Меню

От чего зависит погрешность трансформатора тока

Погрешности трансформаторов тока

Коэффициент трансформации ТТ так же, как у ТН, не является строго постоянной величиной и из-за погрешностей может отличаться от номинального значения. Погрешности ТТ зависят главным образом от кратности первичного тока по отношению к номинальному току первичной обмотки и от нагрузки, подключенной к вторичной обмотке. При увеличении сопротивления нагрузки или тока выше определенных значений погрешность возрастает и ТТ переходит в другой класс точности.

Для измерительных приборов погрешность относится к зоне нагрузочных токов . Эта погрешность именуется классом точности и может быть равна 0,2; 0,5; 1,0; 3,0%.

Требования к работе ТТ, питающих защиту, существенно отличаются от требований к ТТ, питающим измерительные приборы. Если ТТ, питающие измерительные приборы, должны работать точно в пределах своего класса при токах нагрузки, близких к их номинальному току, то ТТ, питающие релейную защиту, должны работать с достаточной точностью при прохождении токов КЗ, значительно превышающих номинальный ток ТТ. Для целей защиты выпускаются трансформаторы тока класса Р или Д (для дифференциальных защит) в которых не нормируется погрешность при малых (нагрузочных) токах. В настоящее время выпускаются трансформаторы тока классов 10Р и 5Р, погрешность которых нормируется во всем диапазоне токов.

Правила устройства электроустановок требуют, чтобы ТТ, предназначенные для питания релейной защиты, имели погрешность, как правило, не более 10%. Большая погрешность допускается в отдельных случаях, когда это не приводит к неправильным действиям релейной защиты. Погрешности возникают вследствие того, что действительный процесс трансформации в ТТ происходит с затратой мощности, которая расходуется на создание в сердечнике магнитного потока, перемагничивание стали сердечника (гистерезис), потери от вихревых токов, нагрев обмоток.

Рис. 2.3. Схема замещения ТТ Рис. 2.4. Упрощенная векторная диаграмма ТТ

Процесс трансформации тока хорошо иллюстрируется схемой замещения ТТ, приведенной на рис. 2.3. На этой схеме Z1 и Z2 – сопротивления первичной и вторичной обмоток, a – сопротивление ветви намагничивания, которое характеризует указанные выше потери мощности.

Из схемы замещения видно, что первичный ток I1 входящий в начало первичной обмотки Н, проходит по её сопротивлению Z1 и в точке разветвляется по двум параллельным ветвям. Основная часть тока, являющаяся вторичным током I2, замыкается через сопротивление вторичной обмотки Z2 и сопротивление нагрузки , состоящее из сопротивлений реле, приборов и соединительных проводов. Другая часть первичного тока замыкается через сопротивление ветви намагничивания и, следовательно, в реле, подключенное к вторичной обмотке ТТ, не попадает. Поскольку из всех затрат мощности наибольшая часть приходится на создание магнитного потока в сердечнике, то ветвь между точками а и б схемы замещения ТТ называется ветвью намагничивания и весь ток , проходящий по этой ветви, – током намагничивания.

Таким образом, схема замещения показывает, что во вторичную обмотку ТТ поступает не весь трансформированный первичный ток, равный , а его часть, и что, следовательно, процесс трансформации происходит с погрешностями.

При размыкании цепи вторичной обмотки ТТ, он превращается в повышающий трансформатор, резко возрастает ток намагничивания: (рис 2.3) и, при достаточном уровне тока, индукция в сердечнике достигает насыщения. Вследствие насыщения сердечника ТТ, при синусоидальном первичном токе, магнитный поток в сердечнике будет иметь не синусоидальную, а трапециоидальную форму. Поэтому, ЭДС во вторичной обмотке, пропорциональная скорости изменения магнитного потока, в моменты перехода его через нулевые значения будет очень велика, и может превышать 1000 В, что опасно не только для обслуживающего персонала, но и для межвитковой изоляции трансформаторов тока (возможно межвитковое замыкание). Кроме появления опасного напряжения на разомкнутой вторичной обмотке, может иметь место повышенный нагрев стального сердечника из-за больших потерь в стали (так называемый «пожар стали»). Это не только может привести к повреждению изоляции, но и к увеличению погрешностей трансформаторов тока вследствие остаточного намагничивания сердечника. При межвитковом замыкании вторичной обмотки ТТ резко возрастает ток намагничивания, а ток на его выходе резко уменьшается (или полностью отсутствует). Диагностировать витковое замыкание ТТ можно сравнив его характеристику намагничивания (зависимость напряжения на вторичной обмотке от проходящего по ней тока) с характеристикой исправного ТТ (характеристика значительно понижается).

На рис. 2.4 приведена упрощенная векторная диаграмма ТТ из которой видно, что вектор вторичного тока I2 меньше значения первичного тока, деленного на коэффициент трансформации на величину и сдвинут относительно него на угол δ. Таким образом, соотношение значений первичного и вторичного токов в действительности имеет вид:

Различают следующие виды погрешностей ТТ. Токовая погрешность, или погрешность в коэффициенте трансформации, определяется как арифметическая разность первичного тока, поделённого на номинальный коэффициент трансформации , и измеренного (действительного) вторичного тока (отрезок на диаграмме рис. 4.4):

Читайте также:  Конденсатор параллельно нагрузке при постоянном токе

Угловая погрешность определяется как угол δ сдвига вектора вторичного тока I2 относительно вектора первичного тока I1 (см. рис. 2.4) и считается положительной, когда I2 опережает I1.

Полная погрешность (ε) определяется как выраженное в процентах отношение действующего значения разности мгновенных значений первичного и вторичного токов к действующему значению первичного тока.

При синусоидальных первичном и вторичном токах: . Из рассмотренного следует, что причиной возникновения погрешностей у трансформаторов тока является прохождение тока намагничивания, т.е. того самого тока, который создаёт в сердечнике ТТ рабочий магнитный поток, обеспечивающий трансформацию первичного тока во вторичную обмотку. Чем меньше ток намагничивания, тем меньше погрешности ТТ.

Как видно из схемы замещения (рис. 2.3), ток намагничивания зависит от ЭДС Е2 и сопротивления ветви намагничивания .

Электродвижущая сила Е2 может быть определена как падение напряжения от тока I2 в сопротивлении вторичной обмотки Z2 и сопротивлении нагрузки , т. е.:

Сопротивление ветви намагничивания зависит от конструкции трансформаторов тока и качества стали, из которой выполнен сердечник. Это сопротивление не является постоянным, а зависит от характеристики намагничивания стали. При насыщении стали сердечника ТТ, резко уменьшается, что приводит к возрастанию и как следствие этого к возрастанию погрешностей ТТ.

Таким образом, условиями, определяющими погрешности трансформаторов тока, являются: отношение, т.е. кратность, первичного тока, проходящего через ТТ, к его номинальному току и нагрузка, подключённая к его вторичной обмотке.

Для увеличения допустимой вторичной нагрузки применяют трансформаторы тока с номинальным током вторичной обмотки 1 А, вместо 5 А. Одноамперные трансформаторы тока могут нести нагрузку в 25 раз больше, чем пятиамперные, имеющие такие же конструктивные параметры и тот же номинальный ток первичной обмотки. Конечно, потребляемая мощность аппаратуры при этом остается прежней, и её сопротивление также увеличивается в 25 раз, однако получается существенный выигрыш за счёт возможности применять длинные кабели с жилами небольшого сечения. По этой причине, трансформаторы тока со вторичными токами 1 А нашли применение, в основном, на мощных подстанциях сверхвысокого напряжения, где требуется прокладывать длинные кабели. В сетях напряжением 6–35 кВ, как правило, применяются 5-ти амперные трансформаторы тока, которые упрощают конструкцию за счёт того что требуется наматывать в 5 раз меньшее количество витков. Одноамперные трансформаторы тока нашли применение также в ячейках фирмы «Таврида – Электрик», где переход на вторичный ток 1 А в сочетании с малым потреблением современных релейных защит позволил выполнить малогабаритные трансформаторы тока, которые только и можно разместить в выпускаемых ею малогабаритных ячейках.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Погрешность трансформаторов тока

Трансформатор тока характеризуется номинальным коэффициентом трансформации

Значения номинального вторичного тока приняты равными 5 и 1 А. Коэффициент трансформации трансформаторов тока не является строго постоянной величиной и может отличаться от номинального значения вследствие погрешности, обусловленной наличием тока намагничивания. Токовая погрешность определяется по выражению

Погрешность трансформатора тока зависит от его конструктивных особенностей; сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути. В зависимости от предъявляемых требований, выпускаются трансформаторы тока с классами точности 0,2; 0,5; 1; 3; 10. Указанные цифры представляют собой токовую погрешность в процентах номинального тока при нагрузке первичной обмотки током 100 — 120% для первых трех классов и 50-120% для двух последних. Для трансформаторов тока классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность.

Погрешность трансформатора тока зависит от вторичной нагрузки (сопротивление приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличение нагрузки и кратности тока приводит к увеличению погрешности.

При первичных токах, значительно меньших номинального, погрешность трансформатора тока также возрастает.

Трансформаторы тока класса 0,2 применяются для присоединения точных лабораторных приборов, класса 0,5 — для присоединения счетчиков денежного расчета, класса 1 — для всех технических измерительных приборов, классов 3 и 10 — для релейной защиты.

Кроме рассмотренных классов выпускаются также трансформаторы тока со вторичными обмотками типов Д (для дифференциальной защиты), 3 (для земляной защиты), Р (для прочих релейных защит).

Токовые цепи измерительных приборов и реле имеют малое сопротивление, поэтому трансформатор тока нормально работает в режиме, близком к режиму КЗ. Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет, так как он будет определяться только МДС первичной обмотки. В этом режиме магнитопровод может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке появится высокое напряжение, достигающее в некоторых случаях десятков киловольт.

Из-за указанных явлений не разрешается размыкать вторичную обмотку трансформатора тока при протекании тока в первичной обмотке. При необходимости замены измерительного прибора или реле предварительно замыкается накоротко вторичная обмотка трансформатора тока (или шунтируется обмотка реле, прибора).

Читайте также:  Химическое действие тока примеры в технике

Дата добавления: 2016-04-11 ; просмотров: 1701 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник



Погрешности трансформаторов тока, пути их снижения.

Под погрешностями ТТ подразумевается отличие вектора вторичного тока I2 от вектора приведенного первичного тока I’1 по величине и углу. Это отличие обусловлено наличием тока намагничивания I’нам создающего магнитный поток Ф в сердечнике ТТ. Из схемы замещения (рис. 3.6) видно, что величина тока намагничивания I’нам, а следовательно, и погрешности ТТ зависят от соотношения сопротивлений ветви намагничивания (Z’нам) и цепи вторичного тока (Z2+Zн). Чем больше ток ответвляется в сопротивление Z’нам, тем больше погрешности ТТ.

Установлены следующие погрешности ТТ:

1. Угловая погрешность.

Она представляет собой угол между вектором первичного тока I’1 и вторичного тока I2 (d). Она выражается в градусах, минутах или сантирадианах и считается положительной, когда вектор I2 опережает вектор I’1.

2. Полная погрешность.

Точность работы ТТ, предназначенных для релейной защиты, характеризуется полной погрешностью в условиях установившегося режима. Согласно ГОСТ 7746-68 полная погрешность представляет собой действующее значение разности мгновенных значений токов i2 и i’1. Полная погрешность e, выраженная в процентах.

3. Токовая погрешность.

Токовая погрешность или погрешность в коэффициенте трансформации, определяется как арифметическая разность первичного тока, поделенного на номинальный коэффициент трансформации и измеренного действительного значения вторичного тока.

Для ограничения погрешностей нужно ограничивать величину магнитного потока Ф или магнитной индукции В=Ф/S, не допуская насыщения магнитопровода. Из принципа работы ТТ вытекает, что поток Фт, должен иметь такую величину, при которой наведенная им вторичная ЭДС Е2 была бы достаточной для компенсации падения напряжения в цепи вторичной обмотки.

Таким образом, для уменьшения погрешности ТТ должен работать в прямолинейной части характеристики намагничивания. Это условие обеспечивается:

а) конструктивными параметрами сердечниками;

б) правильностью выбора Zн;

в) снижением величины вторичного тока, что достигается выбором соответствующего коэффициентом трансформации nТ.

При эксплуатации ТТ может оказаться, что его погрешности больше заданного класса точности, а уменьшения их изменением конструктивных параметров ТТ не представляется возможным или экономически невыгодным. Поэтому используются специальные способы уменьшения погрешности. Эти способы обеспечивают уменьшение погрешностей при нормальном режиме работы ТТ, т.е. при изменении первичного тока в диапазоне от 10 до 120% номинального.
Отрицательную токовую погрешность можно уменьшить, отмотав от вторичной обмотки трансформатора тока то или иное число витков. Такой способ уменьшения токовой погрешности называется витковой коррекцией. При витковой коррекции число витков вторичной обмотки становится меньше номинального 292
числа витков. Вследствие этого уменьшается МДС вторичной обмотки, направленная против МДС первичной обмотки. Последняя остается неизменной, так как определяется только первичным током и числом витков первичной обмотки.
Уменьшение МДС вторичной обмотки будет сопровождаться увеличением МДС и намагничивания и результирующего магнитного потока Ф0. Увеличение магнитного потока Ф0 приведет к повышению ЭДС во вторичной обмотке. Вследствие этого увеличивается и вторичный ток. Увеличение вторичного тока приводит к уменьшению отрицательной токовой погрешности или даже к изменению ее знака. Результирующая токовая погрешность ТТ с витковой коррекцией равна алгебраической сумме номинальной токовой погрешности (которая всегда отрицательна) и токовой погрешности, полученной в результате отмотки, и называется действительной токовой погрешностью. Она может быть вычислена по формуле

Повысить эффективность витковой коррекции при малом числе витков оказывается возможным, если отмотать не целое, а дробное число витков (т.е. часть витка). Для этого вторичная обмотка должна иметь специальное исполнение.
Витковая коррекция является простым и широко распространенным способом уменьшения отрицательной токовой погрешности.
Изменить токовую погрешность можно одним из способов, получивших общее название компенсации погрешностей. Большая часть способов компенсации погрешностей ТТ основана на свойстве ферромагнитных материалов изменять свою проницаемость в зависимости от магнитной индукции. Искусственно изменяя магнитную индукцию в магнитопроводе, можно увеличить его магнитную проницаемость и тем самым снизить погрешность ТТ.
Компенсацию погрешностей можно осуществить следующими способами: 1) спрямлением кривой намагничивания; 2) подмагничиванием магнитопровода; 3) созданием нулевого потока; 4) перераспределением потоков рассеяния.

9. Схема релейной защиты АД (Uном. АД=380 В.).

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ НАПРЯЖЕНИЕМ НИЖЕ 1000 В

Защиту электродвигателей напряжением 500, 380 и 220 В осуществляют, исходя из тех же требований, что и к электродвигателям более высоких напряжений. Для этих электродвигателей применяются мгновенная РЗ от междуфазных КЗ, РЗ от перегрузки, РЗ минимального напряжения. Защита от КЗ осуществляется с помощью плавких предохранителей, а также максимальных токовых реле прямого или косвенного действия. На электродвигателях напряжением до 500 В широко применяются аппараты, в которых совмещены устройства РЗ и управления — магнитные пускатели и автоматические выключатели.

Читайте также:  Контактор номинальный ток 25а

Магнитными пускателями называются трехфазные автоматические выключатели низкого напряжения (контакторы), рассчитанные на разрыв нормального рабочего тока двигателя
и тока его перегрузки. Отключение токов КЗ при применении магнитного пускателя возлагается на последовательно с ним включаемые предохранители.

Магнитные пускатели (рис. 19.17) в большинстве случаев не имеют защелки и во включенном положении удерживаются действием электромагнита YA, обмотка которого подключена на напряжение питания. Включение магнитного пускателя осуществляется нажатием кнопки SB1. При этом замыкается цепь обмотки удерживающего электромагнита, якорь которого притягивается и замыкает механически связанные с ним силовые контакты. Кнопка SB1 имеет самовозврат, поэтому после ее размыкания цепь обмотки электромагнита остается замкнутой через вспомогательный контакт SQ, шунтирующий кнопку SB1. Для отключения пускателя вручную служит кнопка SB2, при нажатии которой разрывается цепь удерживания электромагнита, и якорь его, отпадая, размыкает силовые контакты YAJ: При понижении напряжения питающей сети электромагнит отпадает, и электродвигатель отключается, чем осуществляется защита минимального напряжения. После восстановления напряжения магнитный пускатель сам включиться не может — включение его должно вновь осуществляться вручную. Защита электродвигателя от перегрузки выполняется тепловыми реле КА1 и КА2. Тепловые реле настраиваются таким образом, чтобы они не срабатывали от токов, проходящих при пуске и самоэапуске электродвигателя. Схема включения цепей магнитного пускателя, приведенная на рис. 19.17, применяется для защиты неответственных
электродвигателей, подверженных технологической перегрузке. В случае, если электродвигатель не подвержен перегрузкам, из схемы исключаются контакты тепловых реле. На ответственных электродвигателях, которые не должны отключаться при снижениях напряжения, вместо кнопок управления SB1 и SB2 устанавливается однополюсный рубильник, которым производится включение и отключение электродвигателя. После восстановления напряжения магнитный пускатель вновь включается, так как рубильник S остается замкнутым.

Рис. 19.17. Схема зашиты электродвигателя напряжением г.о 500 В с магнитным пускателем

Источник

Погрешности трансформаторов тока

date image2015-05-26
views image5267

facebook icon vkontakte icon twitter icon odnoklasniki icon

Коэффициент трансформации трансформаторов тока не является строго постоянной величиной и может отличаться от номинального значения вследствие токовой погрешности, обусловленной наличием тока намагничивания I. Для приведенных к одной стороне ТТ токов справедливо векторное равенство:

Ток намагничивания I будет тем больше, чем больше будет магнитное сопротивление магнитопровода RM=l/(sμ).

Кроме токовой погрешности, ТТ вносят в контролируемый ток и угловую погрешность δ, которая представляет собой угол между векторами первичного и вторичного токов. Эта погрешность зависит от отношения I/I1 и выражается в радианах или минутах.

Токовая погрешность определяется по выражению:

Погрешность трансформатора тока зависит от его конструктивных особенностей: сечения магнитопровода (s), магнитной проницаемости материала магнитопровода (μ), средней длины магнитного пути (l). В зависимости от предъявляемых требований выпускаются трансформаторы тока с классами точности 0,2; 0,5; 1; 3; 10. Указанные цифры представляют собой токовую погрешность в процентах номинального тока при нагрузке первичной обмотки током 100—120% для первых трех классов и 50 —120 % для двух последних. Для трансформаторов тока классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность δ.

Погрешность трансформатора тока зависит также и от вторичной нагрузки z2 (сопротивление приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному(I1/I1 ном). Увеличения нагрузки и кратности тока приводят к увеличению погрешности.

При первичных токах, значительно меньших номинального, погрешность трансформатора тока также возрастет из-за пологого характера кривой намагничивания магнитопровода в этой области.

Трансформаторы тока класса 0,2 применяются для присоединения точных лабораторных приборов, класса 0,5 — для присоединения счетчиков денежного расчета, класса 1 — для всех технических измерительных приборов, классов 3 и 10 — для релейной защиты.

Кроме рассмотренных классов, выпускаются также трансформаторы тока со вторичными обмотками типов Д (для дифференциальной защиты), 3 (для земляной защиты), Р (для прочих релейных защит).

Токовые цепи измерительных приборов и реле имеют малое сопротивление, поэтому трансформатор тока нормально работаетв режиме, близком к режиму КЗ. Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет, так как он будет определяться только МДС первичной обмотки. В этом режиме магнитопровод может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке появится высокое напряжение, достигающее в некоторых случаях десятков киловольт.

Из-за указанных явлений не разрешается размыкать вторичную обмотку трансформатора тока при протекании тока в первичной обмотке. При необходимости замены измерительного прибора или реле предварительно замыкается накоротко вторичная обмотка трансформатора тока (или шунтируется обмотка реле, прибора).

Трансформаторы тока могут выполняться как отдельные аппараты или встраиваться в различное оборудование. Они могут встраиваться в выключатели баковых конструкций (тип ТВ), в силовые трансформаторы (тип ТВТ) и в генераторы (тип ТВГ).

Источник