Меню

Понижающий источник питания постоянного тока

Всё об источниках питания постоянного тока

Всё об источниках питания постоянного тока

Прежде, чем разбираться с вырабатывающими источниками, необходимо понять, что такое постоянный ток. Это поток электронов, движущийся всё время в одном направлении без изменения напряжения, частоты и силы. Переменный ток прочно вытеснил этот тип, но не всегда возможно использование вращения фаз. Например, некоторые электрические приборы по умолчанию созданы на базе полярной схемы. Их питание, в основном, происходит через преобразователь, собранный на трансформаторе. Источники постоянного тока позволяют подключать различные приборы, включая линии низковольтного освещения, различное высокоточное оборудование. На их основе до сих пор работают автомобильные электрические цепи, сеть питания в поездах и самолётах.

Постоянный и переменный ток

Какими бывают источники постоянного тока

Большинство людей сильно путается в понятиях в данной сфере. Блок постоянного тока не может считаться источником, потому что он не вырабатывает электроэнергию, а лишь преобразовывает её до определенных значений и показателей. В данный момент имеется всего 4 способа получения электрической энергии с постоянным напряжением от источника выработки или хранения к потребителю:

    Механические преобразователи. Они конвертируют энергию вращения роторных частей генераторов в электричество. К частным случаям можно отнести ручную динамо машину или подобные устройства, устанавливаемые на велосипедах. Механические источники требуют бесперебойной генерации, что может обеспечить только стабильно дующий ветер или текущая вода. Косвенно к ним можно отнести ветряки и гидроэлектростанции.

Принцип действия генератора постоянного тока

Тепловые источники энергии. Единственным рентабельным в данный момент элементом является так называемая термопара. На её базе работают так называемые вулканические электростанции в Исландии. Власти этой страны пробурили породы до магмы, а затем погрузили туда термопары. Здесь работает термоэлектрический эффект, позволяющий вырабатывать электроэнергию при помощи разности температур. Если правильно всё рассчитать, то КПД может достигать 90%. Больше получить не выйдет из-за потерь энергии, затрачиваемых на разгон атомов вещества при нагреве. Термическая электродвижущая сила стремительно растёт при увеличении перепада. Термопары практически не имеют срока годности, что позволяет отвод тепла от промышленных источников непосредственно для генерации и запасания электроэнергии.

Геотермальная электростанция в Исландии

  • Световые источники постоянного тока.
  • Химические источники постоянного тока.
  • Как обеспечить бесперебойную поставку электроэнергии

    Чтобы решить данную задачу необходимо использование альтернативного источника. Преобразование от централизованного снабжения может проводиться постоянно через блок питания или трансформатор. Эта проблема актуальна не для частных домов и квартир, а для промышленного, исследовательского и медицинского оборудования. Например, при каждой больнице скорой и неотложной помощи обязательно имеется собственная автономная подстанция, способная генерировать токи, преобразовывая их в разнообразные показатели силы и напряжения. При наличии особой группы потребителей, устанавливается резервный источник электроэнергии — электрогенератор. Реализация системы бесперебойного электроснабжения состоит в установке устройств, которые будут обеспечивать незаметный (плавный) переход с основного на резервный источник и обратно. При этом качество подаваемой электроэнергии не должно изменяться. Для этого в систему устанавливают источник бесперебойного питания или ИБП. Это приспособление позволит в период отключения электроэнергии выполнить качественный переход на линию резервного питания.

    Источник

    Преобразователи постоянного тока в постоянный (DC-DC). Какие они бывают (подборка с Алиэкспресс)

    По жизни иногда случается так, что в распоряжении пользователя есть одно напряжение, а какое-либо устройство надо запитать другим напряжением.

    Особенно часто такие ситуации встречаются, когда речь идёт об автономном питании: в этом случае другое напряжение взять просто неоткуда.

    Ситуацию спасают DC-DC преобразователи.

    В силу схемотехнических особенностей они отличаются огромным разнообразием решений.

    Они бывают понижающими, повышающими, понижающе-повышающими, на отрицательную полярность, изолирующими, двухполярными, а также могут представлять собой различные комбинации перечисленных вариантов.

    Всё разнообразие вариантов в рамках одной небольшой подборки осветить невозможно, но некоторые «ходовые» случаи будут представлены.

    Известные с древности линейные стабилизаторы тоже можно в какой-то степени считать DC-DC преобразователями (понижающими), но они в этой статье рассматриваться не будут. Хотя, во многих случаях их может оказаться достаточно для решения проблемы.

    Цены далее в тексте указаны примерные на дату публикации с доставкой в Россию (в дальнейшем могут меняться). Если найдутся такие же устройства, но дешевле, то тоже можно покупать — товар одинаковый.

    DC-DC преобразователь в корпусе USB-разъёма с выходом 9 или 12 V

    Сам DC-DC преобразователь как таковой находится внутри кожуха разъёма USB, и, конечно, мощным быть не может.

    Преобразователь выпускается в вариантах с напряжением выхода 9 В или 12 В (т.е. с фиксированным напряжением без переключения).

    Максимальный ток выхода — 800 мА; максимальный потребляемый ток — до 2.1 А от источника 5 В (т.е. от порта USB компьютера или зарядного устройства телефона).

    При его использовании надо помнить о двух моментах.

    Во-первых, не рекомендуется использовать длительное время при максимально-допустимых параметрах нагрузки (впрочем, это относится к любым источникам питания).

    А во-вторых, при питании от порта USB компьютера не рекомендуется нагружать порт USB 2.0 более, чем на 0.5 А; а порт USB 3.0 — более 0.9 А. Ток нагрузки преобразователя в этом случае не должен превышать примерно половину от этой величины для преобразователя на 9 В, и 1/3 — для преобразователя на 12 В.

    DC-DC преобразователь в корпусе USB-разъёма с регулируемым выходом 1 — 24 V

    Когда требуется какое-либо нестандартное напряжение, то помочь могут DC-DC преобразователи с регулируемым выходом.

    Представленный в этой карточке преобразователь изготовлен в корпусе разъёма USB и может отдавать на выход напряжение в широком диапазоне — от 1 до 24 Вольт (понижающе-повышающий; на основе схемотехники SEPIC).

    Точность установки напряжения — 0.1 В; имеется встроенный вольтметр.

    Максимальная выходная мощность — 3 Вт.

    Аналогично предыдущему преобразователю, при питании от порта USB компьютера мощность на выходе будет меньше.

    Подробный обзор этого преобразователя — здесь.

    Понижающий DC-DC преобразователь с 5-40 V до 1.2-35 V мощностью 300 W

    Этот DC-DC преобразователь, можно сказать, «классический» понижающий преобразователь.

    Он работает в широком диапазоне напряжений, но при этом обязательно должно соблюдаться условие, что входное напряжение должно быть выше выходного.

    Преобразователь снабжен потенциометрами для регулировки выходного напряжения и ограничения тока нагрузки.

    Вместе с тем он требует внимательного обращения при подключении, так как не имеет диода защиты от переполюсовки входного напряжения.

    В случае использования на мощность, близкую к максимальной, рекомендуется дополнительное охлаждение.

    Цена — около $4.5 с учётом доставки.

    Повышающий DC-DC преобразователь с 3-35 V до 5-45 V мощностью 150 W

    Ещё один DC-DC преобразователь из серии «классика жанра»; на этот раз — повышающий с регулируемым напряжением выхода.

    Преобразователь снабжен встроенным вольтметром с ценой деления 0.1 Вольт.

    Его предельно-допустимый входной ток ограничен величиной 5 А, поэтому не следует рассчитывать, что при низких входных напряжениях он сможет развить высокую выходную мощность.

    Для получения высокой мощности на выходе соотношение напряжений на входе и выходе должно быть разумным (насколько это позволяют обстоятельства применения); при этом выходное напряжение должно быть строго выше входного.

    Понижающе-повышающий DC-DC преобразователь на отрицательную полярность малой мощности

    DC-DC преобразователи с переворотом полярности на отрицательную стоят немного особняком.

    Читайте также:  Сила тока для зарядки ipad

    Обычно они применяются в тех случаях, когда требуется создать напряжение отрицательной полярности для устройств, требующих двухполярного питания (как правило, небольшой мощности).

    В отличие от обычных понижающих и повышающих преобразователей, они являются истинно понижающе-повышающими «в одном флаконе» в силу особенностей схемотехники.

    Преобразователи, представленные в этой серии, выпускаются на ряд фиксированных напряжений от минус 3.3 до минус 15 Вольт.

    Мощность, отдаваемая в нагрузку, может быть от 0.12 Вт до 2.7 Вт в зависимости от соотношения напряжений на входе и выходе.

    Цена — около $2.3 с учётом доставки.

    Понижающе-повышающий DC-DC преобразователь с двухполярным выходом до ±24 V

    Этот DC-DC преобразователь хорошо подходит для тех случаев, когда пользователю требуется симметричное двухполярное напряжение. Предположительно, он основан на двухполярном варианте схемы SEPIC.

    Напряжение на выходе может регулироваться от ±3 В до ±24 В; при допустимом диапазоне входных напряжений от 3.6 до 24 В.

    Максимальная мощность на выходе — 20 Вт, но в реальности она будет очень сильно зависеть от соотношения входного и выходного напряжения (низкое входное напряжение и высокое выходное являются крайне неблагоприятным сочетанием).

    Кроме того, производитель запрещает использовать преобразователь только по отрицательному напряжению (положительное плечо должно быть нагружено обязательно); а также не рекомендуются нагрузки менее 15 мА.

    При всём позитиве этого преобразователя, надо заметить, что производитель забыл разместить на плате отверстия для её крепления к чему-либо.

    Цена — около $8 с учетом доставки.

    Сдвоенный однополярный понижающий DC-DC преобразователь с 5-40 V до 1.25-35 V

    Иногда бывает нужно получить от одного источника два разных напряжения одной полярности.

    В этом случае можно использовать два отдельных DC-DC преобразователя; а можно и один сдвоенный. В этом случае пользователь получит экономию в габаритах и упрощение монтажа.

    Данный DC-DC преобразователь содержит два одинаковых блока с максимальной мощностью каждого выхода до 20 Вт (при условии, что ток выхода не будет превышать 2.5 А при длительной эксплуатации и 3 А — кратковременно).

    Регулировка напряжения выходов каналов — независимая.

    Цена — около $11.5.

    Изолирующий понижающе-повышающий DC-DC преобразователь с одно- или двухполярным выходом 10 W

    Иногда питаемое устройство должно быть гальванически изолировано от источника питания. Это может требоваться по разным причинам: от требований по электробезопасности до защиты от помех, создаваемых исходным источником питания.

    Данный преобразователь оформлен в виде модуля в корпусе, защищённом от проникновения посторонних предметов (что поможет соблюдению требования по изоляции).

    Производитель гарантирует электропрочность изоляции до 1500 В постоянного напряжения.

    Преобразователь не имеет регулировки выходного напряжения; потребителю следует заказывать устройство с напряжением из числа предлагаемых фиксированных значений от 5 до 24 В в однополярном исполнении, или от ±5 до ±15 В в двухполярном исполнении. Мощность на выходе — 10 Ватт.

    Цена — около $20 с учетом доставки.

    Автомобильный повышающий DC-DC преобразователь с 12 V до 24 V мощностью до 480 W

    DC-DC преобразователи существуют не только в виде отдельных плат и модулей, но и в виде законченных конструкций в добротных и прочных корпусах.

    В качестве примера — автомобильный повышающий DC-DC преобразователь с 12 до 24 Вольт.

    Такие преобразователи могут быть полезны для питания различного оборудования, для которого не подходит стандартное напряжение автомобильной бортовой сети 12 В.

    Цена — от $17 до $38 в зависимости от требуемой мощности.

    Существуют, естественно, преобразователи и на другие напряжения.

    Как можете видеть, DC-DC преобразователи — это широкий класс устройств с огромным разнообразием технических и конструктивных решений.

    Они также могут иметь и огромный разброс по мощности: от милливатт до киловатт!

    При этом они попутно выполняют и ещё одну функцию: стабилизацию напряжения питания. Если исходный источник будет с «плавающим» напряжением (например, батарея или аккумулятор), то на выходе преобразователя напряжение будет стабильным.

    Эти устройства могут очень сильно облегчить потребителю обеспечение устройств питанием даже в самых нестандартных случаях. Но при этом важно правильно рассчитать требуемые параметры необходимого DC-DC преобразователя; причём, как в отношении параметров выхода, так и в отношении потребления от «исходного» источника питания.

    Источник

    

    Источники постоянного тока: виды, характеристики, сферы применения

    Постоянный ток существует только в замкнутой цепи и сохраняет свое направление и основные параметры неизменными во времени. Для его поддержания необходимо наличие постоянного напряжения. Это требование является неизменным для различных источников постоянного тока.

    Источники постоянного электрического тока

    Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

    • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
    • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
    • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
    • световые, превращающие энергию солнечного света в электрическую энергию.

    В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

    Тепловые источники

    В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

    Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

    Световые источники

    Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

    Солнечная батарея

    Объединение большого количества кремниевых структур позволяет создавать солнечные батареи. Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

    Химические источники

    Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

    • гальванические элементы, являющиеся первичными источниками ;
    • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

    *ХИТ — химические источники тока.

    Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

    Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

    • солевые или «сухие»;
    • щелочные;
    • литиевые.

    В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

    Читайте также:  Трансформатор тока для авр

    Батарейка одноразовая

    В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

    Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

    К основным видам аккумуляторов относятся:

    • свинцово-кислотные;
    • никель-кадмиевые щелочные;
    • литий-ионные.

    Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

    Аккумулятор автомобильный

    Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

    В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

    Механические источники постоянного тока

    Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

    Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

    • однополупериодые выпрямители;
    • двухполупериодные выпрямители.

    В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

    Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

    Выпрямитель одного периода

    Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

    Выпрямитель со средней точкой

    Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.

    Мостовая схема выпрямления

    Регулирование источника

    Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

    Схемы стабилизаторов

    В ней выходное напряжение сравнивается с эталонным (опорным) значением.

    При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

    Импульсные источники

    Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование — сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

    Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

    Сравнение источников

    Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

    Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

    Заключение

    В статье был дан общий обзор существующих источников постоянного тока. Изложенный материал лишь знакомит читателей с основными принципами их работы. Из него можно сделать вывод, что каждый из видов источников постоянного тока используется в своей области.

    Источник

    Чем генерируется постоянный ток: обзор источников питания, их преимуществ и недостатков

    Фото 1

    Приводы многих механизмов и целый ряд электронных устройств работают на постоянном токе. Последний генерируется разными способами.

    О том, как устроен источник постоянного тока и какие существуют его разновидности, расскажет данная статья.

    Источники питания постоянного тока

    Постоянный ток получают посредством таких устройств:

    Фото 2

    1. гальванические элементы — батарейки и аккумуляторы: разделение положительных и отрицательных зарядов осуществляется за счет химического взаимодействия;
    2. генераторы постоянного тока: превращают механическую энергию в электрическую;
    3. выпрямители: преобразуют переменный ток в постоянный;
    4. фотоэлементы (солнечные батареи) и термоэлементы: превращают в электричество энергию, соответственно, света и тепла.

    Наиболее распространены первые три разновидности, они и будут рассматриваться подробно.

    Батарейки

    Получение разности потенциалов химическим путем удобно показать на простом примере — цинковом стержне, помещенном в серную кислоту. Положительно заряженные атомы цинка притягивают к себе отрицательные ионы кислоты и под их воздействием отрываются от стержня.

    Фото 3

    Последний в результате этого становится отрицательно заряженным, кислота же приобретает положительный заряд.

    Для подключения к положительному полюсу Алессандро Вольта, первооткрыватель данного явления, опустил в раствор медный стержень. При подключении нагрузки, электроны с цинкового стержня перемещаются через нее к медному.

    Недостаток данного решения — образование газообразного водорода на медной пластине, затрудняющего работу элемента. Поэтому в современных батарейках вместо меди применяют другие материалы, например, графит в оболочке из диоксида марганца (последняя поглощает газ). Серная кислота заменена раствором нашатырного спирта.

    Читайте также:  Как определить работу электрического тока 3 формулы

    Применяются и другие сочетания материалов, например:

    • марганец и олово;
    • марганец и магний;
    • свинец и цинк;
    • свинец и кадмий;
    • свинец и хлор;
    • цинк и хром.

    Аккумулятор

    Фото 4

    Емкость аккумулятора, в отличие от батарейки, после разрядки можно восполнить подключив к источнику электрической энергии.

    Материалы также используются разные. К примеру, в автомобильных аккумуляторах аноды делают из двуокиси свинца, катоды — из губчатого свинца. Роль электролита играет раствор H2SO4.

    Указаны материалы так называемой активной массы электродов. Основание же их является свинцово-кальциевым или свинцово-сурьмяным.

    При разрядке происходит такое же взаимодействие, как и в элементе Вольта: отрицательные ионы серной кислоты притягиваются к положительным атомам свинца с образованием сульфата свинца, так что электрод приобретает отрицательный заряд, электролит — положительный.

    Попутно из освободившегося водорода и кислорода, выделяющегося из двуокиси свинца, образуется вода, что приводит к снижению плотности электролита. По этому параметру определяют уровень заряда аккумулятора.

    Фото 5

    При зарядке происходит обратный процесс: сульфат свинца и вода превращаются в серную кислоту, свинец и диоксид свинца.

    Литий-ионный аккумулятор

    Мобильные телефоны, ноутбуки, прочие электронные устройства, а также электромобили сегодня оснащают литий-ионными аккумуляторами. Электроды такого источника изготавливают путем нанесения катодного материала на фольгированный алюминий и анодного — на медную фольгу.

    Заряд переносится положительно заряженными атомами лития. Они обладают способностью встраиваться в кристаллическую решетку различных материалов — солей и оксидов металлов, графита. При этом образуется химическая связь, например, в оксиде марганца — LiMnO2, в графите — LiC6.

    Фото 6

    В качестве отрицательной пластины сегодня применяют графит, в первых версиях это были металлический литий и каменноугольный кокс.

    Катодные материалы используются такие:

    • лития кобальтат (LiCoO2);
    • литий-феррофосфат (LiFePO4);
    • растворы на основе никелата лития (в твердом агрегатном состоянии);
    • шпинель литий-марганцевая (LiMn2O4).

    Достоинства литий-ионных аккумуляторов:

    • значительная емкость;
    • низкий саморазряд;
    • мизерный эффект памяти (практически нулевой).

    Эти источники комплектуются контроллерами разряда. Устройство отключает батарею при перегреве и при сокращении разряда ниже критического уровня.

    Генераторы

    Фото 7

    Генератор DC в основном устроен так же, как и переменный: в магнитном поле вращается ротор с обмотками и в последних, из-за постоянного изменения магнитного потока наводится ЭДС (закон электромагнитной индукции). Разница состоит в наличии коллектора — приспособления из полуколец, благодаря которому на токосъемные щетки всегда подается ЭДС с одной полярностью.

    В каждом витке рамки ЭДС пульсирует — меняется при вращении от нуля до максимума. Применением обмотки из множества витков, расположенных по определенному закону, добиваются сглаживания пульсаций.

    Выпрямители

    Преобразование переменного тока в DC осуществляется посредством полупроводниковых приборов с односторонней проводимостью — диодов. Существует несколько разновидностей выпрямителей.

    Для сглаживания пульсаций используется конденсатор: пока диод пропускает ток, он заряжается, а в течение второго полупериода отдает заряд. При частоте входного переменного тока 50 Гц требуемая емкость конденсатора слишком велика (от 2000 до 5000 мкФ).

    Поэтому на таких частотах выпрямители данного типа применяют крайне редко. Импульсные блоки питания дают на выходе переменный ток намного большей частоты — 10-15 кГц. Здесь использование однополупериодных выпрямителей вполне уместно. Таким блоком питания является, например, зарядное устройство мобильного телефона.

    Недостатки однополупериодного выпрямителя:

    • нерациональное использование трансформатора;
    • значительное обратное напряжение на диоде.

    Двухполупериодные пропускают ток в обоих полупериодах, есть две разновидности таких выпрямителей:

    Фото 9

    1. схема со средней точкой. Это два однополупериодных выпрямителя, подключенные параллельно. Для работы схемы нужен особый трансформатор со средним выводом из вторичной катушки: с одной части катушки ток подается на нагрузку по 1-му диоду, со второй во втором полупериоде — по 2-му. Выпрямитель применялся, когда полупроводниковые приборы были дороги и сокращение их числа вдвое оправдывала использование более металлоемкого трансформатора. Сегодня рациональнее применять мостовую схему на 4-х диодах;
    2. мостовая схема. Представляет собой 4 диода, подключенные в виде квадрата. В одну диагональ включается нагрузка, на другую — подается переменное напряжение. Для сглаживания пульсаций используется LC-фильтр или только конденсатор.

    Мостовая схема относится к наиболее распространенным, ее достоинства:

    • не требуется трансформатор со средним выводом, возможно подключение напрямую к электросети;
    • обратное напряжение на диодах вдвое меньше, чем в однополупериодном аналоге.

    Характеристики

    Батареи и аккумуляторы характеризуются такими основными параметрами:

    Фото 9

    1. номинальное напряжение;
    2. номинальная емкость. Измеряется в ампер-часах (А*ч) или миллиампер-часах (мА*ч);
    3. номинальный ток нагрузки;
    4. саморазряд. Обозначает, как быстро уменьшается заряд в батарее при ее бездействии. К примеру, саморазряд литий-ионного аккумулятора при температуре +25 0 С составляет 1,6% в мес.;
    5. температура эксплуатации.

    Для автомобильных аккумуляторов важны:

    1. резервная емкость. Время, в течение которого источник при падении напряжения до 10,5 В способен выдавать ток в 25 А. В норме составляет не менее 90 мин;
    2. ток холодной прокрутки. Сила тока, генерируемая аккумулятором при температуре -18 0 С в течение 10 сек. с напряжением на клеммах не ниже 7,5 В. Этот параметр характеризует способность устройства запустить двигатель автомобиля зимой.

    Пульсирующий ток на выходе выпрямителя принято раскладывать на постоянную и переменную составляющую, при этом он характеризуется:

    • максимальным и минимальным значением Imax и Imin;
    • амплитудой переменной составляющей Iac;
    • величиной постоянной составляющей Idc;
    • коэффициентом пульсаций (отношение амплитуды переменной составляющей к величине постоянной).

    Регулируемые источники

    Регулируемый источник состоит из таких компонентов:

    Фото 10

    • понижающий трансформатор;
    • выпрямитель;
    • сглаживающий фильтр (устраняет пульсации);
    • стабилизатор постоянного напряжения.

    Стабилизатор постоянного напряжения — интегральная микросхема, поддерживающая выходное напряжение на одном уровне, независимо от его колебаний на входе.

    Колебаний обусловленных перепадами напряжения в электросети, изменением тока нагрузки или температуры. Блоки с такими стабилизаторами называют регулируемыми.

    Сегодня распространены импульсные блоки питания, они состоят из таких компонентов:

    • входной выпрямитель;
    • инвертор;
    • понижающий высокочастотный трансформатор;
    • выходной выпрямитель.

    Инвертор превращает предварительно выпрямленный ток снова в переменный, но при этом значительно повышает его частоту — до 10-15 кГц. При такой частоте, габариты трансформатора и потери в нем значительно сокращаются. Инвертор состоит из ключевых транзисторов, управляемых микросхемой.

    Этот же принцип реализован в сварочных инверторах, чем и объясняется их компактность.

    Схемы

    Однополупериодный выпрямитель. Простейшая схема с минимальным количеством элементов. Качество выпрямленного напряжения невысокое.

    Фото 11

    Схема однофазного однополупериодного выпрямителя

    Двухполупериодный выпрямитель, схема со средней точкой. Уровень пульсаций U в данном случае ниже по сравнению с предыдущим вариантом.

    Фото 12

    Двухполупериодная схема выпрямления со средней точкой

    Двухполупериодный выпрямитель, мостовая схема. Самый популярный вариант для промышленной аппаратуры. В схеме используется 4 диода. Сглаживает пульсации напряжения RC-фильтр, установленный на выходе. Нередко его заменяет электролитический конденсатор.

    Фото 13

    Схема двухполупериодного мостового выпрямителя

    Видео по теме

    Как сделать регулированный источник питания постоянного тока:

    В основном постоянный ток получают от батарей и выпрямителей. Последний можно изготовить самостоятельно по одной из приведенных схем. Важно установить конденсатор с правильной емкостью для сглаживания пульсаций: при использовании элемента с заниженной емкостью, ток на выходе окажется низкокачественным.

    Источник