Меню

Определите полное сопротивление цепи если неразветвленная часть цепи переменного тока состоит

Расчет неразветвленной электрической цепи переменного тока

Презентация к уроку

Назад Вперёд

Загрузить презентацию (134,6 кБ)

При изучении основных разделов теории цепей переменного тока основные проблемы восприятия материала заключаются в том, что электромагнитные явления нельзя увидеть наглядно, поэтому без наглядного материала в изучении рассматриваемой темы обойтись невозможно. Информационные технологии позволяют представить сложные электромагнитные явления в виде яркой картинки, мультфильма и др. В большинстве учебных заведений большие сложности с организацией электромонтажных лабораторий, связанные с ограниченными средствами на приобретение оборудования, необходимостью оформления специальных сертификатов на право проведения занятий в таких лабораториях и т.д. Электронные виртуальные лаборатории требуют только наличие компьютерного класса и поэтому дают студентам возможность углубленно изучить основные электромагнитные явления, понять законы электротехники, научиться сборке электрических схем.

Рассмотрим правила расчета неразветвленной электрической цепи переменного тока. В практической части исследования измерим токи и напряжения на активном сопротивлении, катушке и конденсаторе, а сейчас зададим все параметры и построим векторную диаграмму.

Применение векторных диаграмм для описания синусоидальных сигналов позволяет использовать геометрические приёмы для расчета электрической цепи.

Эксперимент 1.

Дана электрическая цепь, содержащая последовательно соединенные активное сопротивление R = 100 Ом и катушку индуктивности L = 0.2 Гн. (См. рисунок 1.1)

2.JPG

Рисунок 1.1. Схема 1

3.JPG

Рисунок 1.2. Треугольник сопротивлений

Вычислим индуктивное сопротивление XL = 2π f L = 2 * 3,14 * 50 * 0,2 = 62,8 Ом

Так как ток в катушке отстает от напряжения на 90º, а в активном сопротивлении ток и напряжение совпадают по фазе для вычисления полного сопротивления цепи воспользуемся треугольником сопротивлений (См рисунок 1.2)

По теореме Пифагора вычислим Z = = = =118,08 Ом

По закону Ома вычислим максимальные значения тока и напряжения на рассмотренных элементах электрической цепи.

Im = Uc/z = 120/118.08 = 1.016 A Так как элементы электрической схемы соединены последовательно, ток, протекающий по ним общий, т.е IR = IL = 1.014 A. Падение напряжения на каждом элементе определяется:

UR = I * R = 1.014 * 100 = 101.6 В; UL = I * XL = 1.016 * 62.8 = 63.8 В.

Мы исследуем цепь переменного тока, поэтому сумма падений напряжения на каждом элементе не будет равна общему напряжению. Для вычисления мгновенных значений тока и напряжений построим векторную диаграмму. (См. рис.1.3)

Выберем масштаб по току и напряжению: m I = 2 : 1; m U = 1 : 10

Рисунок 1.3 Векторная диаграмма

Из векторной диаграммы найдем значение напряжения: U = = = = 119.7 В

Было задано напряжение 220 В Вычисления в пределах допустимой погрешности.

φ = arccos(UL/U) = arccos(63.8/119.7) = 57.82º

Вывод: В рассмотренной электрической схеме (рис.1.1) ток отстает от напряжения на 57°

Эксперимент 2.

Рисунок 2.1. Схема 2

Рисунок 2.2. Треугольник сопротивлений

Вычислим емкостное сопротивление Xс = 1/(2π f С) = 1/(2 * 3,14 * 50 * 20 * 10 –6 ) = 159,23 Ом

Так как ток в конденсаторе опережает напряжения на 90º, а в активном сопротивлении ток и напряжение совпадают по фазе для вычисления полного сопротивления цепи воспользуемся треугольником сопротивлений (См рисунок 2.2)

По теореме Пифагора вычислим Z = = = =188,03 Ом

По закону Ома вычислим максимальные значения тока и напряжения на рассмотренных элементах электрической цепи.

Im = Uc/z =120/188.03 = 0.64 A

Так как элементы электрической схемы соединены последовательно, ток, протекающий по ним общий, т.е IR = IC = 0,64 A. Падение напряжения на каждом элементе определяется:

UR = I * R = 0,64 * 100 = 64 В; UC = I * XC = 0,64 * 159,23 = 101.9 В.

Мы исследуем цепь переменного тока, поэтому сумма падений напряжения на каждом элементе не будет равна общему напряжению. Для вычисления мгновенных значений тока и напряжений построим векторную диаграмму. (См рис.2.3)

Выберем масштаб по току и напряжению: m I = 2 : 1; m U = 1 : 10

Рисунок 2.3. Векторная диаграмма

Из векторной диаграммы найдем значение напряжения: U = = = = 120.3 В

Было задано напряжение 220 В Вычисления в пределах допустимой погрешности.

φ = arccos(Uс/U) = arccos(101,9/120,3) = 32.12º

Вывод: В рассмотренной электрической схеме (рис. 2.3) ток опережает напряжение на 32°

Эксперимент 3.

Дана электрическая цепь, содержащая последовательно соединенные активное сопротивление R=100 Ом, конденсатор емкостью С=20 мкф. и катушку индуктивности L= 0.2 Гн. (См. рисунок 3.1) Напряжение сети 120 В, определить ток, протекающий в электрической цепи и падение напряжения на активном сопротивлении, конденсаторе и катушке.

Рисунок 3.1. Схема 3

Рисунок 3.2. Треугольник сопротивлений

Значения индуктивного и емкостного сопротивления возьмем из предыдущих экспериментов. XC = 159,23 Ом XL= 62,8 Ом

Так как ток в конденсаторе опережает напряжения на 90º, а в индуктивности ток отстает от напряжения на 90º, то катет аб в треугольнике сопротивлений (См рисунок 3.2) определяется как X = XL – XC = 159,23 – 62,8 = 96,43 Ом

По теореме Пифагора вычислим Z = = = =138,9 Ом
По закону Ома вычислим максимальные значения тока и напряжения на рассмотренных элементах электрической цепи.

Im = Uc/z = 120/138.9 = 0.86 A

Так как элементы электрической схемы соединены последовательно, ток, протекающий по ним общий, т.е IR = IC = IL = 0,86 A. Падение напряжения на каждом элементе определяется:

UR = I * R = 0,86 * 100 = 86 В; UC = I * XC= 0,86 * 159,23 = 136.9 В. UL = I * XL= 0,86 * 62.8 = 54 В.

Мы исследуем цепь переменного тока, поэтому сумма падений напряжения на каждом элементе не будет равна общему напряжению. Для вычисления мгновенных значений тока и напряжений построим векторную диаграмму. (См рис.3.3)

Выберем масштаб по току и напряжению: m I = 2 : 1; m U = 1 : 10

д3.JPG

Рисунок 3.3 Векторная диаграмма

Из векторной диаграммы найдем значение напряжения: U = = = = 119.45 В

Было задано напряжение 220 В Вычисления в пределах допустимой погрешности.

φ = arcos((UC – UL)/U) = arccos(82.9/119,45) = 46.07º

Вывод: В рассмотренной электрической схеме (рис. 3.3) ток опережает напряжение на 32°

Источник

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

cepi-peremennogo-toka

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Читайте также:  Телевизионный кабель есть ли в нем ток

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

polnoe-soprotivlenie-formula-4(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6(5)

polnoe-soprotivlenie-formula-7(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8(7)

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9(8)

polnoe-soprotivlenie-formula-10(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

polnoe-soprotivlenie-formula-11(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

polnoe-soprotivlenie-formula-12(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

polnoe-soprotivlenie-formula-13(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

polnoe-soprotivlenie-formula-14(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

Читайте также:  Электротехнического треста заводов слабого тока

polnoe-soprotivlenie-formula-15(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник



Расчет неразветвленной цепи переменного тока

Цепь переменного тока содержит различные элементы (резисторы, катушки индуктивности, конденсаторы), включенные последовательно. Общий вид цепи показан на рисунке 1. В зависимости от данных нарисовать схему и определить следующие величины:

1) полное сопротивление цепи Z;

2) падение напряжения на каждом элементе и напряжение U, приложенное к цепи;

3) ток I в неразветвленной части цепи;

4) угол сдвига фаз (по величине и знаку);

5) активную, реактивную и полную мощности для всей цепи;

6) определить характер цепи.

Начертить в масштабе векторную диаграмму напряжений, треугольники сопротивлений и мощностей, и пояснить их построение.

№ п/п Активное сопротивление, Ом Емкостное сопротивление, Ом Индуктивное сопротивление, Ом Емкость, мкФ Индуктивность, мГн Частота, Гц Дополнительный параметр
R1 R2 R3 XC2 XC3 XL1 XL3 С1 С2 L1 L2 f
I=4 A
P1=150 Вт
S=180 ВА
Q=150 Вар
Р=24 Вт
Q=300 Вар
Q=64 Вар
Р1=48 Вт
S=300 ВА
I=4 А
38,2 U=120 В
U=140 В
Uа1=100 В
U=120 В
Р1=120 Вт

R1 R2 R3 XC2 XC3 XL1 XL3 С1 С2 L1 L2 f
Q=500 Вар
I=4 А
Р1=48 В
S=200 ВА
Q=640 Вар
I=6 А
S=150 ВА
Р=200 Вт
Р2=40 Вт
Uа3=40 В
Q=300 ВА
Р1=100 Вт
U=56 В
I=2 А
Р=100 Вт

Расчет разветвленной цепи переменного тока

Разветвленная цепь переменного тока состоит из трех параллельных ветвей, содержащих различные элементы (резисторы, катушки индуктивности, конденсаторы). Общий вид цепи показан на рисунке 1. П Р И М Е Ч А Н И Е: Индекс «1» — у дополнительного параметра означает, что он относится к первой ветви; индекс «2» — ко второй, «3» — к третьей. В зависимости от данных нарисовать схему и определить следующие величины:

7) полные сопротивления ветвей Z1, Z2, Z3;

8) активные и реактивные проводимости параллельных ветвей;

10) ток I в неразветвленной части цепи;

11) угол сдвига фаз (по величине и знаку);

12) активную, реактивную и полную мощности для всей цепи.

Начертить в масштабе векторную диаграмму и пояснить ее построение.

№ п/п Активное сопротивление, Ом Емкостное сопротивление, Ом Индуктивное сопротивление, Ом Дополнительный параметр
R1 R2 R3 XC2 XC3 XL1 XL3
I1=5 A
P2=128 Вт
S=180 ВА
Q=150 Вар
UR1=144 В
I2=5 A
UL1=144 В
U=48 В
U=50 В
QL2=120 Вар
U=100 В
R1 R2 R3 XC2 XC3 XL1 XL3
U=140 В
Uа1=100 В
Uа2=120 В
Р1=50 Вт
Q=90 Вар
S=100 ВА
U=50 В
Р=40 Вт
Q=100 Вар
U=50 В
S=120 ВА
U=80 В
Р=40 Вт
Q=80 Вар
U=100В
Р=120 Вт
Q=100 Вар
U=60 В
S=80 ВА

Расчет трехфазной цепи.

1. В трехфазную четырехпроводную сеть с линейным напряжением Uл включили звездой разные по характеру сопротивления (рисунок 1). Определить фазное напряжение, активную, реактивную, полную мощности. Найти линейные токи и начертить в масштабе векторную диаграмму цепи. По векторной диаграмме определить числовое значение тока в нулевом проводе (задача для четных номеров).

Рисунок 1. Рисунок 2.

2. В трехфазную сеть с линейным напряжением Uл включены треугольником разные по характеру сопротивления (рисунок 2). Определить фазные и линейные токи, активную, реактивную и полную мощности потребляемой всей цепью. Начертить векторную диаграмму цепи и по ней определить числовые значения линейных токов. (задача для нечетных номеров)

ПРИМЕЧАНИЕ. Все данные приведены в таблице №1. Схему рисовать исходя из данных.

№ п.п. Дополнительный параметр Сопротивления фазы А, Ом Сопротивления фазы В, Ом Сопротивления фазы С, Ом
R XL XC R XL XC R XL XC
1. Uл=380 В
2. Uл=380 В
3. Uф=220 В
4. Uл=660 В
5. Uф=380 В
6. Uл=380 В
7. Uф=220 В
8. Uл=220 В

№ п.п. Дополнительный параметр Сопротивления фазы А, Ом Сопротивления фазы В, Ом Сопротивления фазы С, Ом
R XL XC R XL XC R XL XC
9. Uф=220 В
10. Uл=380 В
11. Uл=680 В
12. Uф=127 В
13. Uл=180 В
14. Uф=220 В
15. Uл=480 В
16. Uл=220 В
17. Uл=280 В
18. Uф=380 В
19. Uф=320 В
20. Uф=200 В
21. Uф=300 В
22. Uф=120 В
23. Uл=400 В
24. Uф=220 В
25. Uл=600 В
26. Uф=320 В
27. Uф=420 В
28. Uф=420 В
29. Uф=200 В
30. Uф=220 В

1.6. Примеры решения типовых задач

Определить эквивалентное сопротивление цепи показанной на рис.1, если R1=R3=R5=R6=3 Ом, R2=20 Ом, R4=24 Ом. Найти силу тока идущего через каждый резистор, если к цепи приложено напряжение U=36В.

1. Определяем эквивалентное сопротивление цепи Rэк. Сопротивления R3, R4, R5 соединены последовательно

2. Сопротивления R2 и R3-5 соединены параллельно, поэтому

3. Сопротивления R1, R2-5, R6 соединены последовательно

4. Показываем на схеме токи, протекающие по каждому сопротивлению, и находим их. Так как напряжение U приложено ко всей цепи, то согласно закону Ома

5. Так как сопротивления R1, R2-5, R6 соединены последовательно, то А

6. Найдем падения напряжения

Указания к решению задач 2 и 3.

Эти задачи относятся к разветвленным и неразветвленным переменного тока. Перед их решением изучите материал темы 3.1., ознакомьтесь с методикой построения векторных диаграмм.

Пример 2. Активное сопротивление катушки rк=6 Ом, индуктивность ее L=0,0318. Последовательно с катушкой включено активное сопротивление R=2 Ом и конденсатор емкостью С=795 мкФ. К цепи приложено напряжение U=100 В. Определить: полное сопротивление цепи, силу тока, коэффициент мощности, активную, реактивную и полную мощности, напряжения на каждом сопротивлении. Начертить в масштабе векторную диаграмму. Частота тока в цепи f=50 Гц.

Решение:

1. Найдем индуктивное сопротивление катушки и емкостное сопротивление конденсатора

2. Полное сопротивление цепи Ом

4. Коэффициент мощности , по таблице Брадиса находим

Определяя угол сдвига фаз через четную функцию косинус, мы теряем знак угла. Поэтому в тех случаях, где важен знак угла, следует пользоваться нечетными его функциями (синусом или тангенсом). В нашем примере

Знак плюс у угла показывает, что напряжение опережает ток.

5. Активная мощность Вт

6. Реактивная мощность Вар

7. Полная мощность ВА

8. Для построения векторной диаграммы найдем напряжения на сопротивлениях цепи

Построение векторной диаграммы начнем с выбора масштабов для тока и напряжения. Задаемся масштабом по току: в 1 См-4 А и масштабом по напряжению: в 1См – 20 В.

Читайте также:  Симпсоны бьют друг друга током

Построение векторной диаграммы начнем с вектора тока, который откладываем по горизонтали в масштабе

Вдоль вектора тока откладываем напряжения на активных сопротивлениях rk и R:

Из конца вектора UR откладываем в сторону опережения (против часовой стрелки) вектора тока на 90 0 вектор напряжения UL на индуктивном сопротивлении. Длина вектора

Из конца вектора UL откладываем в сторону отставания от вектора тока на 90 0 вектор напряжения на емкостном сопротивлении UC. Длина вектора

Геометрическая сумма векторов Uk, UR, UL, UC представляет полное напряжение U. Так как длина вектора равна 5 см, то величина напряжения составит

Пример 3. Катушка с активным сопротивлением r=20 Ом и индуктивным сопротивлением XL= 15 Ом, соединена параллельно с конденсатором, емкостное сопротивление которого XC=50 Ом. Определить токи в ветвях и в неразветвленной части цепи, активные и реактивные мощности ветвей и всей цепи; начертить в масштабе векторную диаграмму. К цепи приложено напряжение U=100 В.

Решение:

1. Найдем токи в ветвях

2. Углы сдвига фаз будем находить по синусам во избежание потери знаков углов:

1>0, т.е. напряжение опережает ток)

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Однофазная неразветвлённая цепь переменного тока

Изучите материал по Л1.§4.1-4.14; Л2.§2.1-.2.9; Л3.§5.1-5.9.

Полное сопротивление цепи и угол сдвига фазы между током и напряжением;
Напряжение всей цепи, и на отдельных сопротивлениях;
Активная, реактивная и полная мощности; Q = I 2 (XL – XC) = I (UL – UC) = UI sin φ

Пример 3. 1. Дана неразветвлённая цепь переменного тока с активными, индуктивными и ёмкостными сопротивлениями.

1. Z — полное сопротивление цепи;

2. I — ток в цепи;

3. U- напряжение приложенное к цепи;

4. UR, UC — активные и реактивные напряжения;

5. φ — угол сдвига фазы между током и напряжением;

6. P, Q, — активную и реактивную мощности цепи;

7. Построить в масштабе векторную диаграмму, из диаграммы

определить угол сдвига фазы и напряжение всей цепи.

Рис. R Ом XC1 Ом XC2 Ом Дополнительный параметр.
3.6 S = 480 ВА

Преобразуем приведённую схему. ( рис.3.6.)

1.Полное сопротивление цепи:

2. Угол сдвига фазы между током и напряжением.

( Знак – означает, что ток опережает напряжения.)

4. Напряжение приложенное к цепи:

U = I ∙ Z = 4 ∙30 = 120 В

5. Напряжения на отдельных элементах цепи:

UR = I ∙ R = 4 ∙ 24 = 96 B

6. Активная и реактивная мощности в цепи:

Р = UR ∙ I = 96 ∙ 4 = 384 Вт

QC = UC ∙ I = 72 ∙ 4 = 288 вар.

7. Ответ.Z = 30 Ом, φ = -36,13◦, I = 4 А, U = 120 В, Р = 384 Вт, Q = 288 вар.

8. Векторная диаграмм показана на рис.3.6а.

Пример 3. 2. Дана неразветвлённая цепь переменного тока с активными, индуктивными и ёмкостными сопротивлениями.

Рис. R1 Ом R2 Ом XL Ом XC Ом Дополнительная параметр.
3.3. QC = 208 вар

1. Z – полное сопротивление цепи;

2. I – ток в цепи;

3. U – напряжение, приложенное к цепи;

4. φ – угол сдвига фазы между током и напряжением;

5. S – полную, Р – активную, Q – реактивную мощности цепи;

6. Построить в масштабе векторную диаграмму, из диаграммы определить

напряжение цепи и угол сдвига фазы.

1. Полное сопротивление цепи:

2. Угол сдвига фазы между током и напряжением:

4. Напряжение, приложенное к зажимам цепи, и на отдельных сопротивлениях:

U = I∙ Z = 4∙ 10 = 40 В.

UR2 = I∙ R2 = 4∙ 5 = 20 В. Uc = I∙ Xc = 4∙ 13 = 52 В.

5. Активная, реактивная и полная мощности:

Q = I2 ∙ (XL – XC ) = 42 ∙ (7 – 13 ) = – 96 вар.

(знак – означает, что нагрузка носит ёмкостный характер):

S = U∙ I = 40∙ 4 = 160 ВА.

6. Векторная диаграмма показана на рисунке 3.4:

Ответ: Z = 10 Ом. U = 40 В. I = 4 A. φ = – 36,87°. S =160 ВА. Р = 128 Вт.

Задача 3. 1.Дана неразветвлённая цепь переменного тока с активными, индуктивными и ёмкостными сопротивлениями.

1. Z — полное сопротивление цепи;

2. I — ток в цепи;

3. U — напряжение, приложенное к цепи;

4. UR , UL, Uc — активные и реактивные напряжения;

5. φ — угол сдвига фазы между током и напряжением;

6. P, Q, S — активную, реактивную и полную мощности цепи;

7. Построить в масштабе векторную диаграмму; из диаграммы

определить угол сдвига фазы и напряжение всей цепи.

( Указание: объединить активные и реактивные элементы и

обозначить R , XL , или XC.) Данные выбрать из таблицы 3.1.

вар рис. R1 Ом R2 Ом XL1 Ом XL2 Ом XС1 Ом XС2 Ом Дополнитель- ный параметр.
3.5 3.6 3.7 – – – – – – – – S = 90 ВА U = 60 В I = 2 А
3.8 3.9 3.10 – – – – – – U = 80 В S = 160 ВА U = 60 В
3.11 3.12 3.5 – – – – – – I = 4 А I = 4 А U = 40 В
3.6 3.7 3.8 – – – – – – – – I = 3 А S = 225 ВА U = 100 В
3.9 3.10 3.11 – – – – I = 2 А U = 40 В S = 180 ВА
3.12 3.5 3.6 – – – – – U = 60 В I = 2 А U = 60 В
3.7 3.8 3.9 – – – – – S = 160 ВА I = 5 А U = 90 В
3.10 3.11 3.12 – – – 4,5 – I = 3 А U =50 В S = 270 ВА
3.5 3.6 3.7 – – – – – – – – U = 60 В S = 270 ВА U = 60 В
3.8 3.9 3.10 – – – – – – I = 6 А S = 180 ВА U = 60 В
3.11 3.12 3.5 4,5 – – – – – – S = 180 ВА I = 4 А I = 4 А
3.6 3.7 3.8 — — — — — — — — I = 4 А U = 40 B U = 50 B
3.9 3.10 3.11 — — U = 60 B U = 40 B S = 125 ВА
3.12 3.5 3.6 — — — — — U = 90 B I = 3 А I = 3 А
3.7 3.8 3.9 — — — — — U = 80 B I = 4 А I = 4 A
3.10 3.11 3.12 — — — — U = 30 B I = 5 A U = 45 B
3.5 3.6 — — Р = 120 Вт S = 120 ВА

Задача 3.2.Дана электрическая цепь переменного тока с активными и реактивными элементами. Используя заданную величину определить:

1. Z — полное сопротивление цепи;

2. İ — ток в цепи;

3. φ — угол сдвига фазы между током и напряжением;

4. U — напряжение, приложенное к цепи;

5. UR , UL, UC — активные и реактивные напряжения;

6. P, Q, S — активную, реактивную и полную мощности цепи;

7. Построить в масштабе топографическую векторную диаграмму; из

диаграммы определить угол сдвига фазы и напряжение всей цепи.

Источник