script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Пуск двигателей постоянного тока реферат

Пуск электродвигателя постоянного тока

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

При подаче напряжения на электродвигатель происходит скачок напряжения, который называется пусковым током. Пусковой ток часто выше номинального от 5 до 10 раз, но отличается своей кратковременностью.

Процессы, протекающие при пуске двигателя

Электродвигатель постоянного токаКогда на обмотке статора увеличивается токовая нагрузка, одновременно с этим увеличивается крутящий момент двигателя, передающийся на вал ротора. Резкое увеличение крутящего момента может вызвать резкое повышение температуры обмотки статора и привести к неисправностям в изоляции, что может стать причиной вибраций, механических деформаций и выхода двигателя из строя.

Чтобы избежать поломки электродвигателя, сразу после начала его работы пусковой ток понижается до номинальных частот вращения. Для снижения пускового тока применяют несколько способов, которые также позволяют стабилизировать напряжение электропитания. Существует несколько способов запуска двигателей постоянного тока.

При прямом пуске подключение обмотки якоря происходит непосредственно к электрической сети. Это означает, что двигатель подключается к источнику электропитания при своем номинальном напряжении. Прямой пуск электродвигателя используется, когда есть стабильное питание двигателя, который жестко связан с приводом. Это один из самых простых методов пуска.

Преимуществом прямого пуска является то, что при таком запуске температура повышается не столь значительно, если сравнивать с другими методиками. Если отсутствуют специальные ограничения на поступающий от электросети ток, то такой способ считается наиболее предпочтительным. Те электродвигатели, что предназначаются для частых пусков и отключений, оборудуются специальной системой управления, с контактором и термореле, которые защищают прибор от поломки.

Если электродвигатели имеют малую мощность и работают без частых остановок и пусков, то для его включения требуется самое примитивное оборудование. Обычно им является вручную работающий расцепитель. При такой схеме непосредственно на сами клеммы двигателя и подается напряжение. Для электродвигателей небольших размеров пусковой момент составляет 150–300 % от номинального, а сам пусковой ток — 300–800%.

Прямой пуск имеет то ограничение, что пик нагрузки некоторых крупных двигателей может быть в 15, а иногда и в 50 раз больше номинального. Такие нагрузки совершенно недопустимы, поэтому такой способ пуска применяется лишь на двигателях малой мощности.

Реостатный пуск электродвигателя постоянного тока

Реостатный пуск, в отличие от прямого, не имеет ограничений на мощность двигателя, поэтому его часто применяют на приборах большой мощности. Реостат для пуска изготавливается из провода, который имеет высокое удельное сопротивление и разделен на секции. Ток возбуждения, который возникает при включении двигателя, устанавливается таким образом, чтобы соответствовать номинальным значениям. Это необходимо для того, чтобы при пуске развивался максимально большой допустимый момент, что необходимо для быстрого разгона двигателя.

Реостатный пуск осуществляется вместе с последовательным уменьшением сопротивления реостата, что позволяет не допускать скачков электрического тока и гарантирует безопасность при включении даже самых мощных электродвигателей.

Пуск электродвигателя путем изменения питающего напряжения

Пуск путем изменения питающего напряжения является еще одним способом начать работу электродвигателя. При использовании реостатного пуска могут возникнуть большие потери энергии непосредственно в самом пусковом реостате. Для того чтобы избежать этих потерь и повысить экономичность и энергоэффективность, двигатель запускается с помощью очень плавного постепенного повышения напряжения, которое подается на обмотку якоря. Для такого способа требуется отдельный источник постоянного тока, с помощью которого можно регулировать напряжение. Для этого используют генераторы и управляемые выпрямители. Пуск путем изменения питающего напряжения двигателя является обычной практикой на тепловозах.

Источник

Способы запуска электродвигателя постоянного тока

Хорошие тяговые характеристики электрических машин постоянного тока сделали их неотъемлемым элементом большинства устройств промышленной и бытовой механизации. Но вместе с тем возникает и существенная проблема значительных пусковых токов, в сравнении с асинхронными электродвигателями, работающих на переменном напряжении. Именно поэтому многие специалисты детально изучают способы запуска электродвигателя постоянного тока, прежде чем включить агрегат.

Прямой пуск

Из всех электродвигателей постоянного тока основная градация при выборе способа их запуска должна учитывать мощность устройства.

В целом выделяют три вида пуска:

  • малой мощности;
  • средней;
  • большой мощности.

Для прямого запуска подойдут только маломощные электродвигатели, которые потребляют до 1кВт электроэнергии в сети. При прямых запусках электродвигателя все напряжение сразу подается на рабочую обмотку. Это обуславливает возникновение максимального пускового тока из-за отсутствия естественной компенсации за счет ЭДС противодействия.

С физической точки зрения ситуация в обмотках ротора будет выглядеть следующим образом: в момент подачи напряжения сила тока в обмотках равна нулю, поэтому его значение будет определяться по формуле:

U – приложенная к выводам номинальное напряжение, Rобм – сопротивление катушки.

В этот момент величина токовой нагрузки электродвигателя постоянного тока является максимальной, он может отличаться от номинального значения в 1,5 – 2,5 раза. После этого протекание тока обуславливает генерацию ЭДС противодействия, которая компенсирует пусковую нагрузку до установки номинальной мощности, тогда ток станет:

В мощных устройствах сопротивление обмоток якоря может равняться 1 или 0,5 Ом, из-за чего ток при запуске электродвигателя может достигнуть 200 – 500 А, что в 10 – 50 раз будет превышать допустимые величины. Это, в свою очередь, может привести к термическому отпуску металла, деформации проводников, разрушению колец или щеток скользящего контакта. Поэтому двигатели постоянного тока средней и большой мощности должны вводиться в работу реостатным запуском или путем подачи заведомо пониженного напряжения, прямой пуск для них крайне опасен.

Пуск с помощью пускового реостата

В этом случае в цепь вводится переменное сопротивление, которое на начальном этапе обеспечивает снижение токовой нагрузки, пока вращение ротора не достигнет установленных оборотов. По мере стабилизации ампеража до стандартной величины в реостате уменьшается сопротивление от максимального значения до минимального.

Расчет электрической величины в этом случае будет производиться по формуле:

В лабораторных условиях уменьшение нагрузки может производиться вручную – посредством перемещения ползунка реостата. Однако в промышленности такой метод не получил широкого распространения, так как процесс не согласовывается с токовыми величинами. Поэтому применяется регулировка по току, по ЭДС или по времени, в первом случае задействуется измерение величины в обмотках возбуждения, во втором, на каждую ступень применяется выдержка времени.

Оба метода используются для запуска электродвигателей:

  • с последовательным;
  • с параллельным возбуждением;
  • с независимым возбуждением.

Запуск ДПТ с параллельным возбуждением

Такой запуск электродвигателя осуществляется посредством включения и обмотки возбуждения, и якорной к напряжению питания электросети, друг относительно друга они располагаются параллельно. То есть каждая из обмоток электродвигателя постоянного тока находятся под одинаковой разностью потенциалов. Этот метод запуска обеспечивает жесткий режим работы, используемый в станочном оборудовании. Токовая нагрузка во вспомогательной обмотке при запуске имеет сравнительно меньший ток, чем обмотки статора или ротора.

Для контроля пусковых характеристик сопротивления вводятся в обе цепи:

Запуск ДПТ с параллельным возбуждением

Рис 1. Запуск ДПТ с параллельным возбуждением

На начальном этапе вращения вала позиции реостата обеспечивают снижение нагрузки на электродвигатель, а затем их обратно выводят в положение нулевого сопротивления. При затяжных запусках выполняется автоматизация и комбинация нескольких ступеней пусковых реостатов или отдельных резисторов, пример такой схемы включения приведен на рисунке ниже:

Ступенчатый пуск двигателя параллельного возбуждения

Рис. 2. Ступенчатый пуск двигателя параллельного возбуждения

  • При подаче напряжения питания на электродвигатель ток, протекающий через рабочие обмотки и обмотку возбуждения, за счет магазина сопротивлений Rпуск1, Rпуск2, Rпуск3 нагрузка ограничивается до минимальной величины.
  • После достижения порогового значения минимума токовой величины происходит последовательное срабатывание реле K1, K2, K3.
  • В результате замыкания контактов реле K1.1 шунтируется первый резистор, рабочая характеристика в цепи питания электродвигателя скачкообразно повышается.
  • Но после снижения ниже установленного предела замыкаются контакты K2.2 и процесс повторяется снова, пока электрическая машина не достигнет номинальной частоты вращения.
Читайте также:  Электротехника электрическая цепь постоянного тока

Торможение электродвигателя постоянного тока может производиться в обратной последовательности за счет тех же резисторов.

Запуск ДПТ с последовательным возбуждением

Запуск ДПТ с последовательным возбуждением

Рис. 3. Запуск ДПТ с последовательным возбуждением

На рисунке выше приведена принципиальная схема подключения электродвигателя с последовательным возбуждением. Ее отличительная особенность заключается в последовательном соединении катушки возбуждения Lвозбуждения и непосредственно мотора, переменное сопротивление Rякоря также вводится последовательно.

По цепи обеих катушек протекает одинаковая токовая величина, эта схема обладает хорошими параметрами запуска, поэтому ее часто используют в электрическом транспорте. Такой электродвигатель запрещено включать без усилия на валу, а регулирование частоты осуществляется в соответствии с нагрузкой.

Пуск ДПТ с независимым возбуждением

Подключение электродвигателя в цепь с независимым возбуждением производится путем ее запитки от отдельного источника.

Запуск ДПТ с независимым возбуждением

Рис. 4. Запуск ДПТ с независимым возбуждением

На схеме приведен пример независимого подключения, здесь катушка Lвозбуждения и сопротивление в ее цепи Rвозбуждения получают питание отдельно от обмоток двигателя током независимого устройства. Для обмоток двигателя также включается регулировочный реостат Rякоря. При этом способе запуска машина постоянного тока не должна включаться без нагрузки или с минимальным усилием на валу, так как это приведет к нарастанию оборотов и последующей поломке.

Пуск путем изменения питающего напряжения

Одним из вариантов снижения токовой нагрузки при запуске электродвигателя является уменьшение питающего номинала посредством генератора постоянного напряжения или управляемого выпрямителя.

С физической точки зрения установка реостата обеспечивает тот же эффект, но с увеличением мощности электродвигателя возрастает и постоянная токовая нагрузка, существенно повышаются потери на реостатах. Поэтому снижение постоянного напряжения выполняет отдельное устройство на базе микросхемы, пример которого приведен на рисунке ниже:

Схема пуска с изменением питающего напряжения

Рис. 5. Схема пуска с изменением питающего напряжения

Источник



Реферат: Двигатели постоянного тока

Министерство образования и науки Российской Федерации

ГОУ ВПО Южно-Уральский государственный университет

Филиал в г. Златоусте

Двигатели постоянного тока

Выполнил: Шарипова Ю.Р.

2. Устройство и принцип действия двигателей постоянного тока

3. Пуск двигателей

4. Технические данные двигателей

5. Кпд двигателей постоянного тока

6 Характеристики двигателя постоянного тока

6.1 Рабочие характеристики

6.2 Механическая характеристика

7. Список используемой литературы

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.

2. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис.1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных — обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины.

На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:

(1)

(2)

где КМ — коэффициент, зависящий от конструктивных параметров машины; Ф — магнитный поток одного полюса; IЯ — ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:

(3)

где rЯ — сопротивление якоря.

Следствием уменьшения тока IЯ является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.

3. Пуск двигателей

Из формулы (3) следует, что в первое мгновение после включения двигателя в сеть постоянного напряжения, т.е. когда и ,

Так как сопротивление rЯ невелико, то ток якоря может в 10…30 раз превышать номинальный ток двигателя, что недопустимо, поскольку приведет к сильному искрению и разрушению коллектора. Кроме того, при таком токе возникает недопустимо большой момент двигателя, а при частых пусках возможен перегрев обмотки якоря.

Чтобы уменьшить пусковой ток в цепи якоря, включают пусковой резистор, сопротивление которого по мере увеличения частоты вращения двигателя уменьшают до нуля. Если пуск двигателя автоматизирован, то пусковой резистор выполняют из нескольких ступеней, которые выключают последовательно по мере увеличения частоты вращения.

Пусковой ток якоря

По мере разгона двигателя в обмотке якоря возрастает ЭДС, а как следует из формулы (3), это приводит к уменьшению тока якоря IЯ . Поэтому по мере увеличения частоты вращения двигателя сопротивление в цепи якоря уменьшают. Чтобы при сравнительно небольшом пусковом токе получить большой пусковой момент, пуск двигателя осуществляют с наибольшим магнитным потоком. Следовательно, ток возбуждения при пуске должен быть максимально допустимым, т.е. номинальным.

4.Технические данные двигателей

В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение Uи , мощность Pн , частота вращения nн, ток Iн , КПД.

Под номинальным Uн понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.

Номинальный ток Iн – максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:

Читайте также:  Широтно импульсные преобразователи в электроприводе постоянного тока

где Iян — ток якоря при номинальной нагрузке; Iвн – ток обмотки возбуждения при номинальном напряжении.

Следует отметить, что ток возбуждения Iвн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают

Номинальная мощность Рн — это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения nн .

Частота вращения nн, и КПД соответствуют работе двигателя с током Iн , напряжением Uн без дополнительных резисторов в цепях двигателя.

В общем случае мощность на валу P2 , момент М и частота вращения n связаны соотношением:

Потребляемая двигателем из сети мощность Р1 , величины P2, КПД, U, I связаны соотношениями:

где

Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.

5. КПД двигателей постоянного тока

Коэффициент полезного действия является важнейшим показателем двигателей постоянного тока. Чем он больше, тем меньше мощность Р и ток I, потребляемые двигателем из сети при одной и той же механической мощности. В общем виде зависимостьть такова:

(9)

где — потери в обмотке якоря; — потери в обмотке возбуждения; — потери в магнитопроводе якоря; — механические потери.

Потери мощности не зависят, и мало зависят от нагрузки двигателя.

Двигатели рассчитываются таким образом, чтобы максимальное значение КПД было в области, близкой к номинальной мощности. Эксплуатация двигателей при малых нагрузках нежелательна вследствие малых значений rя . Значения КПД двигателей с различными способами возбуждения и мощностью от 1 до 100 кВт при номинальной нагрузке разные и составляют в среднем 0,8.

6.Характеристики двигателей постоянного тока

6.1. Рабочие характеристики

Рабочими называются регулировочная, скоростная, моментная и к.п.д. характеристики.

Регулировочная характеристика

Регулировочная характеристика представляет зависимость скорости вращения П от тока Iв возбуждения в случае, если ток Iа якоря и напряжение U сети остаются неизменными, т. е. n=f(Iв) при Ia=const и U=const.

До тех пор, пока сталь магнитопривода машины не насыщена, поток Ф изменяется пропорционально току возбуждения Iв. В этом случае регулировочная характеристика является гиперболической. По мере насыщения при больших токах Iв характеристика приближается к линейной (рис. 2). При малых значениях тока Iв скорость вращения резко возрастает. Поэтому при обрыве цепи возбуждения двигателя (Iв = 0) с параллельным возбуждением скорость его вращения достигает недопустимых пределов, как говорят: «Двигатель идет вразнос». Исключение могут составлять микродвигатели, которые имеют относительно большой момент М0 холостого хода.

Рис. 2. Регулировочная характеристика двигателя

В двигателях последовательного возбуждения Iв = Iа. При малых нагрузках ток якоря Iа мал и скорость вращения может быть слишком большой, поэтому пуск и работа при малых нагрузках недопустимы. Микродвигатели так же, как и. в предыдущем случае, могут составлять исключение.

Скоростные характеристики.

Скоростные характеристики дают зависимость скорости вращения п от полезной мощности Р2 на валу двигателя в случае, если напряжение U сети и сопротивление rв регулировочного реостата цепи возбуждения остаются неизменными, т. е. n=f(P2), при U=const и rв = const.

Рис. 3. Скоростные характеристики

С возрастанием тока якоря при увеличении механической нагрузки двигателя параллельного возбуждения одновременно увеличивается падения напряжения в якоре и появляется реакция якоря, которая обычно действует размагничивающим образом. Первая причина стремится уменьшить скорость вращения двигателя, вторая — увеличить. Действие падения напряжения в якоре обычно оказывает большее влияние. Поэтому скоростная характеристика двигателя параллельного возбуждения имеет слегка падающий характер (кривая 1, рис. 3).

В двигателе последовательного возбуждения ток якоря является током возбуждения. В результате скоростная характеристика двигателя с последовательным возбуждением имеет характер, близкий к гиперболическому. При увеличении нагрузки по мере насыщения магнитной цепи характеристика приобретает более прямолинейный характер (кривая 3 на рис. 3).

В компаундном двигателе при согласном включении обмоток скоростная характеристика занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения (кривая 2).

Моментные характеристики.

Моментные характеристики показывают, как изменяется момент М при изменении полезной мощности Р2 на валу двигателя, если напряжение U сети и сопротивление rв регулировочного реостата в цепи возбуждения остаются неизменными, т. е. М = f(P2), при U=const, rв=const.

Полезный момент на валу двигателя

Если скорость вращения двигателя параллельного возбуждения не изменялась бы с нагрузкой, то зависимость момента Ммех от полезной мощности графически представляла бы прямую линию, проходящую через начало координат. В действительности скорость вращения с увеличением нагрузки падает. Поэтому характеристика полезного момента несколько загибается кверху (кривая 2, рис. 4). При этом кривая электромагнитного момента М проходит выше кривой полезного момента Ммех на постоянную величину, равную моменту холостого хода М0 (кривая 1).

Рис. 4. Моментные характеристики

В двигателе последовательного возбуждения вид моментной характеристики приближается к параболическому, так как изменение момента от тока нагрузки происходит, по закону параболы, пока сталь не насыщена. По мере насыщения зависимость приобретает более прямолинейный характер (кривая 4). В компаундном двигателе моментная характеристика (кривая 3) занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения.

Характеристика изменения коэффициента полезного действия.

Кривая зависимости к. п. д. от нагрузки имеет характерный для всех двигателей вид (рис 5). Кривая проходит через начало координат и быстро растет при увеличении полезной мощности до 1/4 номинальной. При мощности Р2, равной примерно 2/3 номинальной, к. п. д. обычно достигает максимального значения. При увеличении нагрузки до номинальной к. п. д. остается постоянным или незначительно падает.

Источник

Пуск двигателей постоянного тока

Ток якоря двигателей постоянного тока определяется уравне­нием

где Rд — внутреннее сопротивление двигателя.

При пуске двигателя, когда он неподвижен, т. е. ω = 0, э.д. с. Е равна нулю.

Поэтому пусковой ток двигателя

Внутреннее сопротивление двигателей Rдочень мало, по­этому включение двигателя на полное напряжение сети вызы­вает большой бросок тока, превосходящий номинальный ток во много раз.

Для ограничения пускового тока необходимо последова­тельно с обмоткой якоря включить пусковой реостат или изме­нять подводимое к двигателю напряжение от нуля до номи­нального.

При реостатном пуске пусковой ток определяется согласно уравнению

Где Rп — сопротивление пускового реостата.

По мере увеличения скорости вращения якоря двигателя при пуске будет расти э. д. с. якоря. Ток в этом случае будет равен

С увеличением скорости вращения якоря, а следовательно с увеличением э. д. с, будет уменьшаться ток якоря и вращаю­щий момент. Для поддержания величины пускового тока и пус­кового момента в необходимых для пуска пределах нужно уменьшать величину сопротивления пускового реостата. Таким образом, по мере разгона двигателя сопротивление пускового реостата автоматически или вручную уменьшается.

Диаграммы пуска двигателей постоянного тока параллель­ного и последовательного возбуждения приведены на рис. 5.1.

Величину момента Mi, соответствующего полному сопротив­лению реостата при неподвижном двигателе, называют макси­мальным пусковым моментом. Величину момента М2, при котором происходит переключение реостата, т. е. переход на сле­дующую механическую характеристику, называют переклю­чающим моментом.

Переключающий момент принимается больше момента стати­ческого сопротивления, т. е. М2С

Кроме пусковых ступеней, реостат имеет предварительную ступень, на которой пусковой момент меньше момента статиче­ского сопротивления, т. е. Мпред

В точке 9 (см. рис. 5.1, а) и точке 7 (см. рис. 5.1, б) реостат полностью зашунтирован. Двигатель разгоняется на естествен­ной характеристике 10—11 (см. рис. 5.1, а) и 89 (см. рис. 5.1, б). В точках 11 и 9 наступает установившийся режим работы двигателя при М=МС и скорости ωс. На этом пуск дви­гателя заканчивается. Этот способ пуска отличается сравни­тельно большими потерями энергии в реостате.

Читайте также:  Найти направление индукционного тока во второй катушке при удалении от нее первой

Значительно экономичнее получается пуск двигателей при изменении напряжения от нуля до номинального. Но для этого необходимо применять специальные системы привода, напри­мер систему генератор — двигатель (Г—Д), тиристорный пре­образователь— двигатель (ТП—Д) и т. д. Эти системы при­вода будут подробнее рассмотрены ниже.

Для уменьшения потерь электроэнергии при пуске двига­телей последовательного возбуждения, установленных на элек­тровозах, применяют последовательно-параллельное соединение двигателей. При этом на зажимах двигателей напряжение из­меняется скачкообразно. Так, например, при двух двигателях напряжение может быть равно 0,5 UHM и UHM, при четырех двигателях — 0,25 Uном, 0,5 UHM и UHM. Такое соединение дви­гателей дает возможность уменьшить потери энергии в реоста­тах при пуске.

5.3. Пуск двигателей переменного тока

Пуск асинхронных двигателей с фазным рото­ром при номинальном напряжении и номинальной частоте осу­ществляется при помощи пускового реостата, включенного в цепь ротора.

Диаграмма пуска (рис. 5.2) получается подобной диаграмме пуска двигателя постоянного тока параллельного возбуждения. По мере увеличения скорости вращения ротора сопротивление реостата уменьшается (автоматически или вручную). По пусковой диаграмме пуск двигателя проходит следующие этапы:

на участке —1 момент увеличивается от 0 до Мпред, происходит кинематическая подтяжка всей системы при­вода;

на участке 1—2 момент увеличивается от Мпрел до М1(предварительная секция- rпред зашунтирована);

на участке 23 увеличи­вается скорость вращения ро­тора от нуля до ω1 и умень­шается момент от М1до М2;

на участке 34 происхо­дит разгон двигателя на третьей характеристике от ω1 до ω2

Аналогично происходит пуск и на других ступенях реостата. От точки 8 до точки 9 происходит разгон двигателя на естественной характеристике.

Пуск асинхронных двигателей с короткозамкнутым ротором осуществляется прямым включе­нием в сеть.

Пуск непосредственным включением в сеть на полное на­пряжение прост, обеспечивает полную величину пускового мо­мента, но связан со значительными пусковыми токами.

Пуск синхронных двигателей. В настоящее время синхронные двигатели изготовляют только с асинхронным пуском.

При асинхронном пуске синхронного двигателя принципи­альные схемы включения обмотки статора аналогичны схемам включения асинхронного двигателя с короткозамкнутым рото­ром. При асинхронном пуске до подачи напряжения в обмотку возбуждения последняя должна быть замкнута на разрядное со­противление.

При пуске синхронного двигателя необходимо выполнить два условия:

а) пусковой (асинхронный) момент Мпуск должен быть
больше момента статического сопротивления Мс;

б) входной (подсинхронный) момент вращения Л1вх, т. е.
момент при скольжении s = 0,05, должен быть больше статиче­ского момента сопротивления при том же скольжении. Данные
о пусковом и входном моментах двигателя приводятся в завод­ских каталогах.

Тормозные режимы двигателей

Двигатели постоянного тока и асинхронные двигатели трехфаз­ного тока позволяют применять три вида электрического тор­можения: генераторное торможение с рекуперацией энергии в сеть, динамическое торможение и торможение противовключением.

Двигатели постоянного тока параллельного возбуждения. На рис. 5.3 представлены схемы включения двигателя, а на рис. 5.4 — механические характеристики в тор­мозных режимах.

Генераторное торможение с рекуперацией энергиив сеть(рис. 5.3, а) может быть только при скорости вращения якоря, большей скорости идеального холостого хода, т. е. ω>ω. В этом случае Е> U и величина тормозного тока определяется уравнением

из которого видно, что направление тока меняется на обратное, т. е. ток поступает от двигателя в сеть. Этот режим работы применяется для торможения при спуске груза (подъемные машины, краны и т. п.), когда груз, опускаясь, может вращать якорь со скоростью ω>ω0. Точка 2 механической характери­стики (см. рис. 5.4) соответствует этому режиму работы. Оче­видно, этот вид торможения можно применять только для под­держания скорости на определенном уровне.

Динамическое торможение(рис. 5.3, б) можно применять при любой скорости вращения якоря двигателя, отличной от нуля. Якорь двигателя при динамическом торможении отключа­ется от сети и замыкается на тормозное сопротивление RAnnОбмотка возбуждения обычно включается в сеть постоянного тока для создания неизменного магнитного потока двигателя.

Величина тока якоря при динамическом торможении опре­деляется выражением

Участок 3 механической характеристики (рис. 5.4) соот­ветствует динамическому торможению.

Так как Е пропорциональна скорости вращения якоря, то при малых скоростях динамическое торможение малоэффек­тивно.

Торможение противовключением(рис. 5.3, в) возможно при всех значениях скорости, вплоть до полной остановки двига­теля.

При противовключении двигатель вращается в обратную сторону. При этом э. д. с. Е действует согласно с приложенным напряжением (если изменить направление тока в обмотке воз­буждения). Ток якорной цепи двигателя определится по выра­жжению

Подобный режим работы может быть осуществлен только при введении в цепь якоря достаточно большого сопротивления с целью ограничения тока якоря. Этому режиму работы соот­ветствует участок 4-5 характеристики на рис. 5.4.

Двигатели постоянного тока последова­тельного возбуждения могут иметь два режима тормо­жения: динамическое торможение и торможение противовклю­чением. Генераторное торможение с рекуперацией энергии в сеть при обычной схеме включения двигателя невозможно, так как двигатель не имеет скорости идеального холостого хода. Этот режим торможения возможен, если обмотку возбуж­дения подключить к независимому источнику тока.

Схемы включения двигателя приведены на рис. 5.5, а меха­нические характеристики — на рис. 5.6.

Динамическое торможениеможно применять при любой скорости, однако при малых скоростях эффективность тормо­жения резко снижается. При этом режиме работы двигатель может быть включен по схемам, приведенным на рис. 5.5, а и б.

В первой схеме двигатель отключается от сети и замыкается на тормозное сопротивление. Концы обмотки возбуждения сле­дует поменять местами с целью предотвращения размагничива­ния двигателя. Вторая схема широкого применения не получила, так как в тормозном сопротивлении, включенном последова­тельно с обмоткой возбуждения, получаются большие потери электроэнергии.

В остальном этот режим протекает так же, как и в двига­теле параллельного возбуждения. Участок 2 механической характеристики соответствует динамическому торможению.

Торможение противовключением(рис. 5.5, в) осуществля­ется и протекает точно так же, как и в двигателе параллельного возбуждения. Участок 34 механической характеристики (рис. 5.6) соответствует торможению противовключением

Асинхронные двигатели трехфазного тока.

В асинхронных двигателях возможны три тормозных ре­жима: торможение с рекуперацией энергии в сеть; торможение противовключением и динамическое торможение.

На рис. 5.7 приведены схемы включения двигателя, а на рис. 5.8 механические характеристики при тормозных режимах.

При торможении с рекуперацией энергии в сеть (рис. 5.7, а) направление вращения вращающегося магнитного потока ста­тора совпадает с направлением вращения ротора. Скорость вра­щения ротора больше скорости вращения магнитного потока, т. е. (о>со— Механическая энергия, подводимая к валу ротора извне (например, создаваемая опускаемым грузом), преобразу­ется в электрическую и отдается в сеть. Применяется этот ре­жим торможения для поддержания постоянной скорости при опускании груза в подъемных установках. На механических ха­рактеристиках (см. рис. 5.8) этому режиму работы соответ­ствует точка 2.

При торможении противовключениемротор двигателя вра­щается в сторону, противоположную вращению магнитного по­тока статора. Этот режим работы может быть получен путем реверсирования двигателя на ходу (рис. 5.7, б). Ротор под дей­ствием запасенной кинетической энергии продолжает вращаться впрежнем направлении, а поле статора изменяет свое направ­ление вращения.

Режиму торможения противовключением соответствуют уча­стки механических характеристик (см. рис. 5.8) 34 для двига­теля с короткозамкнутым ротором и 3′4′( на реостатной ха­рактеристике двигателя с фазовым ротором) соответствуют динамическому торможению.

Динамическое торможениеасинхронного двигателя осущест­вляется подключением обмотки статора к источнику постоян­ного тока. Обмотка ротора двигателя с фазным ротором замы­кается на сопротивление (рис. 5.7, в). Машина работает как синхронный генератор с неподвижными полюсами. Части меха­нических характеристик (рис. 5.8) 5— (для двигателя с ко­роткозамкнутым ротором) и 5’— (на реостатной характери­стике двигателя с фазным ротором) соответствуют динамиче­скому торможению.

Источник