Меню

Правило левой руки физика направление тока

Правило левой руки для силы Ампера

Сила и закон Ампера

На заряд, движущийся в магнитном поле, действует со стороны этого поля сила, называемая силой Лоренца.

Сила Лоренца

Рис. 1. Сила Лоренца.

Если в магнитное поле помещен проводник с током, то силы Лоренца, действующие на движущиеся носители заряда в этом проводнике, складываются в силу, называемую силой Ампера.

Модуль силы Ампера рассчитывается по закону Ампера:

$$F= I |\overrightarrow B| Δl sin \alpha,$$

  • $F$ — модуль силы Ампера;
  • $I$ — величина тока в проводнике;
  • $B$ — индукция магнитного поля;
  • $Δl$ — длина проводника;
  • $\alpha$ — угол между линиями магнитного поля и направлением тока в проводнике.

Сила Ампера

Рис. 2. Сила Ампера.

Направление силы Ампера

Обычно действие сил совпадает с направлением движения тел или с направлением на источник силы. В случае с силой Ампера ситуация иная.

Направление действия силы Ампера не совпадает ни с направлением движения тока, ни с направлением вектора магнитной индукции. Сила Ампера направлена перпендикулярно обоим этим направлениям. То есть, если линии магнитного поля направлены по вертикали, а проводник расположен горизонтально слева направо, то сила Ампера будет направлена вдоль линии «вперед-назад». Причем ее направление также будет зависеть от направлений магнитной индукции и электрического тока в проводнике. «Просто запомнить» все направления невозможно. Поэтому для силы Ампера установили специальное мнемоническое правило левой руки.

Правило левой руки

Формулировка правила левой руки для силы ампера звучит так:

Если расположить левую руку так, чтобы четыре пальца были направлены по направлению движения тока в проводнике, а перпендикулярная составляющая индукции $B_<\perp>$ входила в ладонь, то отставленный большой палец покажет направление силы Ампера.

Как пользоваться этим правилом? Разберем примеры.

  • Допустим, проводник расположен горизонтально, и ток по нему идет вперед. Следовательно, четыре пальца левой руки надо вытянуть вперед по этому направлению.
  • Теперь допустим, что линии магнитного поля направлены сверху вниз (сверху «север» подковообразного магнита, снизу — «юг»). Следовательно, левую руку надо повернуть ладонью вверх, чтобы линии магнитного поля входили в ладонь и «прокалывали» ее (четыре пальца по-прежнему должны быть вытянуты вперед).
  • Отставленный большой палец левой руки будет направлен влево. Это и есть направление силы Ампера для данной ситуации.

Другой пример.

  • Пусть проводник расположен вертикально. А магнитное поле направлено справа налево (справа «север» магнита, слева — «юг»).
  • Располагаем левую руку четырьмя пальцами вверх. Ладонь открытой стороной должна «смотреть вправо», чтобы магнитные линии входили и «прокалывали» ее.
  • Отставленный большой палец покажет назад. Именно так и будет направлена сила Ампера в данном случае.

Обратите внимание, что силу Ампера порождает только перпендикулярная составляющая магнитного поля. А значит, руку надо располагать так, чтобы линии магнитного поля всегда входили в нее под углом, максимально близким к прямому.

Особым случаем является ситуация, когда направление тока и магнитной индукции совпадает. В этом случае руку невозможно расположить так, чтобы линии магнитной индукции входили в нее. Следовательно, силы Ампера здесь не возникнет. В самом деле, если линии магнитной индукции параллельны направлению тока, то перпендикулярная составляющая этих линий равна нулю, и значение силы Ампера в вышеприведенной формуле также равно нулю.

Различные случаи применения правила левой руки

Рис. 3. Различные случаи применения правила левой руки.

Что мы узнали?

Для определения направления силы Ампера используется специальное мнемоническое правило левой руки. С помощью этого правила можно не только определить направление силы Ампера, но и обнаружить случай, когда сила Ампера равна нулю.

Источник

Правило правой и левой руки: формулировка и применение

Для обозначения направления тока, магнитных линий и прочих физических значений в науке применяют правило левой руки и правило правой руки (закон буравчика или винта). Указанные методы на практике дают наиболее точные результаты. Рассмотрим более подробно каждый из них.

Правило Буравчика

Это правило на практике достаточно удобно для определения такого значения магнитного поля, как направленность напряжённости. Использовать это правило возможно при условии, что к проводнику с током будет прямолинейно расположено магнитное поле. С его помощью можно без наличия специализированных приборов определить различные физические величины (момент сил, импульса, вектор магнитной индукции).

Это правило:

  • поясняет особенность электромагнетизма;
  • объясняет физику движения магнитных полей, сопутствующих ему.

Формулировка правила буравчика состоит в следующем: если буравчик с правой нарезкой вкручивается вдоль линии тока, то направление магнитного поля совпадает с направлением рукоятки этого буравчика.

Правило буравчика

Основным принципом, используемым в правиле винта, является выбор направленности для базисов и векторов. Зачастую на практике определено использовать правый базис. Левые базисы используются крайне редко, в случае когда использование правого неудобно или в целом нецелесообразно. Этот принцип также применим и на соленоиде.

Соленоидом называется катушка со вплотную привязанными витками. Главным требованием является протяжённость катушки, которая должна быть существенно больше, нежели её диаметр.

Кольца соленоида напоминают поле непрерывного магнита. Магнитная стрелка, находясь в свободном вращении и находясь рядом с проводником тока, будет образовывать поле и устремиться занимать вертикальную позицию, проходящую вдоль проводника.

В этом случае оно звучит так: если охватить соленоид таким образом, чтобы пальцы показывали на направленность тока в винтах, то выпяченный заглавный палец правой руки покажет направленность рядов магнитной индукции.

Различные толкования правила буравчика говорят о том, что все его описания приспосабливаются к различным случаям их применения.

Определение направлений линий магнитного поля

Правило правой руки говорит о следующем: охватив элемент, который исследуется таким образом, чтобы пальцы сжатого кулака показывали вектор магнитных линий, при поступательном движении вдоль магнитных линий, заглавный отогнутый на 90 градусов сравнительно ладошки палец покажет направленность движения тока.

В случае когда дан движущийся проводник, принцип будет иметь следующую формулировку: разместить руку так, чтобы силовые линии поля вертикально вступали в ладонь; заглавный палец руки, выставленный вертикально, будет ориентировать направленность перемещения этого проводника, в этом случае четыре остальных выставленных пальца, будут иметь такую же направленность, как и индукционный ток.

Его применение присуще при расчёте катушек, в которых образуется влияние на ток, что влечёт за собой формирование при потребности противотока.

В реальной жизни также применимо следствие этого принципа: если размесить ладошку правой руки так, чтобы линии магнитного силового поля входили в эту ладошку, а пальцы навести на линию перемещения заряженных частиц по оттопыренному заглавному пальцу, то возможно обозначить, куда будет направляться линия данной силы, оказывающая смещающее влияние на проводник. Иными словами, силы, дающей возможность вращать момент силы на валу любого двигателя, работающего с помощью электрического тока.

Магнитное поле

Правило левой руки

Рассмотрим правило: если разместить левую ладошку так, что четыре остальные пальца показывают направленность тока, то в этом случае линии индукции будут поступать в ладошку под прямым углом, а отвёрнутый заглавный палец и покажет вектор существующей силы.

Имеется иное обозначение. Направленность силы Ампера и силы Лоренца должен указывать выставленный главный палец левой руки в том случае, если оставшиеся четыре пальца будут размещены в сторону передвижения положительно и отрицательно заряженных элементов электрического тока, и линии индукции образованного поля будут вертикально входить в ладошку. Это изобретение считается теоретическим и практическим объяснением способа работы двигателей и генераторов, работающих с помощью электрического тока.

Читайте также:  Чем обработать ожог от удара током

Правило левой руки

Можно сделать вывод, что знание данных правил и умение их использовать на практике, позволяют создавать и придумывать электрические приборы и успешно работать с ними.

Видео

Это видео поможет вам лучше понять, что такое магнитное поле.

Что такое «Правило левой руки»? Ответ вы найдете в этом видео.

Магнитное поле — Сила Лоренца.

Источник



Правило буравчика простым языком

Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.

Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)

Правило буравчика для прямого проводника

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).

Главное правило позволяет определить направление в пространстве аксиальных векторов, важных для вычислений:

  • угловой скорости;
  • параметров индукционного тока;
  • магнитной индукции.

Хотя ориентация аксиального вектора является условной, она важна для расчётов: придерживаясь принятого алгоритма выбора, легче производить вычисления, без риска перепутать знаки.

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Правило правой руки

В электротехнике очень часто применяют интерпретацию буравчика для правой руки.

Действия можно сформулировать так: «Если отведённый в сторону большой палец правой руки расположить вдоль проводника так, чтобы он совпал с направлением электрического тока, то остальные пальцы будут указывать направление образованных электрическим полем магнитных силовых линий. (см. схему на рис. 2).

Иллюстрация правила правой руки

Рис. 2. Иллюстрация правила правой руки

Сформулированные выше алгоритмы применяются и для соленоидов. Но разница в том, что в случае с соленоидом, рукоятку буравчика вращают так, чтобы это движение совпадало с направлением токов в витках, а продвижение винта буравчика указывает на ориентацию вектора магнитных линий в соленоиде.

При использовании правой руки, пальцами охватывают (условно) катушку так, чтобы направление тока в витках совпадало с пространственным расположением пальцев. Тогда большой палец укажет на ориентацию вектора электромагнитных линий внутри катушки. На рисунке 3 изображены схемы, объясняющие алгоритмы определения направлений векторов для соленоидов.

Иллюстрация правила правой руки для катушки

Рис. 3. Иллюстрация правила правой руки для катушки

Не трудно догадаться, что данные правила можно применять с целью определения направления тока. Например, если с помощью магнитной стрелки определить устремление линий магнитной индукции, то путём применения правила буравчика (как вариант его формулировки для правой руки), легко определяется, в какую сторону течёт ток.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

  • механического вращения (определение угловой скорости);
  • момента приложенных сил;
  • момента импульса.

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Правило левой руки

В электротехнике довольно часто возникают вопросы, связанные с определением силы Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом левой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способ определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник, по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

Сила АмпераРис. 4. Сила Ампера

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Читайте также:  Путей протекания тока через тело человека наиболее безопасны

Интерпретация правил левой руки

Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы. Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Видео по теме

Источник

Правило левой руки: применение правила Буравчика, формулы, примеры задач

В физике и электротехнике приходится часто решать задачи, где требуется рассчитать электрические показатели магнитной индуктивности, по отношению к электротоку и наоборот. Поля и силы сориентированы определенным образом, поэтому и сформировались правило Буравчика и правило левой руки. С их участием возможно установить курс векторов, влияние магнитных полей и прочие данные, используемые в расчетах.

  1. История открытия правила Буравчика
  2. Правило левой руки
  3. Что определяет закон
  4. Сила Лоренца применение и формула
  5. Сила ампера – формула
  6. Примеры задач в физике электротехнике
  7. Задача № 1
  8. Задача № 2
  9. Задача № 3
  10. Задача № 4
  11. Как связано магнитное поле с Буравчиком и руками
  12. Магнитное поле в соленоиде
  13. Определение направления тока Буравчиком
  14. Что связано с левой рукой
  15. Выводы
  16. Видеоурок

История открытия правила Буравчика

В 19-м веке была обнаружена связь между магнетизмом и электричеством. В это же время было сформировано понятие магнитного поля. Впервые оно было обнаружено датским ученым-физиком Х. Эрстедом.

После этого открытия, ученые ряда стран провели многочисленные эксперименты, которые установили широкий спектр действия поля, нередко выходящий за рамки исследуемого объекта. Было открыто и его круговое вращение.

В дальнейшем, исследования перешли в сферу изучения вопроса – в каких направлениях действует магнетизм. Выяснилось, что его влияние может быть разносторонним, и меняется от того, каким образом располагаются полюса и силы, оказывающие влияние на проводник.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

По результатам экспериментов было открыто и оформлено правило левой и правой руки. Первым каноном выявляется направленность сил, влияющих на проводящий материал, а вторым – направленность магнитных линий.

С целью полного отображения было принято специальное определение и другие обозначения. Отображение поля выполняется в виде концентрических линий. Чем чаще они расположены относительно друг друга, тем выше сила действующего поля. Каждая из них получается замкнутой и не пересекается с соседними. Если узнать их направленность, можно установить, куда смотрит вектор магнитной индукции. Возможно и обратное действие, поскольку направление вектора будет соприкасаться с каждой точкой этих линий.

Проведенные опыты позволили сформулировать и закон Буравчика. Когда он вкручивается, резьба будет двигаться по часовой стрелке, то есть вправо. В таком же направлении осуществляется движение силовых магнитных линий. Правило левой руки дополняет правило Буравчика, устанавливая направленность силы, действующей на электрический провод.

Правило левой руки

Если определять физические величины по правилу левой руки, то ее ладонь располагается в таком положении, что четыре пальца направлены вперед, а большой отвернут в бок. Прямые пальцы указывают в сторону направления тока, а оттопыренный большой – направление устремления вектора приложенных усилий. При этом, направление индукции заходит и упирается в ладошку сверху под углом девяносто градусов.

Что определяет закон

По итогам выполнения многочисленных экспериментальных опытов было выведено определение, которое впоследствии стало именоваться правилом левой руки. Оно связало между собой направленности электротока и концентрических линий, а также влияние на проводящий материал силы магнетических полей. Живой пример отражен на картинке, где хорошо видно взаимодействие физических составляющих. Направленность силовых линий и функционирующего магнитного поля не совпадают, их действие направлено в совершенно разные места.

Когда направленность электротока и проводника будет совмещаться с линиями, то силовое влияние на проводящий материал в данном случае отсутствует. В результате, указанный постулат перестанет работать.

Сила Лоренца применение и формула

Действие электромагнитных полей порождает возникновение точечной заряженной частицы, на который воздействуют силы электрического и магнитного характера. В скомбинированном виде они получили наименование силы Лоренца.

Таким образом, сила Лоренца воздействует на любую частицу с зарядом, падающую с определенной быстротой в магнетическом поле. Степень влияния связана с электрическим зарядом частицы (q), показателем магнитной индукции (В) и быстротой падения частицы (V).

На основании полученных данных голландским ученым Хендриком Лоренцем была выведена формула: FL = |q|x V x B x sinα. Все условные обозначения приведены на рисунке.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

В практической деятельности сила Лоренца получила применение в следующих областях:

  • Кинескопы – электронно-лучевые или телевизионные трубки. В этих устройствах электроны, летящие в направлении экрана, отклоняются магнитным полем, которое создают специальные катушки.
  • Масс-спектрографы. Определяют массы заряженных частиц, путем разделения их по удельным зарядам. Вакуумная камера помещается в магнитном поле. Заряженный частицы ускоряясь, двигаются по дуге и оставляют след на фотопластинке. Па радиусу траектории вначале определяется удельный заряд, на основании которого вычисляется и масса частицы.
  • Циклотрон. Ускоряет заряженные частицы. Ускорение происходит под действием силы Лоренца, после чего траектория частиц сохраняется за счет магнитного поля. Прибор давно начали использовать в медицинских исследованиях с применением радионуклидных фармацевтических препаратов.
  • Магнетрон. Электронная лампа высокой мощности для генерации микроволн, возникающих при взаимодействии электронного потока и магнитного поля. Используется с современных радиолокационных устройствах.

Сила ампера – формула

Сила Ампера непосредственно воздействует на проводник с током, расположенный внутри поля. Совсем кратко она выражается представленной формулой:

F = I x B x L x sinα, где F является силой Ампера, I – сила тока в проводнике, L – отрезок проводника, находящийся под действием магнитного поля, α – угол между направлением тока и вектором магнитной индукции.

Максимальное значение сила Ампера принимает, когда угол α становится равным 90 градусов. Единицей измерения служит ньютон (Н).

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Определение направления силы Ампера выполняется с помощью правила левой руки. Ладонь смотрит вверх, четыре пальца направлены в сторону вектора движения тока. Вектор магнитной индукции перпендикулярен ладони и входит в нее. Направление силы Ампера совпадает с большим пальцем, отогнутым в сторону.

Направлением электрического тока условно считается движение от заряда с плюсом к заряду с минусом.

Читайте также:  Устройство способное пропускать ток только в одном направлении это

Примеры задач в физике электротехнике

В качестве примеров будут рассмотрены задачи, связанные с силой Ампера. Примеры решений специфические, но сам метод решения довольно простой.

Задача № 1

Исходные данные для выполнения: длина проводника – 20 см, сила тока, протекающая в нем – 300 мА, угол между проводником и вектором магнитной индукции – 45о. Величина магнитной индукции – 0,5 Тл.

Требуется найти силу однородного магнитного поля, воздействующую на проводник.

Решение: необходимо применять основную формулу – Fa = B x I x L x sinα. Подставив нужные значения, получаем: Fa = 0,5 Тл х 0,3А х 0,2 м х (√2/2) = 0,03 Н.

Задача № 2

Исходные данные для решения: Проводник помещен в магнитное поле, индукция которого составляет 10 Тл. Сила действия магнитного поля перпендикулярна проводнику и составляет 20 Н. Сила тока, протекающего в проводнике – 5А.

Требуется вычислить длину отрезка проводника.

Решение: за основу берется формула Fa = B x I x L x sinα. Длина проводника определяется следующим образом: L = Fa/(B x I x sinα). Поскольку sinα = 1, получаем: L = Fa/(B x I). Остается подставить нужные значения и получить результат: L = 20Н/(10Тл х 5А) = 0,4 м.

Существуют аналогичные задачи с использованием силы Лоренца. Наглядно рассматрим два примера, которые решаются просто и понятно.

Задача № 3

Исходные данные для выполнения: в магнитном поле с индукцией 0,3 Тл передвигается заряд величиной 0,005 Кл со скоростью 200 м/с. Угол между направлением заряда и вектором магнитной индукции – 45º.

Определяется: величина силы, воздействующей на заряд.

Решение: используется основная формула FL = |q| x V x B x sinα. Подставляя исходные данные, получаем следующее: FL = 0,005Кл х 200м/с х 0,3Тл х sin 45о = (0,3 х √2)/2 = 0,21Н.

Задача № 4

Исходные данные для решения: заряженная частица величиной 0,5 мКл движется в магнитном поле с индукцией 2 Тл. Сила, действующая на заряд со стороны магнитного поля – 32 Н. Направление движения частицы и вектор магнитного поля расположены под углом 90º.

Требуется определить: скорость движения заряженной частицы.

Решение: изначально берется формула FL = |q| x V x B x sinα. Поскольку sinα = 1, она приобретает следующий вид: FL = |q| x V x B. Для определения скорости нужно: V = FL/(|q| x B). Остается вставить исходные данные: V = 32Н/(5*10-4Кл х 2Тл) = 32000 м/с.

Как связано магнитное поле с Буравчиком и руками

Рассматривая движение полей токовой и магнитной природы, можно легко проследить взаимную связь правила Буравчика с канонами правой и левой руки. Для более качественного сравнения этих понятий, следует рассмотреть, что они представляют собой по отдельности.

Закон Буравчика точно устанавливает направленность напряженности, вызываемой магнитными полями. При этом само поле должно размещаться в прямом направлении по отношению к проводящему материалу с электротоком.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Для более полного представления берется штопор с правой резьбой и ввинчивается по часовой стрелочке в сторону протекания тока. Направленность магнетических полей соответствует правостороннему движению штопорной рукоятки.

Правило правой руки может рассматриваться в двух вариантах. В одном из них пальцы, согнутые в кулак, охватывают неподвижный токопроводник. Они обозначают, в какую сторону смотрит вектор магнитных линий, который, как и у рукоятки Буравчика, будет по ходу часовой стрелки. Самый крупный палец отступает на 90º и показывает, в какую сторону движется ток.

Если же токопровод движется, то правая рука размещается иным способом. Ладонь устанавливается между северным и южным полюсами так, чтобы она была в перпендикулярности с силовыми линиями, проходящими через нее. Крупный палец фиксируется в вертикальном положении и показывает в сторону направленного движения проводника. Оставшиеся пальцы, протянутые вперед, смотрят в ту же сторону, что и индукционный ток. Эта установка нашла свое применение в расчетах катушечных соленоидов, оказывающих воздействие на физические свойства тока.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Отделяя друг от друга правило правой и левой руки, их физика показывает, что второй вариант, используемый в расчетах, действует по-другому. Левая ладошка размещается в таком положении, чтобы четыре пальца были направлены в сторону тока, продвигающегося по проводнику. Магнитные линии, перемещаясь от одного полюса к другому, заходят в ладошку под 90 градусов. Оттопыренный крупный палец смотрит в ту же сторону, что и сила, воздействующая на токопроводник.

Магнитное поле в соленоиде

Законы правой и левой руки в физике, разобранные ранее, на сто процентов действуют лишь для прямолинейных токопроводников. Однако, довольно часто провода используются в виде катушек или соленоидов, где все процессы происходят по-другому.

Известно, что под влиянием электротока, проходящего внутри провода, образуется круговое магнитное поле. В катушечных соленоидах провод сворачивается в виде колец и многократно оборачивается вокруг сердечника. Здесь правило Буравчика в чистом виде уже не функционирует, поскольку происходит существенное усиление магнетических полей. Но, его условные линии направлены так же, как и у постоянных магнитов, поэтому в таком случае возможно применение правила правой руки.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Сначала соленоид охватывается так, чтобы самый крупный палец смотрел в направлении северного магнитного полюса. Он же отображает направление вектора магнитной индукции. Остальные четыре пальчика располагаются в направлении протекания тока.

Возможно частично применить и правило штопора. Его следует установить и закручивать в направлении тока, тогда острие станет перемещаться в направлении электромагнитной индукции. Эта установка действует не только для всей катушки, но и для одиночного витка.

Определение направления тока Буравчиком

Определить, куда движется ток, возможно посредством рук и Буравчика. В последнем случае должно быть известно, куда направляется магнитный поток – вектор В. Зная это направления, остается мысленно крутить штопор по часовой стрелке. Он будет постепенно передвигаться вперед, в ту же сторону, что и электроток. Эта формулировка действует для неподвижного прямого токопроводника.

Что связано с левой рукой

В целях правильного использования физических понятий, нельзя смешивать друг с другом Буравчик и левую руку. В одном случае определяются направленности магнетических линий и электротока, а второй вариант заключается в установлении силы, оказывающей влияние на проводящий материал.

В отдельных случаях не все точно знают, как пользоваться «левой рукой». Но что бы ни говорили, все очень просто. Выпрямленная рука размещается ладонью вверх между двумя полюсами вдоль токопроводника. Магнитные линии условно пронзают открытую ладошку. Все пальцы направлены по ходу течения тока, а оттопыренный самый крупный палец совпадает с направлением вектора силы, которая получила название силы Ампера.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

С помощью левой руки можно определить не только силу Ампера, но и силу Лоренца. В последнем случае – это способ, применяемый к отдельным заряженным частицам. Его смысл состоит в расположении пальцев левой ладони в направлении движения заряда. Когда вектор В будет проходить сквозь ладонь, большой палец будет смотреть в сторону действия силы Ампера. При наличии отрицательного заряда, пальцы должны располагаться в противоположном направлении.

Выводы

Научиться пользоваться всеми способами совсем несложно, главное – знать объяснение физических принципов каждого из них. Мысленное использование Буравчика приносить в процессе обучения определенное облегчение в практическом выполнении расчетов и других действий. Все эти правила успешно применяются специалистами во многих областях электротехники.

Источник