжение на коллекторе равно половине напряжения питания. И это тот самый худший случай, о котором я упоминал. Худший, так как потери мощности на транзисторе самые большие. На рисунке 48б это показано точкой С.

Как вы можете видеть, потери мощности на транзисторе при этом равна потери мощности на нагрузке. Если это так, то максимальная рассеиваемая мощность, при каких пропорциях, может быть рассчитана очень просто: потому что в худшем случае рассеиваемая мощность транзистора равна рассеиваемой мощности на сопротивлении нагрузки RL. Тогда значение напряжения делим на две равные части и считаем


Это расчетная мощность, очевидно, не может быть больше чем указанная в каталоге мощность транзистора Ptot.

Эта формула позволяет вычислить минимальное сопротивление нагрузки для данного напряжения питания и мощности из каталога:

По ней также можно рассчитать максимальное напряжение для данного сопротивления нагрузки и выбранной мощности

Вы можете не быть орлом в математике, но эти формулы нужно запомнить или записать себе на видном месте.

Можно спросить, как эти расчеты соотнести с кривой допустимой мощности рассеивания на рисунках 45 и 46?

Это интересный вопрос!

Давайте посмотрим вместе, смогут ли наши транзисторы с характеристиками на рисунках 45 и 46 работать в схеме, показанной на рисунке 48а при напряжении 25В с сопротивлением нагрузки 250Ω, где напряжение на транзисторе может плавно изменяться от нуля до полного напряжения?

Рассчитаем потери мощности в худшем случае:

Потому что во время работы может возникнуть самая тяжелая ситуация, и наш транзистор будет перегружен. Но если он будет работать в ключевом режиме, т.е. находиться в одном из двух состояний: отсечки или насыщения. Так как в обоих этих условиях мощность, рассеиваемая на транзисторе равна или близка к нулю, насколько это возможно. И нам не нужно, прибегать в расчетах к наихудшему случаю, потому что в схемах переключения такое состояние не встречается.

Возвращаясь к рисунку 45, можно сказать, что мы не превысили допустимые потери мощности, и наша нагрузка находиться в безопасной рабочей области транзистора. Некоторые примеры можно найти на рисунке 49 при простой нагрузке для различных напряжений питания и различные сопротивлений.

На рисунке 49 нагрузка показана прямой линией. Попробуйте самостоятельно построить подобных линий на рисунках 46 и 47. Будет ли это легко? Проверьте, построив несколько точек.

В реальной схеме транзистор будет работать при напряжениях Usup гораздо меньше, чем допустимо напряжения UCE0, и сопротивление нагрузки в коллекторе будет ограничивать максимальный ток до величины, значительно меньше, чем ICmax. Как я уже сказал, нормальный запас здесь 50 .. 100%. А теперь поупражняйтесь самостоятельно.

Задача 1

Транзистор имеет следующие параметры: UCE0=25V, ICmax=300mA, Ptot=100mW. Дорисуйте на рисунке 50 кривые максимальной выходной мощности 100 мВт. Рассчитайте максимально мощность (в худшем случае) при условии транзистора в следующих условиях:
1.Uzas = 10V, RL = 1kΩ
2.Uzas = 25V, RL = 390Ω
3.Uzas = 9V, RL = 51Ω
4.Uzas = 25V, RL = 100Ω

Отметьте эти случаи на рисунке 50. Может ли транзистор может работать при таких условиях?

Источник

О транзисторах «на пальцах». Часть 1. Биполярные транзисторы

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. © Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора:

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Читайте также:  Светодиод в ленте ток через светодиод

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили. Едем дальше.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером.

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой.

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Источник



Транзисторные ключи: схема, принцип работы и особенности

Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.

Что такое электронный ключ?

транзисторные ключи

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

  1. Коллектор.
  2. Эмиттер.
  3. База.

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

транзисторные ключи схема

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

транзисторные ключи принцип работы

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Читайте также:  1788 как будет поворачиваться рамка с током

Выводы электромагнитного реле

Обычно в электромагнитных реле имеется 5 выводов:

  1. Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
  2. Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.

В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.

Как работает электромагнитное реле

расчет транзисторного ключа

Принцип работы электромагнитного реле довольно простой:

  1. Обмотка через кнопку соединяется с питанием.
  2. В разрыв цепи питания потребителя включаются силовые контакты реле.
  3. При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
  4. Подается ток на потребителя.

Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

транзисторный ключ 12 Вольт схема

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база — эмиттер».
  2. При этом канал «коллектор — эмиттер» открывается.
  3. Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

управление транзисторным ключом

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер — коллектор» может меняться в больших пределах.

Пример работы транзистора в режиме ключа

Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер — коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор — эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).

работа транзисторного ключа

При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор — эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Практические конструкции

транзисторный ключ полевой

Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

биполярный транзисторный ключ

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Источник

Применение биполярного транзистора

Транзистор — это элемент радиоэлектонной аппаратуры, позволяющий управлять большим током через отдельный вывод. Транзисторы применяются в схемах комутации, усиления и генерирования.

Общее строение транзистора — это три вывода, один управляющий и два комутирующих. В биполярном транзисторе управляющий вывод называется базой, в полевом транзисторе затвором. Комутирующие выводы в биполярном транзисторе называются эмиттер (emission — испускать) и коллектор (collect — собирать). В полевом транзисторе комутирующие выводы называются исток (источник заряда) и сток (сбор заряда).

Биполярный транзистор

Биполярный транзистор имеет три вывода — один управляющий, база, и два коммутирующих — эмиттер и коллектор. Ток в транзисторе имеет два потока: один из них — ток база-эмиттер, второй — эмиттер-коллектор. Поскольку нет движения тока база-коллектор, то для краткости используют названия ток базы и ток коллектора.

При увеличении напряжения на базе относительно эмиттера, на базе образуются электроны, которые создают мостик, позволяющий идти электронам между эмиттером к коллектором. Соответственно, чем больше электронов на базе — тем больший ток проходит между коммутируемыми выводами.

Биполярные транзисторы бывают двух видов, NPN и PNP. В транзисторе N обозначает отрицательный (negative), P — положительный (positive). NPN образовывает «мостик» при положительном напряжении база-эмиттер, PNP при отрицательном, ток, соответственно, в этих транзисторах течёт в разные стороны.

Основная характеристика биполярного транзистора — это коэффициент усиления по току, hfe, показывающий отношение увеличения тока коллектора при увеличении тока базы. При этом, напряжение база-эмиттер имеет свои ограничения.

Ограничения

Рассмотрим транзистор BC547C. Любой импортный транзистор сопровождается технической спецификацией (datasheet): спецификация на транзистор BC547.

Напряжение отсечки

Напряжение на базе должно лежать в определённом диапазоне, что бы транзистор был открыт, этот диапазон называется напраяжением отсечки (Base-Emitter On Voltage) и для транзистора BC547 лежит в диапазоне 0,58-0,7 В, это разброс параметров, то есть покупая транзистор, вы можете рассчитывать, что напряжение отсечки будет лежать в этом диапазоне, хотя чаще будет ближе к номинальному в 0,66В.

Ток коллектора

Максимальный ток, который может пройти через коллектор указан в документации, для BC547 это ток равный 0.1А = 100 мА. График тока коллектора в зависимости от напряжения на базе заканчивается там, где лежит максимально допустимый ток, как только напряжение достигло максимального значения — транзистор полностью открыт, он перешёл в режим насыщения, максимальное значение также указано в табличке на первой странице, VBE (base-emitter saturation voltage). При переходе в режим насыщения транзистор перестаёт управлять током, дальше он пускает всё, что через него пройдёт и если пропустить через него больше, чем максимально допустимый ток, то он попросту начнёт нагреваться пока не сгорит, а этот процесс иногда занимает доли секунды.

Применение биполярного транзистора

Усиление тока

Для расчёта нам потребуется определить силу тока, которая будет протекать через элемент нагрузки. Возьмём светодиод со следующими параметрами: напряжение 1,6 В, сила тока 10 мА.

Транзистор управляет током коллектора посредством тока базы и наша задача определить ток базы для поддержания тока 10 мА через коллектор. Обратимся к технической документации, на графике №3 изображена зависимость hfe от тока коллектора, мы видим, что на участке 0-10 мА величина hfe постоянна, поэтому считаем расчётное значение константой и берём среднее для данного транзистора (в конце первой страницы описана классификация в зависимости от буквы в названии транзистора, для C значение hfe будет лежать в пределах 420-800, что означает, что вам может попасться транзистор как со значением 420, так и 800. Возьмём для расчёта среднее — 600)

На графике статическая характеристика (№1 в документации) представлена комбинация из трёх значений: ток базы, ток коллектора, падение напряжения коллектор-эмиттер. При токе базы в 16 мкА и токе коллектора в 10 мА, напряжение на коллекторе будет близким к напряжению эмиттера, в случае со схемой ниже — ноль:

токи базы 16 мкА эмиттера 10 мА

Любое устройство требует питания, как правило используются стандартные, для цифровой техники 3.3 В, для мелких устройств 3В (две батарейки АА), 5В (USB), 9В (батарейка крона). Возьмём для примера 3.3 вольта.

Исходя из графика №2 (в документации), при токе коллектора в 10 мА, напряжение на базе должно составлять около 0.72 В, создадим требуемое напряжение и ток применив резистор. Напряжение питания составляет 3.3 В, откуда сопротивление резистора базы будет следующим:

схема в kicad

Мы могли бы заказать изготовление резистора данного номинала, но всегда есть допуск в котором мы работаем, это и влияние температуры и сопротивление дорожек на плате и шумы и множество других факторов, поэтому мы берём ближайший доступный номинал в каталоге (если вы работаете в компании — у вас всегда есть поставщик, который предоставляет каталог продукции, если вы делаете устройство для себя — вы смотрите, что есть в магазине). Ближайший доступный номинал — 160 кОм.

Напряжение на светодиоде должно быть равным 1,6 В, для создания падения напряжения потребуется резистор:

Смотрим в каталог, нам доступны 160 Ω или 180 Ω, выберем 180, так будет безопаснее для светодиода.

Усилитель звука на биполярном транзисторе

Для усиления звука используется тот же принцип, что и для усиления тока, принцип действия следующий: на базу подаётся усиливаемый сигнал, напряжение сигнала должно быть не ниже напряжения отсечки.

Автор статьи: Телятников Захар Александрович
Дата написания статьи:
—> Дата редакции статьи: 13.06.2020

  • Источник