script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Регулировка тока конденсатор в трансформаторе

Блок питания с трансформатором и гасящим конденсатором

Блок питания с трансформатором и гасящим конденсатором

Блоки питания с балластным конденсатором и разделительным трансформатором завоевали популярность у радиолюбителей благодаря малым габаритам и тем, что они гальванически не связаны с сетью. Однако при разработке таких устройств необходимо учитывать ряд факторов, чтобы исключить аварийные ситуации, в результате которых могут выйти из строя не только источник питания, но и нагрузка. Автор статьи, обобщив опыт создания подобных устройств, рекомендует, на что следует обратить внимание при их конструировании и налаживании. В радиолюбительской практике широкое применение нашли источники с балластным конденсатором и разделительным трансформатором [1-6]. Подобное решение позволяет конструировать малогабаритные блоки питания. Рассмотрим некоторые вопросы проектирования таких устройств на примере маломощного источника питания, описанного в [1] (см. рисунок).

Трансформатор Т1 выполняет функцию разделительного. Он работает при малом входном и выходном напряжении. Его конструкция весьма проста. Конденсатор С1 — балластный, а резистор R2 ограничивает импульс тока при включении. Напряжение на первичной обмотке трансформатора ограничивают стабилитроны VD1 и VD2.

В колебательном контуре, состоящем из конденсатора С1, индуктивности первичной обмотки трансформатора L и приведенного к первичной обмотке сопротивления нагрузки Rн, возможен резонанс, который может привести к выходу из строя источника питания.

Допустим, что в нагруженном источнике на первичной обмотке напряжение равно 20 В (типичный случай). Это означает, что приведенное к первичной обмотке сопротивление нагрузки RН примерно в 10 раз меньше емкостного сопротивления |Xc1| конденсатора С1 и образует с ним делитель напряжения 10:1 (приближенно), т.е. |Хс1|=10Rн. При правильно рассчитанном трансформаторе индуктивное сопротивление первичной обмотки |XL| должно примерно в 10 раз превышать приведенное к первичной обмотке сопротивление нагрузки Rн поэтому добротность упомянутого контура крайне низка, никакого резонанса быть не может.

Совершенно иная ситуация возникает при отключенной нагрузке (на холостом ходу). Если выполняются указанные выше соотношения |Хс1|=10Rн и |ХL|=10Rн,то |Xc1|=|XL| и возникает резонанс. Если на вход вместо сетевого подать напряжение 1 . 2 В, то на первичной обмотке ненагруженного трансформатора оно за счет резонанса увеличится в 10 и более раз — добротность получившегося контура достаточно большая, однако при подаче сетевого напряжения такого подъема не будет. С увеличением напряжения на обмотке сверх номинального (20 В) магнитопровод трансформатора входит в насыщение, его индуктивность уменьшается, и контур перестает быть настроенным в резонанс.

Однако, если трансформатор выполнен с хорошим запасом по допустимому входному напряжению, подъем может быть весьма значительным. Это вызовет увеличение напряжения на конденсаторе С1 по сравнению с работой в номинальном режиме, и если конденсатор выбран без запаса — может произойти пробой. Возможны и другие не менее тяжелые последствия. Поэтому, как и для бестрансформаторного источника питания с балластным конденсатором, недопустима работа без номинальной нагрузки. Обычное решение — подключение стабилитрона к выходу источника или двух встречно-последовательно соединенных стабилитронов (или одного симметричного) к первичной обмотке (см. рисунок).

Так задача решается для относительно маломощных блоков питания. Для аналогичных мощных устройств (очень простыми получаются зарядные устройства для автомобильных аккумуляторных батарей [2-4]) такими мерами не обойтись. Здесь можно подключить параллельно первичной или вторичной обмотке аналог симметричного динистора [7, рис. 5,а] или обеспечить релейную защиту от режима холостого хода [3].

Особое внимание необходимо уделить выбору балластного конденсатора по номинальному напряжению. Это наибольшее напряжение между обкладками конденсатора, при котором он способен надежно и длительно работать. Для большинства типов регламентируется номинальное напряжение постоянного тока. Допустимое напряжение переменного тока всегда меньше номинального, за исключением металлобумажных конденсаторов МБГЧ, К42-19, полипропиленовых К78-4 и полиэтилентерефталатных К73-17 на номинальное напряжение до 250 В включительно, у которых эти параметры равны. Поэтому при выборе типа и номинального напряжения необходимо воспользоваться справочником по электрическим конденсаторам и помнить, что расчет проводят для амплитудного значения переменного напряжения.

В момент подключения (или отключения) блока питания к сети в его цепях происходит переходный процесс, который через некоторое время сменяется установившимся режимом. Не вдаваясь в теоретические основы переходных процессов, отметим два закона коммутации:
1. Ток в дросселе (приборе с индуктивным сопротивлением) не может изменяться скачком, или, иначе, ток после коммутации имеет то же значение, которое он имел в момент, непосредственно предшествующий коммутации.
2. Напряжение на конденсаторе не может изменяться скачком, или, иначе, напряжение после коммутации имеет то же значение, что и непосредственно до коммутации.

При подключении блока питания к сети конденсатор еще не заряжен и падение напряжения на нем равно нулю. Ток в индуктивности не может возникнуть мгновенно, поэтому напряжение на резисторе равно нулю и сетевое напряжение полностью приложено к первичной обмотке трансформатора, которая рассчитана на существенно меньшее значение. Именно при включении возникает высокая опасность межвиткового пробоя и исчезает преимущество в простоте исполнения трансформатора с намоткой «внавал», чем он и заслужил широкую популярность у радиолюбителей. Особенно опасно подключение блока питания к сети, в которой в этот момент действует амплитудное или близкое к нему напряжение. Актуальное значение приобретает задача ограничения напряжения на первичной обмотке в момент подключения. Токоограничительный резистор не спасает в такой ситуации. Это заставляет искать иное решение, позволяющее предупредить возможность межвиткового пробоя в трансформаторе и защитить элементы блока питания от повышенного в десятки раз напряжения.

Читайте также:  Таблица перевода мощности от тока

Ограничитель напряжения на двух встречно-последовательно включенных параллельно первичной обмотке стабилитронах (см. рисунок) позволяет решить и эту задачу. Для каждого полупериода ограничитель работает как параметрический стабилизатор напряжения на первичной обмотке трансформатора. Балластную функцию выполняет при этом в основном токоограничительный резистор R2. Резистор должен быть рассчитан на кратковременный ток перегрузки, а стабилитроны, как правило, обеспечивают его.

Если в номинальном режиме стабилитроны открываются и работают как стабилизаторы, может возникнуть разность амплитуд импульсов выпрямленного тока положительной и отрицательной полуволн. Такой эффект объясняется тем, что положительные полуволны стабилизирует один стабилитрон, а отрицательные — другой. Известно, что напряжение стабилизации двух экземпляров стабилитронов даже одной партии может значительно различаться. Это порождает дополнительную составляющую пульсации частоты 50 Гц, которую труднее подавить сглаживающим фильтром, чем 100 Гц.

Для уменьшения дополнительной составляющей пульсации, возникающей из-за различия напряжения стабилизации, можно рекомендовать вместо встречно-последовательного соединения двух стабилитронов включить один стабилитрон в диагональ диодного моста параллельно первичной обмотке. Это позволит сохранить надежность блока питания.

Если не предъявляются повышенные требования к стабильности выходного напряжения, можно рекомендовать подборку стабилитронов с минимальным напряжением стабилизации на 1. 3 В больше максимального амплитудного напряжения на первичной обмотке в установившемся режиме. Параметрический стабилизатор в этом случае будет выполнять функции только ограничителя напряжения в момент включения и на холостом ходу. А после выхода блока питания на установившийся режим он автоматически отключается, значительно повышая экономичность блока.

ЛИТЕРАТУРА
1. Пожаринский Л. Маломощный блок питания. — Радио, 1978, №5, с. 56.
2. Кутергин Г. Простое зарядное устройство. — Радио,1978, №5,с.27.
3. Долин Е. Вариант зарядного устройства. — Радио,1983, №5,с.58.
4. Бирюков С. Простое зарядное устройство. — Радио,1997, №3,с.50.
5. Бирюков С. Расчет сетевого источника питания с гасящим конденсатором. — Радио, 1997, №5, с. 48-50.
6. Прокопцев Ю. Еще об источниках питания с гасящим конденсатором. — Радио, 1998, №12, с. 46.
7. Алексеев С. Симметричные динисторы — в источниках питания. — Радио, 1998, №10, с. 70, 71.

Источник

Зачем специалисты включают конденсатор между генератором и трансформатором

Задаваемый многими пользователями вопрос, зачем же включать конденсатор между генератором и трансформатором блока питания (БП) обычно рассматривается с точки зрения экономии потребляемой энергии. Согласно общему правилу уменьшить ток через первичную обмотку удается различными способами, включая использование последовательно включенного резистора.

Также можно увеличить число витков в первичной катушке трансформаторного изделия. Однако наиболее простым и экономичным способом его ограничения является установка гасящего конденсатора на входе трансформатора питания (ТП).

Особенности включения и теоретическое обоснование

Специфика работы конденсатора, включенного последовательно с входом ТП, сводится к двум моментам. Первый состоит в переходных процессах, протекающих в реактивных элементах при их мгновенном подключении к сети. Если не вникать в тонкости импульсной техники, то все эти явления следует свести к следующим особенностям коммутации электрических цепей:

  • Ток в обмотке, обладающей индуктивным сопротивлением, не может изменяться скачкообразно, то есть он какое-то время будет тем же, что в момент подключения.
  • Напряжение на самом конденсаторе также не может меняться скачком, и после резкого включения некоторое время имеет то же значение, что и прежде.

В момент подключения к сети конденсатор пока не заряжен и его гасящие свойства еще не проявились. Ток в первичной обмотке ТП также еще не вырос до нужного значения, вследствие чего все сетевое напряжение приложено к ней.

Трансформатор

Важно! Особо опасен случай, когда момент коммутации (подключения) совпадает со временем действия амплитудного значения сетевого напряжения.

Из теоретических выкладок следует, что действие конденсатора проявляется в полной мере, если своевременно учесть все перечисленные выше моменты.

С другой стороны для описываемой ситуации характерны резонансные явления, происхождение которых проще понять из приведенной схемы . Из нее следует, что подключенный последовательно конденсатор вместе с индуктивностью первичной катушки образует колебательный контур.

Схема

Схема

Резонанс

При определенных условиях на входе трансформатора подключенного через конденсатор возможно явление резонанса, которое может быть объяснено следующим образом:

  • И конденсатор и первичная катушка смещают фазу переменного напряжения практически одинаково, то есть на 90° (в векторном представлении она сдвигается в противоположные стороны).
  • Из этого следует, что в точке соединения этих элементов как будто включен виртуальный генератор (рис.2), работающий синхронно с сетевым источником.
  • Векторное наложение этих двух составляющих и приводить к резкому возрастанию амплитуды суммарного сигнала, а причиной этому является гасящий конденсатор в первичной цепи трансформатора.

Обратите внимание! Такое совпадение фаз возможно лишь в ситуации с виртуальным генератором, тогда как реальные их аналоги не приводят к описанному эффекту.

На практике характеристики колебаний задаются более мощными источниками, вынуждающими слабые автоматически подстраиваться под них. Это необычное резонансное явление в свое время было отмечено родоначальником кибернетики Н. Винером. Оно же используется для рекуперации мощности ветровых станций, существенно повышающих КПД источников альтернативной энергии.

Читайте также:  Реле тока ртм технические характеристики

Виды конденсаторов

Блок питания с трансформатором и гасящим конденсатором

Типичным примером того, как можно гасить излишки напряжения, не снижая при этом КПД модуля питания, является классический БП с балластной цепочкой (фото слева). Подключив трансформатор через конденсатор, установленный между генератором напряжения и первичной обмоткой ТП, удается обеспечить следующие преимущества:

  • Уменьшаются габариты трансформатора (за счет снижения числа витков и меньших размеров магнитопровода).
  • Изделие становится более компактным и легким.
  • Удается реализовать щадящий режим работы обеих обмоток.

Блок питания с трансформатором и гасящим конденсатором

Благодаря такой схеме включения за счет резонансных явлений амплитуда напряжения на входе многократно возрастает. При этом необходимость подавать на первичную обмотку ТП полное сетевое напряжение отпадает, что приводит к существенной экономии энергии.

Дополнительная информация! Следует иметь в виду, что если включение трансформатора через конденсатор осуществлено некорректно, то из-за резонансных явлений может быть поврежден не только сам блок питания, но и подсоединенная к нему дорогостоящая нагрузка.

Именно поэтому при проектировании схем с конденсаторами в первичной цепи трансформатора необходимо принимать меры, позволяющие не допустить аварийной ситуации. Они обычно сводятся к тому, что в гасящей цепочке устанавливаются дополнительные элементы, ограничивающие размах колебаний.

Их назначение может быть представлено следующим образом:

  • Конденсаторная первичная обмотка трансформатора осуществляет разделение высоковольтной и низковольтной составляющих питающей цепи.
  • Резистор R2 выполняет функцию элемента, задающего ток через встречно включенные стабилитроны, ограничивающие напряжение после конденсаторного элемента.
  • За счет их подсоединения параллельно обмотке трансформатора удается поддерживать потенциал в этой точке на уровне пробоя полупроводниковых элементов.

В качестве примера рассмотрим расчеты включений трансформаторов через конденсатор для двух случаев: когда к БП подключена нагрузка, а также вариант работы в режиме холостого хода (передаточный коэффициент ТП равен десяти).

Все конденсаторы

Под нагрузкой

Предположим, что в нагруженном на Rн источнике питания на первичной обмотке действует определенное напряжение, не превышающее 20-ти Вольт. В этом случае приведенное к ней значение Rн составляет приблизительно десятую часть емкостного сопротивления |Xc1|, образуя делитель напряжения 10:1 (ориентировочно). Иначе результат расчета можно представить так: |Хс1|=10Rн.

При правильно рассчитанном трансформаторе ТП индуктивное сопротивление входной обмотки |XL| будет примерно в 10 раз меньше приведенного к первичной цепи Rн. Сопротивления этих элементов взаимно компенсируются, а добротность образованного ими контура будет крайне низка. Никаких резонансных явлений в этом случае наблюдаться не будет.

Холостой ход

Совершенно другая ситуация складывается в режиме с отключенной нагрузкой (сдвиг фаз равен нулю). В этом случае выведенные выше соотношения выглядят так: |Хс1|=10Rн и |ХL|=10Rн, то есть |Xc1|=|XL| и создаются условия для возникновения резонанса напряжений. Если на вход подключать генератор с пониженным напряжением порядка 1-2 Вольта – на первичной обмотке не нагруженного ТП оно увеличится в 10 и более раз (за счет резонанса).

Конденсаторы на плате

Важно! Если продолжать увеличивать напряжение выше 20-ти Вольт магнитный сердечник трансформатора начнет насыщаться, его индуктивность при этом уменьшается, и контур потеряет резонансные свойства.

Но если трансформаторное изделие изготовлено с большим запасом по мощности и если еще больше увеличивать входное напряжение, то резонансные явления могут достичь значительной величины. А это приведет к существенному возрастанию его падения на конденсаторе С1, предельные параметры которого (по максимальному напряжению) придется выбирать с большим запасом.

Из проведенного анализа следует важный вывод, определяющий допустимость рабочих режимов в схемных решениях с подключаемым через конденсатор питающим трансформатором. Он заключается в следующих основных положениях:

  • При подключенной нагрузке угроза перенапряжений из-за резонансных явлений в цепочке последовательно включенного конденсатора, как правило, невелика.
  • В режиме холостого хода этот элемент подвергается большей опасности и если он выбран без требуемого запаса по предельному напряжению – возможен пробой обкладок конденсатора.
  • При эксплуатации конструкций, построенных на основе данного схемного решения (как и в случае бестрансформаторного включения с гасящей емкостью) работа без нагрузки недопустима.
Читайте также:  Диммер тока для светодиодных ламп

Трансформатор тесла

Дополнительная информация! В конкретных ситуациях для исключения негативных последствий параллельно первичной катушке устанавливаются два встречно включенных стабилитрона, рассчитанных на соответствующее напряжение пробоя.

Эти элементы выполняют чисто ограничительную функцию.

Подключение без трансформатора

В определенных условиях нагрузку к высоковольтной сети допускается включать непосредственно через конденсатор вместо трансформатора используемый в данном схемном решении.

У этого вида организации электропитания имеются свои преимущества и недостатки. Первые состоят в следующем:

  • При данном способе ограничения сетевого напряжения схема преобразовательного устройства существенно упрощается.
  • Снижаются его габариты и масса, а экономичность напротив – повышается.
  • Такой блок питания удобен в пользовании и прост в ремонте.

Однако за все перечисленные достоинства приходится расплачиваться одним, но очень существенным недостатком, касающимся безопасности пользования этим устройством.

Подключение без трансформатора

Важно! В отличие от трансформаторной схемы включения, при которой опасный потенциал 220 Вольт отделен от выходных цепей изолированными катушками, в данном случае налицо прямая электрическая связь.

А это чревато последствиями в виде поражения током случайно прикоснувшегося к нагрузочной цепи пользователя. Указанная опасность может возникнуть при непредвиденном пробое входного конденсатора с замыканием обкладок и попадании напряжения 220 Вольт непосредственно на выход устройства. Другим не менее неприятным последствием такой неисправности станет сгорание подключенной к БП нагрузки (а это может быть и дорогой смартфон, например).

Заключение

В заключительной части обзора отметим, что, разобравшись с тем, зачем нужен конденсатор на входе трансформатора, можно смело применять это схемное решение на практике. При этом всегда нужно помнить о тех ограничениях и особенностях подключения, которые исключат нежелательные последствия использования этого приема.

Источник



Конденсатор в цепи первичной обмотки сетевого трансформатора

Вложения

Конденсатор в цепи первички.rar (3.7 Кб, 23 просмотров)

Я уже писал:
++++++ И ещё один опыт в стадии рассмотрения ресурса СЕ , +++++++

ИНВЕРТОР подцепил к аккумулятору, а выход инвертора на зарядное устройство, тут то и появился ток, которого прежде не было на амперметре зарядника. Т.Е. процесс и зарядки идёт и электричество из сети не беру.
Интересно знать, что единомышленники по духу, таких экспериментов, могли бы дополнить, ПРОШУ не оппонировать.

. Если есть хороший совет, то, пишите. По ходу, между выходом ИНВЕРТОРА, и ВХОДОМ зарядника — ставил плоские — квадратные спирали трёх бифиляров соединённых звездой.

. Одна сквозная как показал, = другие под ней и над ней. Пробую на них получить возможность подтверждения цифры из патента ТЕСЛА, что утверждает о меньшем затухании в 250000 раз в бифиляр, по сравнению с такой же катушкой но, не бифиляр. Т.Е. — это уже ресурс ИЗБЫТКА — МОЩНОСТИ ИМПУЛЬСА.

. Вот тут то , более всего интерес к вашим мнениям и только на основе тут представленного. Сам же я иллюзий не строю, но уверен, тут при таком включении аккумулятора происходит та тренировка его, что увеличивает срок жизни аккумулятора, а три бифиляр позволяют экспериментировать на меандре инвертора с эффективностью цифры 2500000 раз. Что прописана в патенте Тесла.

Источник

Конденсатор в качестве понижающего трансформатора

Конденсатор в качестве понижающего трансформатора

Конденсатор при включении в цепь с переменным напряжением обладает реактивным сопротивлением. Его сопротивление меняется в зависимости от частоты.

Благодаря этому свойству конденсатора его возможно использовать за место гасящего резистора.При этом на конденсаторе не выделяет тепло, что является большим преимуществом над обычным резистором.

Расчет номиналов такого конденсатора достаточно сложен, для упрощения расчета предлагаю воспользоваться номограммой, представленной ниже.

номограмма для расчета понижающего конденсатора

Из данного рисунка видно, что для определения емкости конденсатора нам необходимо знать Rн-сопротивление нагрузки. Z-сопротивление цепи.

Если эти значения известны достаточно взять циркуль, приложить его в начало координат и провести дугу через ось Z. Затем от оси Rн провести параллельную линию оси ординат. Точка пересечения дуги и линии и будет емкость нашего конденсатора.

Пример 1

У нас имеется паяльник на напряжение 127В мощностью 25 Вт. Требуется рассчитать гасящий конденсатор для включения его в розетку 220В.

Где, U- необходимое напряжение на нагрузке (в нашем случае на паяльнике). P- мощность нагрузки.
Затем рассчитываем ток проходящий через нагрузку

Затем рассчитываем сопротивление цепи Z

На номограмме данные значения выделены, нам нужен конденсатор на 3,5 мкФ.

Пример 2

Нам необходимо запитать постоянным током устройство рассчитанное на напряжение 18В и ток 20мА. При этом напряжение сети 127В.

Внимание схема работает от 220В, развязки от сети нет. Будьте внимательны, соблюдайте технику безопасности!

Схема включения гасящего конденсатора и пример расчета

Данный пример на номограмме выделен пунктиром. Емкость конденсатора составляет 0,51 мкФ.
Конденсаторы в качестве гасящего элемента следует выбирать бумажные. С запасом по напряжению в 2-3 раза, превышающего напряжение которое нужно погасить.

Источник