script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Промышленный переменный ток в ссср

Плюс и минус

Сегодня во всём мире растёт интерес к линиям электропередачи на постоянном токе (ЛЭП ПТ), которые в ряде случаев обладают заметными техническими и экономическими преимуществами по отношению к линиям электропередачи переменного тока той же мощности.

Переход на постоянный ток выгоден по многим причинам. Затраты на строительство самих линий снижаются — замена трёх фаз на два полюса позволяет резко сократить стоимость проводов или кабелей. В случае воздушных линий опоры конструктивно проще и легче, а трасса линии — уже. Также заметно снижается расход строительных и конструкционных материалов. Однако преобразовательные подстанции ЛЭП ПТ сложнее и дороже подстанций ЛЭП переменного тока, поскольку содержат много дополнительного оборудования. Это мощные преобразовательные установки со своими системами регулирования, защиты, сигнализации, охлаждения и т. д. Также на подстанциях должны быть синхронные компенсаторы или мощные батареи конденсаторов для компенсации реактивной мощности, потребляемой самими преобразователями. Там же монтируются фильтры высших гармоник, сглаживающие реакторы и другое оборудование.

Точка невозврата

Существует понятие критической длины линии. Это длина, при которой суммарная стоимость решений на постоянном и переменном токе (подстанции плюс линия) одинакова. При длине линии больше критической экономически выгоднее строить ЛЭП ПТ. По данным Всероссийского электротехнического института (ВЭИ), критическая длина воздушной линии, в зависимости от передаваемой мощности и конкретных географических условий, составляет 600-800 км, кабельной — 30-50 км.

В некоторых случаях постоянный ток оказывается безальтернативным вариантом. Например, если нужно соединить две системы переменного тока, работающие асинхронно или имеющие разные частоты (50 и 60 Гц). В таких случаях используют вставки постоянного тока.

Также отметим, что мощность и длина линии переменного тока ограничиваются эффектами статической и динамической неустойчивости, а мощность и длина ЛЭП ПТ — только параметрами преобразовательного оборудования. Более того, постоянный ток облегчает работу системного оператора: передаваемую по ЛЭП ПТ мощность можно регулировать очень быстро и практически от нуля до максимума.

ЛЭП ПТ также снижают вероятность серьёзных системных аварий и облегчают послеаварийное восстановление сетей. Если при повреждении провода одной фазы линия переменного тока отключается целиком, то при повреждении провода одного из полюсов ЛЭП ПТ по проводу другого полюса можно передавать половинную мощность. Земля заменяет повреждённый провод. Подобный режим, допустимый лишь ограниченное время, обычно позволяет сохранить энергоснабжение потребителей первой категории.

Поле для внедрения

В современных крупных городах, где возможности строительства новых воздушных линий ограничены, используются «глубокие вводы» на кабелях постоянного тока. Подводные кабельные линии, работающие на постоянном токе, могут иметь длину до 500 км. Подобные решения на переменном токе невозможны в принципе из-за повышенной реактивной составляющей кабельной линии.

Конечно же, перспективы применения ЛЭП ПТ зависят от общей конфигурации энергосистемы. В 1960-х годах в СССР сложилась такая ситуация, что основные энергетические ресурсы страны размещались за Уралом, а центры электрической нагрузки — в Европейской части страны. Нужно было перебрасывать большие мощности на огромные расстояния. На тот момент уже были отработаны методы разработки и технологии строительства классических ЛЭП ПТ с высоковольтными ртутными и тиристорными преобразователями напряжения.

В середине 1960 гг. в СССР была разработана государственная программа, конечной целью которой было создание сверхмощной (6 ГВт) линии электропередачи постоянного тока Экибастуз — Центр напряжением 1500 кВ (±750 кВ относительно земли). В проекте линии длиной 2400 км (она должна была стать крупнейшей в мире) предполагалось на начальной стадии для преобразования напряжения использовать высоковольтные ртутные вентили.

В 1966 г. Совет Министров СССР выпустил постановление о проведении НИОКР в области создания сверхдлинных ЛЭП постоянного тока. Головным предприятием по разработке комплексного электротехнического оборудования для ЛЭП ПТ напряжением 1500 кВ был назначен Всесоюзный электротехнический институт. В то время ВЭИ занимал лидирующие позиции в стране и мире в области мощных ртутных вентилей и электронных вакуумных устройств.

Однако уже в 1970 г. в связи с быстрым развитием полупроводниковой преобразовательной техники было принято решение прекратить разработку новых мощных ртутных вентилей и в дальнейшем ориентироваться на тиристорные силовые приборы.

Наращивая напряжение

С 1970 по 1980 гг. в стране разрабатывались комплексы электрооборудования для ультравысоковольтных ЛЭП переменного тока напряжением 1150 кВ и постоянного тока 1500 кВ (±750 кВ). Практическая реализация проектов была запущена 30 апреля 1981 г. совместным Постановлением ЦК КПСС и Совета Министров СССР № 412. Это постановление предписывало Министерству энергетики и электрификации СССР построить и ввести в действие в 1981-1990 гг. ЛЭП переменного тока напряжением 1150 кВ Экибастуз — Кокчетав — Кустанай — Челябинск (1272 км), Сургут — Урал (500 км), Итат — Новокузнецк (272 км), Новокузнецк — Западно-Сибирская — Экибастуз (950 км), а также уже упомянутую ЛЭП ПТ Экибастуз — Центр. Её назначение — передача энергии от Экибастузских ГРЭС в энергосистему Центра для покрытия дефицита мощности в этом районе. Кроме того, ставилась задача построить линии электропередачи переменного тока напряжением 500 кВ (с подстанциями) общей протяжённостью около 2 тыс. км, необходимые для распределения электрической энергии от подстанций с напряжениями 1150 и 1500 кВ.

Проект ЛЭП ПТ Экибастуз — Центр разрабатывали три организации: «Энергосетьпроект» (ведущий проектировщик), ВЭИ (разработчик электротехнического оборудования) и Научно-исследовательский институт постоянного тока (разработчик технических требований к оборудованию).

Согласно проекту, выпрямительная подстанция располагалась в Экибастузе, инверторная — в Тамбове. Для ЛЭП Экибастуз — Центр были разработаны, изготовлены, испытаны и частично поставлены на первую очередь преобразовательных подстанций (одна ветвь мощностью 1500 МВт) уникальные высоковольтные тиристорные вентили, однофазные двухобмоточные преобразовательные трансформаторы мощностью 320 МВА на классы напряжения ±400 и ±750 кВ, линейные реакторы на класс напряжения ±750 кВ, серия унифицированных разрядников, аппаратура систем управления, регулирования, защиты и автоматики ЛЭП и другое электрооборудование.

Ввод линии постоянного тока в эксплуатацию, перенесённый на 1992-1995 гг., не состоялся из-за распада СССР. К 1991 г. была построена воздушная ЛЭП длиной почти 1000 км, на преобразовательных подстанциях начался было монтаж электрооборудования, но вскоре все работы были прекращены. Электрооборудование было разобрано, ЛЭП — демонтирована и сдана в металлолом.

О грандиозном советском проекте сегодня напоминают лишь оставшиеся кое-где отдельные конструкции. Например, в районе Вольска (Саратовская область) гигантские 124-метровые опоры, установленные для пересечения Волги, несут провода 500-киловольтной ЛЭП переменного тока Балаковская АЭС — Курдюм — Фролово.

По данным специалистов ВЭИ, электрооборудование для линий постоянного тока напряжением 1500 кВ, созданное в СССР, опередило зарубежные разработки примерно на 20 лет. Первая ЛЭП подобного класса (±800 кВ) была запущена в эксплуатацию в Китае только в 2010 г.

Источник

Электрификация железных дорог в СССР

Электрификация железных дорог в СССР

Первые электровозы в СССР появились на Сурамском перевальном участке Закавказской железной дороги. Тяжелый горный профиль, отсутствие специальных типов паровозов, быстрый рост перевозок (в том числе транспортировка бакинской нефти в порты Грузии) обусловили возникновение идеи о необходимости электрификации данного участка.

Первым участком электрифицированным в СССР был Баку — Сабунчи. В 1928 году были начаты работы по сооружению высоковольтных линий, контактной сети и тяговых подстанций на Сурамском перевале. В качестве системы тока была принята система постоянного тока с номинальным напряжением в контактной сети 3000 В, широко распространённая к тому времени в странах Европы и Америки.

Первую партию электровозов для Сурамского перевального участка было решено закупить за границей. В дальнейшем же планировалось освоить их производство в Советском Союзе, используя опыт зарубежных фирм.

НКПС обратился к ряду зарубежных компаний с целью размещения заказа на поставку локомотивов для Сурамского перевала. Были получены предложения от таких известных фирм, как немецкие AEG и Сименс-Шукерт, американские GE (Дженерал Электрик) и Вестингауза, итальянская Техномазио Броун Бовери, английская Метрополитен Виккерс. По результатам изучения предоставленных материалов было решено остановиться на предложениях фирм GE и Техномазио Броун Бовери. Обе фирмы уже имели опыт постройки электровозов схожего типа — GE строила электровозы постоянного тока напряжением 3000 В для горных дорог Бразилии, итальянская же фирма поставляла электровозы для государственных железных дорог Италии, использовавших ту же систему тока.

Читайте также:  Презентация оказание первой доврачебной помощи при поражении электрическим током

С фирмой GE был заключен договор на поставку восьми электровозов, а также предоставление комплекта рабочих чертежей и другой документации, необходимой для организации производства подобных электровозов в СССР. Оговаривалось, что только два первых электровоза будут оснащены своими тяговыми электродвигателями (ТЭД), тогда как остальные 6 планировалось укомплектовать двигателями производства Московского машиностроительного завода «Динамо».

Итальянской фирме было заказано семь электровозов.
Предшественники первого советского электровоза

В июне 1932 года в депо Хашури Закавказской железной дороги прибыли первые два электровоза (С10-01 и С10-03), построенные фирмой GE. Эти два электровоза были оснащены американскими тяговыми электродвигателями. Серия получила обозначение С10. Остальные шесть электровозов, без электродвигателей, от фирмы GE поступили в конце того же года.

Летом 1932 г. были закончены и работы по электрификации Сурамского перевального участка. 2 августа 1932 года на нём прошла обкатка первого в СССР магистрального электровоза. Два пассажирских вагона, ведомые локомотивом С10-03, прошли от станции Хашури до станции Лихи и обратно. Пробная поездка стала успешной и заняла 1 час и 10 минут.

В 1933—1934 годах в СССР прибыли семь электровозов, построенных итальянской фирмой Техномазио Броун Бовери. На своих электровозах итальянцы применили целый ряд интересных конструкторских решений, нашедших впоследствии место на советских серийных машинах.

Впоследствии в Советском Союзе был налажен выпуск лицензионной копии данного электровоза — Сс.

Электровоз С стал родоначальником целой группы Сурамских электровозов (Сс, Си, ВЛ19, СК, ВЛ22 (См22), ВЛ22м), которые выпускались вплоть до 1956 года.
http://ru.wikipedia.org/wiki/%D0%A1_%28%D1. %D0%BE%D0%B7%29


В начале 1930-х годов на железнодорожных путях крупнейших промышленных предприятий СССР стала внедряться электротяга. Для перевозки руды требовались четырёхосные электровозы со сцепной массой 60 — 90 тонн. Аналогично электрификации магистральных дорог было принято решение как создавать отечественный подвижной состав, так и закупать электровозы за рубежом. В 1932 году Торговое представительство СССР выдало заказ итальянскому Национальному обществу «Савельяно» на постройку 26 промышленных четырёхосных электровозов, рассчитанных на постоянный ток напряжением 750 В.

В 1933 году электровозы были изготовлены на заводе в Турине и начали поступать в СССР. Все 26 локомотивов работали на Магнитогорском металлургическом комбинате (ММК). В 1934-1935 годах электровозы были доработаны заводом «Савельяно» с целью устранения ряда дефектов механической части, электро- и пневматического оборудования, выявленных в ходе первоначальной эксплуатации.

На март 2009 года в рабочем состоянии находились 4 электровоза!

Электровоз IV-КП — промышленный электровоз постоянного тока, строившийся в ГДР заводом «Ганс Баймлер» с 1949 по 1951 гг., а затем и в СССР Новочерскасским электровозостроительным заводом с 1950 по 1956 гг.


Электровоз ЕЛ2 — промышленный электровоз постоянного тока, строившийся в ГДР на локомотивостроительном заводе Ганс Баймлер нем. Lokomotivbau Elektrotechnische Werke для предприятий Советского Союза. с 1957 по 1967 годы

Электровоз ЕЛ1 — строившийся в ГДР на локомотивостроительном заводе Ганс Баймлер нем. Lokomotivbau Elektrotechnische Werke для предприятий Советского Союза. с 1955 по 1971 годы

Электровоз 21Е строился для СССР в 1956—1962 Škoda Holding Чехословакия


Электровоз ЧС1 (Чехословацкого производства, тип 1. Заводские обозначения — 24Ео, 41E) — пассажирский электровоз постоянного тока. производился для СССР в 1957-1960 году
http://ru.wikipedia.org/wiki/%D0%A7%D0%A11

ЧС2 (заводские обозначения — 25Ео, 34Е; прозвище — «Чебурашка») — магистральный пассажирский электровоз постоянного тока, строившийся на заводах Шкода с 1958 по 1973 год для железных дорог Советского Союза.

Электровоз Ф — электровоз переменного тока, строившийся во Франции по заказу СССР.

Электровозы серии К (с кремниевыми выпрямителями) — электровоз переменного тока, выпускавшийся немецкими заводами и эксплуатирующийся на советских железных дорогах. Один из первых в СССР электровозов с полупроводниковым статическим преобразователем.
Годы постройки 1961, 1962 Страна постройки ФРГ Заводы Siemens-Schuckertwerke

ЧС200 (заводское обозначение серии — 66Е) — скоростной пассажирский двухсекционный электровоз постоянного тока, выпущенный в Чехословакии заводом Škoda им. Ленина в г. Пльзень в 1974 году, и с 1979 по 1980 год, для эксплуатации в СССР на скоростных участках линии Ленинград — Москва

Желание повысить пропускную способность железных дорог за счёт уменьшения числа поездов и увеличения количества вагонов послужило толчком к созданию нового электровоза с большей силой тяги на базе электровоза ЧС200. Таким электровозом стал ЧС6, построенный заводом Škoda в 1979 году (заводская серия 50E1). Первоначально серию хотели назвать ЧС160 по принятой для него максимальной скорости 160 км/ч.

Электровоз ЧС4 (Чехословацкий, тип 4; заводское обозначение — 52Е) — пассажирский магистральный электровоз переменного тока. Выпускался заводом Шкода с 1965 по 1972 гг. для советских железных дорог. С 1973 года завод перешёл на выпуск модели ЧС4т, отличающейся формой кузова, конструкцией отдельных аппаратов, а также наличием реостатного тормоза.


ЧС4Т (ЧС4, оборудованный реостатным тормозом, заводское обозначение — 62E; прозвище — Теремок) — советский пассажирский шестиосный электровоз переменного тока, выпускавшийся чехословацким заводом «Шкода» в 1971 (опытный образец) и с 1973 по 1986 гг. (серийное производство) для советских железных дорог.

Электровоз ЕЛ21 — промышленный электровоз постоянного тока, строившийся в ГДР на локомотивостроительном заводе Ганс Баймлер (нем. Lokomotivbau Elektrotechnische Werke) для предприятий Советского Союза. Годы постройки 1981-1986

Источник



Электровоз ОР22: первый локомотив переменного тока в СССР

Опубликовано 12.09.2019 · Обновлено 08.04.2021

В 1920-х годах параллельно с первой электрификацией Сурамского перевала (важный и очень сложный по профилю на тот момент участок в Грузинской ССР, который находился в приоритете из-за того, что по нему транспортировалась на продажу за валюту нефть, а валюту в нашей стране любили во все времена) умные люди начали понимать, постоянный ток — это не совсем то, что необходимо для питания локомотивов. Проблема в том, что на 3000V для мощных машин сила тока в перспективе должна составлять 6000А, что совершенно точно потребует контактный провод с большим сечением, а это тонны металла, а еще какая нужна инфраструктура.. В общем переменный ток обладал и обладает преимуществом, другое дело что в те времена никто ничего подобного не делал, и СССР впервые создает электровоз переменного тока ОР22, о нем и поговорим!

Электровоз ОР22

В 1934-м году на московском заводе Динамо дан старт созданию экспериментальной машины, под переменное напряжение контактной сети 20000V. В 1938-м совместно с Коломенским машиностроительным заводом локомотив был построен и нарекли его — электровозом Однофазным Ртутным (ОР) с нагрузкой 22 тонны на ось. Ходовая часть осталась от серии С (две трехосных тележки), все остальное полностью разрабатывалось с нуля.
Схема управления была следующей. Токоприемник через контактор был соединен с первой обмоткой трансформатора, а с вторичной обмотки снималось пониженное напряжение для ртутного выпрямителя (игнитрона), с помощью которого плавно можно было регулировать ток на ТЭД, и также, для питания вспомогательных машин, вторичная обмотка запитывала фазорасщепитель. Вспомогательные машины, такие как два компрессора, три вентилятора, два циркуляционных насоса для жидкостного охлаждения ртутного игнитрона, три портсигара отечественных, так, это из другой публикации, для своего питания требовали трехфазный ток, а электровоз у нас «О»(однофазный). Фазорасщепитель по сути это два мотора, однофазный электродвигатель вращал мотор-генератор, с которого ток получался уже трехфазным. Вот такая система, которая применялась на многих советских электровозах.

Читайте также:  Трансформатор тока схема включения расчет

Технические характеристики машины прямо скажем слабоваты, 2040 кВт мощность и максимальная скорость 36 км/час. Вес аппарата получился 132 тонны, нагрузка на ось была существенной (22 тонны, когда пути были рассчитаны на 20 тонн максимум).
Во время Великой отечественной войны игнитрон с электровоза был снят и переставлен на подстанцию постоянного тока для нужд армии. Так и закончилась жизнь опытного локомотива, а идея бесступенчатого регулирования мощности ТЭД была реализована только через 40 лет на электровозе ВЛ80р, на остальных электровозах переключение позиций осуществлялось контакторами.

Источник

yelkz

Yelkz

. уютный фотобложек для фотовсячины

Заметки о железнодорожном транспорте: Об электрификации ЖД в СССР и видах токов в контактных сетях yelkz 13 апреля, 2018

Одной из особенностей железнодорожного транспорта в России является высокая доля электрифицированных дорог. По протяжённости электрифицированных магистралей на конец 2014-го года Россия занимает 1-е место в мире — 43,4 тыс. км (2-е место Китай — 38,5 тыс. км) — где-то около половины дорог общего пользования. Ну то что много магистралей электрифицировано — это в общем ни для кого не секрет, а вот то что в контактных сетях используется токи разного рода многие узнают с удивлением. Тем ни менее факт: в контактных сетях используется либо постоянный электрический ток номинальным напряжением 3 кВ или переменный однофазный ток промышленной частоты 50 Гц номинальным напряжением 25 кВ. Я об этом сам долгое время не задумывался — узнал когда получал третью группу электробезопасноти (работа в конторе связанной с РЖД как-то обязывала вникать и разбираться). Ну и в общем долгое время я этот факт («есть постояннка 3 кв, есть переменка 25 кВ/50 Гц») принимал как должное — «потому что так принято исторически». А некоторое время всё-таки в вопрос захотелось вникнуть и как-то разобраться — а почему собственно так.

Сразу хочу оговориться — очень глубоко к физику электропитания я копать не буду, ограничиваясь какими-то общими фразами и где-то специально утрируя. Мне иногда высказывают, что вот я упрощаю — а специалисты-то читают и понимаю, что там «всё не так». Это я в курсе, но специалисты то о чём я пишу думаю и так знают — и вряд ли для себя что-то новое почерпнут.

Итак, собственно начать следует с того, что впервые применение электричества в качестве источника энергии для тяги поездов было продемонстрировано на промышленной выставке в Берлине в 1879 году, где был представлен макет электрической железной дороги. По участку протяженностью менее 300 м со скоростью 7 км/ч двигался поезд, состоящий из локомотива мощностью 2,2 кВт и трех вагончиков, в каждом из которых могло разместиться до 6 пассажиров. Создателями нового вида тяги были знаменитый немецкий учёный, изобретатель и промышленник Эрнст Вернер фон Сименс (Werner von Siemens, 1816-1892) и инженер Хальске. К началу 20 века сомнений в эффективности электрической тяги не оставалось. В короткий срок в различных странах было реализовано несколько проектов электрификации жд. На первом этапе электрификация применялась в горных местностях на линиях с тяжелым профилем, с большим количеством тоннелей, а также на пригородных участках, т.е. на тех участках, где преимущества электрической тяги были очевидны.

Соответственно два главных направления применения электрификации: пригородное сообщение и горные магистрали. О пригородном сообщении (суть электропоездах) хочется рассказать отдельно, сейчас же надо заметить лишь, что как раз пригородное железнодорожное сообщение в плане электрификации явилось приоритетным в СССР (в Российской Империи этот проект довести до ума не успели — помешала первая мировая война и революция), в СССР же за это взялись с размахом (тут план ГОЭЛРО конечно очень поспособствовал) — электропоезда начали заменять пригородные поезда на паровой тяге.

В качестве системы электроснабжения была принята система постоянного тока с номинальным напряжением 1500 В. Система постоянного тока была выбрана потому, что при однофазном переменном токе требовались бы более тяжелые и дорогие моторные вагоны из-за необходимости постановки на них трансформаторов. Кроме того, тяговые двигатели постоянного тока имеют при прочих равных условиях более высокий вращающий момент и более приспособлены для пуска по сравнению с двигателями однофазного тока. Это особенно важно для моторных вагонов, работающих на пригородных участках с большим числом остановочных пунктов, где требуется высокое ускорение при трогании с места. Напряжение 1500 В было выбрано в связи с тем, что требуется значительно меньше меди для контактной сети по сравнению с системой 600-800 В (использовалось для электрификации трамваев-троллейбусов). Одновременно появилась возможность создать надежное электрооборудование моторного вагона, на что нельзя было в то время рассчитывать при напряжении 3000 В (первые линии пригородного сообщения, электрифицированные постоянным током 3000 В появились только в 1937 году, однако в дальнейшем на такое напряжение перевели все уже построенные линии).

Параллельно с развитием пригородного сообщения в 1932—1933 гг. электротяга была внедрена на магистральной железной дороге Хашури — Зестафони (63 км) на тяжёлом Сурамском перевале. Здесь, в отличие от Москвы и Баку, электротяга использовалась для грузовых и пассажирских перевозок. Впервые на железнодорожных линиях СССР стали работать электровозы (собственно по месту применения их так и стали называть «сурамские электровозы» или «или электровозы сурамского типа»):

Основной чертой всех электровозов сурамского типа явилось наличие переходных площадок по концам кузова, что по существовавшим в то время нормам было обязательным для всех электровозов с электрооборудованием для работы по СМЕ. Экипажная часть локомотива состоит из двух сочленённых трёхосных тележек (осевая формула 0- 3-0 + 0-3-0). Кузов вагонного типа с несущей главной рамой. Рессорное подвешивание выполнено преимущественно на листовых рессорах. Подвешивание тягового электродвигателя — опорно-осевое.

И вот тут надо сделать важное замечание. В противовес паровозам, двигателем которого является паровая машина, железнодорожный транспорт следующих поколений начал приводиться в действие электродвигателями: так называемые ТЭД-ы (тяговые электродвигатели) — для многих кстати неочевидно, что ТЭД-ы используются как в электровозах/электропоездах, так и в тепловозах (последние просто питают ТЭД-ы размещенным в локомотиве дизель-генератором). Так вот на заре электрификации ЖД использовались ТЭД-ы исключительно постоянного тока. Это связано с их конструктивными особенностями, возможностью достаточно простыми средствами регулировать скорость и вращающий момент в широких пределах, возможностью работать с перегрузкой и т.д. Говоря техническим языком, электромеханические характеристики двигателей постоянного тока идеально подходят для целей тяги. Двигатели же переменного тока (асинхронные, синхронные) имеют такие характеристики, что без специальных средств регулирования их применение для электротяги становится невозможным. Таких средств регулирования на начальном этапе электрификации еще не было и поэтому, естественно, в системах тягового электроснабжения применялся постоянный ток. Строились тяговые подстанции, назначением которых является понижение переменного напряжения питающей сети до необходимого значения, и его выпрямление, т.е. преобразование в постоянный.

Но использование контактной сети постоянного тока создавало другую проблему — большой расход меди в контактной сети (по сравнению с переменным током), ибо для передачи большой мощности (мощность равна произведению тока на напряжение) при постоянном напряжении напряжении нужно обеспечить большую силу тока, ну то есть нужно больше провода и большего сечения (напряжение неизменно — надо понижать сопротивление).

Ещё в конце 1920-х гг., когда только начинали электрифицировать Сурамский перевал, многие специалисты хорошо понимали, что в будущем электрическая тяга на постоянном токе с номинальным напряжением 3 кВ не позволит рационально решить вопрос увеличения провозной способности линий путём повышения веса поездов и скорости их движения. Простейшие расчёты показывали, что при ведении поезда массой 10 000 т на подъёме 10 ‰ при скорости 50 км/ч тяговый ток электровозов будет составлять более 6000 А. Это требовало бы увеличения сечения контактных проводов, а также более частого расположения тяговых подстанций. После сравнения около двухсот вариантов сочетаний рода тока и величин напряжений было принято решение, что оптимальным вариантом является электрификация на постоянном или переменном (50 Гц) токе напряжением 20 кВ. Первая система на тот момент в мире нигде не была испытана, а вторая была хоть и очень мало, но изучена. Поэтому на первой Всесоюзной конференции по электрификации железных дорог было принято решение о сооружении опытного участка, электрифицированного на переменном токе (50 Гц) напряжением 20 кВ. Требовалось создать электровоз для испытаний, которые бы позволили выявить преимущества и недостатки электровозов переменного тока в условиях нормальной эксплуатации.

Читайте также:  Световой источник тока фотоэлемент

В 1938-м году был создан электровоз ОР22 (однофазный с ртутным выпрямителем, 22 — нагрузка от колёсных пар на рельсы, в тоннах). Принципиальная схема электровоза (трансформатор—выпрямитель—ТЭД, то есть с регулированием напряжения на низкой стороне) оказалась настолько удачной, что её стали использовать при проектировании подавляющего большинства советских электровозов переменного тока. На этой модели было опробовано ещё множество других идей, нашедших потом воплощение в более поздних проектах, но к сожалению дальше вмешалась война. Экспериментальная машина была разобрана, её выпрямитель использован на тяговой подстанции постоянного тока. А к идеям электровозов переменного тока вернулись только в 1954-м году с серией НО (или ВЛ61) уже на Новочеркасском электровозостроительном заводе.

Первым на переменном токе (напряжением 20 кВ) был электрифицирован опытный участок Ожерелье — Михайлов — Павелец в 1955—1956 гг. После проведения испытаний было решено увеличить напряжение до 25 кВ. Результаты эксплуатации опытного участка электрической тяги на переменном токе Ожерелье — Павелец Московской железной дороги позволили рекомендовать эту систему переменного тока к широкому внедрению на железных дорогах СССР (постановление Совета Министров СССР № 1106 от 3 октября 1958 г.). С 1959 года переменный ток напряжением 25 кВ начал внедряться на длинных участках, где требовалась электрификация, но поблизости не было полигонов постоянного тока.

В 1950—1955 гг. началось первое, ещё осторожное расширение полигона электрификации. Начался переход с напряжения 1500 В на 3000 В на всех пригородных узлах, дальнейшее развитие пригородных узлов, удлинение электрифицированных линий до соседних областных центров с внедрением электролокомотивной тяги для пассажирских и грузовых поездов. «Островки» электрификации появились в Риге, в Куйбышеве, в Западной Сибири, Киеве. С 1956 года (которой ознаменовал собой конец эпохи паровозов) начался новый этап массовой электрификации железных дорог СССР, который стремительно вывел электротягу и тепловозную тягу с 15 % доли в перевозках в 1955 году до 85 % доли в 1965 году. Массовая электрификация шла преимущественно на уже хорошо себя зарекомендовавшем постоянном токе напряжением 3000 В, хотя где-то уже начинал вводиться и переменный токе частоты 50 Гц напряжением 25 кВ. Параллельно с развитием сети линий на переменном токе велась разработка подвижного состава переменного тока. Так, первые электропоезда переменного тока ЭР7 и ЭР9 начали работу в 1962 г., а для Красноярской железной дороги в 1959 г. были приобретены французские электровозы типа Ф, так как производство советских электровозов переменного тока (ВЛ60 и ВЛ80) задерживалось.

В общем постоянным током были электрифицированы линии, вводимые в эксплуатацию раньше — более поздние линии электрифицировались уже переменным током. Также в 90-е/2000-е произошёл масштабный перевод ряда линий с постоянного тока на переменный. Споры о преимуществах систем не прекратились до сих пор. На заре внедрения переменного тока считалось, что эта система электропитания более экономичная, но сейчас однозначного решения нет:
— подвижной состав постоянного тока в полтора раза дешевле
— удельный расход у ЭПС на холмистом профиле, типичном для большей части нашей страны на 30% ниже.
Так или иначе, новые линии электрификации сейчас строятся только на переменном токе, а также некоторые старые переводятся с постоянного на переменный ток. Единственный в истории электрификации советских и российских железных дорог случай перевода участка с переменного тока на постоянный произошёл в 1989 году на Павелецком направлении Московской железной дороги. После электрификации на постоянном токе участка Рыбное — Узуново участок Ожерелье — Узуново (та самая исторически первая магистраль переменного тока) с переменного тока переведён на постоянный ток:

К слову сказать, сейчас есть тенденция к внедрению более надежных и экономичных асинхронных ТЭД-ов (на локомотивах нового поколения ЭП20, ЭС10, 2ТЭ25А ставятся именно они). Так что в сильно отдаленном будущем по причине перехода на такие ТЭД-ы от постоянного тока можно будет отказаться совсем. Пока что же отлично используются оба рода тока:

Осталось прояснить последний вопрос. Разнообразие систем электроснабжения вызвало появление пунктов стыкования (систем тока, напряжений, частоты тока). При этом возникло несколько вариантов решения вопроса организации движения через такие пункты. Выявились три основные направления:
1) Оборудование станции стыкования переключателями, позволяющими подавать на отдельные участки контактной сети тот или иной род тока. Например, поезд прибывает с электровозом постоянного тока, затем этот электровоз отцепляется и уезжает в оборотное депо или тупик для отстоя локомотивов. Контактную сеть на этом пути переключают на переменный ток, сюда заезжает электровоз переменного тока и ведет поезд далее. Недостатком такого способа является удорожание электрификации и содержание устройств электроснабжения, а также требует смены локомотива и связанных с этим дополнительных материальных, организационных и временны́х затрат. При этом значительное время занимает не столько смена электровоза, сколько опробование тормозов

2) 2. Использование многосистемного подвижного состава (в данном случае — двухсистемного — хотя в Европе например бывают и четырёхсистемные локомотив). При этом стыкование по контактной сети может делаеться за пределами станции. Данный способ позволяет проходить пункты стыкования без остановки (хоть и, как правило, на выбеге). Применение двухсистемных пассажирских электровозов сокращает время следования пассажирских поездов, и не требует сменять локомотив. Но стоимость таких электровозов выше. Дороже такие электровозы и в эксплуатации. Кроме того, многосистемные электровозы имеют больший вес (что, однако, малоактуально на железной дороге, где нередка добалластировка локомотивов для увеличения сцепного веса).

3) Применение тепловозной вставки — оставление между участками с разными системами электроснабжения небольшого тягового плеча, обслуживаемого тепловозами. На практике применяется на участке Кострома — Галич протяженностью 126 км: в Костроме постоянный ток (=3 кВ), в Галиче — переменный (

25 кВ). Транзитом курсируют поезда Москва—Хабаровск и Москва—Шарья, а также Самара—Кинель—Оренбург (прицепка тепловоза к пассажирским поездам происходит в Самаре, а к грузовым — в Кинеле). В Самаре и в Кинеле постоянный ток (=3 кВ), в Оренбурге — переменный (

25 кВ), транзитом проходят поезда на Орск, Алма-Ату, Бишкек. При таком способе «стыкования» значительно ухудшаются условия эксплуатации линии: вдвое удлиняется время стоянки составов, снижается эффективность электрификации из-за содержания и пониженной скорости тепловозов.

На практике же у нас в основном встречается первый способ — со станциями стыкования родов тяги. Скажем если я еду из Саратова в Москву такой станцией будет Узуново, если в Санкт-Петербург — Рязань-2, если в Самару — Сызрань-1, ну а если в Сочи или Адлер — Горячий Ключ (всегда кстати удивлялся тому факту, что в Сочи до сих пор используется постоянный ток, хотя все Северо-Кавказские ЖД на переменке — но говорят там надо чтоб на переменку перевести туннели где-то расширять, есть в общем проблемы).

А вообще могу ещё порекомендовать отличную карту-схема с где обозначена электрификация железных дорог России и Европы. Очень я люблю в эту карту позалипать:
>>> смотреть

Источник