script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Селективность автоматических выключателей iek

Проблемы селективной защиты при выборе автоматических выключателей

Сегодня вашему вниманию хочу предложить очень обсуждаемую тему селективной защиты автоматических выключателей. Если вы думаете, что здесь все просто и однозначно, то это не совсем так. В чем же особенность селективной защиты?

В наших нормативных документах про селективную защиту практически ничего не сказано.

Однако, в итальянском Стандарте CEI 64-8 “Электрические установки с номинальным напряжением ниже 1000 В переменного тока и 1500 В постоянного тока” в отношении установок низкого напряжения в части 5 “Выбор и монтаж электрических компонентов” написано:

“Селективность между устройствами защиты от сверхтоков (536.1).

Когда несколько защитных устройств установлены последовательно, и это оправдано требованиями эксплуатации, их рабочие характеристики должны выбираться таким образом, чтобы отключать только часть установки, где возникла неисправность.”

В комментариях, кроме всего этого, добавлено следующее:

“Рабочие ситуации, требующие селективности, определяются пользователем или проектировщиком установки.”

Из этого следует, что Стандарт указывает на то, что рабочие характеристики должны быть выбраны с обеспечением селективности, когда это оправдано требованиями эксплуатации.

А теперь рассмотрим проблемы, которые могут возникнуть при выборе автоматических выключателей с учетом селективной защиты.

Основная масса автоматических выключателей примерно до 400А применяется без регулируемых расцепителей, неговоря уже про модульную серию. Остановимся на автоматических выключателях модульной серии, т.е. до 125А.

Диапазоны токов мгновенного расцепителя

Как известно, автомат защищает от перегрузки и короткого замыкания. Модульные автоматические выключатели могут иметь электромагнитные расцепители с характеристиками B, C, D.

Зависимость времени срабатывания ВА от тока в его цепи

Чтобы правильно выбрать автомат, нужно уметь читать график зависимости времени срабатывания автоматического выключателя от тока в цепи, т.е. время-токовую характеристику автомата. Ниже представлена время-токовая характеристика автоматического выключателя ВА47-29 16С.

Время-токовая характеристика автоматического выключателя ВА47-29 16С

Зона между красными линиями нам показывает интервал времени срабатывания автомата. Например, при токе 2,55*16=40,8А данный автомат сработает за время от 1 до 60 сек.

В своих проектах полную селективность я практически никогда не обеспечиваю, поскольку обеспечить ее крайне трудно на автоматических выключателях модульной серии.

Селективность можно разделить на две зоны:

  • селективность в зоне перегрузки;
  • селективность в зоне короткого замыкания.

Селективность в зоне перегрузки я обеспечиваю всегда во всех проектах без исключения. Здесь все просто. Если группой автомат 16С, то автомат выше будет как минимум 20С. Такую расстановку выключателей все, и я в том числе, называем селективностью. Но если разобраться, то в зоне короткого замыкания такие автоматы не будут селективными.

Чтобы модульные автоматические выключатели были селективными, то соотношение их номиналов должно быть примерно 2,5 при условии, что автоматы с одинаковыми электромагнитными расцепителями. На следующем графике приведены время-токовые характеристики автоматов D6, D16, D40.

Соотношение модульных автоматов

Как видим, даже у этих автоматов есть небольших общие зоны срабатывания.

В следующем примере сравним B6, C20, D63.

Сравнение B6, C20, D63

Здесь уже общих пересекающихся зон не наблюдается. Соотношение номинальных токов около 3,2.

Кстати, чтобы обеспечить селективность предохранителей их соотношение должно быть примерно 2,5.

Смысл всей этой статьи в том, что в 99% случаях полная селективность нам и не нужна. В наших проектах у нас выполняется лишь частичная селективность в зоне перегрузки.

Селективность нужно там, где это может повлечь серьезные последствия. А если у нас от к.з. сработают 2-3 последовательно включенных автомата, то никакой трагедии не произойдет. Тем более, что короткие замыкания происходят не так часто.

Советую почитать:

комментарий 31 “Проблемы селективной защиты при выборе автоматических выключателей”

У АВВ есть селективный модульный выключатель ABB S750 DR. Он обеспечивает селективность в зоне КЗ. Только стоимость этого чуда техники оставляет желать лучшего. Да и найти такую штуку не просто.

А с учетом того, что приходится проектировать очень много бюджетных объектов, кроме как на IEK, EKF и т.п. рассчитывать не приходится.

У IEK модульных селективных выключателей не видел.

а их и нету у ИЕК

Очень нравиться статьи. Хочу напечатать и создать папку для молодых инженеров. Как скопировать стаью полностью?

Ctrl+C, Ctrl+V

Статья отличная, главное очень доходчиво все разъясняется. Сразу направил ссылку одному из своих заказчиков, в загородном коттедже при дуговом коротком замыкании в розетке, выбивает входной автомат в щите ввода на улице. Заказчик должен знать, что проблемы не только у него.

К сожалению, но даже используя автоматы с электронными расцепителями с выдержками времени, не всегда можно добиться полной селективности.

Например, для серии Compact NSX с токами 100. 630 А с расцепителем Micrologic 5.

У него регулируются уставки по перегрузке, селективная токовая отсечка с выдержкой времени и мгновенная токовая отсечка.

Проблема в мгновенной токовой отсечке Ii.

Токи короткого замыкания могут превышать максимальное значения уставки Ii.

В этом случае селективности не будет.

Например, для NSX100 Ii=15*In=15*100=1500 А.

Такие токи КЗ весьма вероятны для шин ВРУ, а часто могут быть существенно больше (например, вблизи подстанции).

При этом для токов до 630 А многие модели автоматов не позволяют вывести из работы мгновенную токовую отсечку (Ii — off).

Читайте также:  Двухполюсные автоматические выключатели лучше

Вот и получается, что даже применяя для РУ-0,4 кВ подстанций и ВРУ-0,4 кВ зданий автоматы с электронными расцепителями селективность будет частичной.

У «Шнайдера» есть хорошая онлайн-программа.

Максимальные значения уставки Ii будут регулироваться. Ток КЗ будет идти к своему максимальному значению не мгновенно. Возможен ли такой вариант, что при нарастании тока КЗ нижестоящий выключатель вырубится раньше? (Хоть и при установленном значении они вырубились бы оба)

А при нарастании тока КЗ нижестоящий автомат не успеет отключиться раньше при разных значениях Ii? (Хоть и установленное значение КЗ превышало бы оба показателя Ii)

В наших нормативных документах про селективную защиту практически ничего не сказано.

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

В книгах советских корифеев достаточно много уделено внимания селективности (Шабад, Беляев и др.).

Вячеслав! Сомневаюсь. «Шнайдер» пишет, что при ТКЗ более Ii селективность неполная, частичная. Полная селективность там, где Ii можно отключить (Ii — off).

Регулировать Ii можно. Но при токах Ir близких к In это мало что даст. См. пример выше. Для NSX100 максимальное Ii=15*In=15*100=1500 А.

При ТКЗ в 3000 А могут сработать оба автомата.

Тогда надо специально завышать In, чтобы Ii было больше.

Но это не всегда возможно и не всегда оправдано. В любом случае при больших ТКЗ даже этой меры не хватит.

Единственный плюс в данном случае следующее. Часто (но не всегда)для распред. сетей с большими расчетными токами

1-фазное ТКЗ находится в пределах Isd и Ii.

Учитывая, что 1-фазное КЗ чаще трехфазного, селективность будет.

Но если минимальное 1-фазное КЗ больше Ii (характерно для точек близких к подстанциям), то селективности не будет.

В принципе Ii вообще не нужна, но у многих автоматов ее нельзя отключить (на форуме Colan этот вопрос уже поднимал).

Ребята, извиняюсь, был неправ. Не учитывал кривые токоограничения и рефлексное отключение. Подробнее — см. каталоги производителя.

А вообще полная селективность не всегда нужна. Сам в своем опыте не встречал требований полной селективности. А при таких авариях с такими токами КЗ надо не за селективностью уже следить, а за наличием качественной пожарной сигнализации.

Наткнулся на очередную полезную и интересную статью, за что очень благодарен ее автору!

Хочу задать вопрос о селективности автоматов 0,4 кВ в питающих сетях.

Прописано ли в каком-нибудь документе требование, что уставка срабатывания расцепителя аппарата защиты на питающем фидере в ВРУ здания должна быть больше уставки срабатывания расцепителя аппарата защиты на вводе ВРУ, т.е. с другой стороны?

На этот счет у меня возникли разногласия с инспектором надзора.

Для электроснабжения промпредприятия запроектирована комплектная ТП, от которой запитаны 8 ВРУ-0,4кВ. Причем изначально запроектирована именно КТП (требование заказчика). Ведь по-хорошему, изначально должен выполняться проект внутреннего электроснабжения, а уже после — проект по КТП (см. статью Порядок проектирования электроустановок ).

Предварительно посчитаны нагрузки на стадии А (архитектурный проект, РБ), на основании чего выполнен проект по комплектной ТП с учетом разработанных совместно с заказчиком решений по внутреннему электроснабжению.

Проект по ТП на стадии С (строит. проект) согласован в РЭС, филиалах Энергонадзор и Энергосбыт и передан заказчику.

Прошло время, закончен и проект по внутрянке, в результате чего уточнены нагрузки по каждому ВРУ.

К тому же изначально расчетные коэффициенты мощности (cos) всех ВРУ были завышены (особенности расчета нагрузок по РТМ — в расчете Qр для питающих сетей не фигурирует коэффициент Кр, см. п. 3.2.8, что завышает cos) — вместо первоначальных 0,94 получилось 0,84 (пример для одного ВРУ). Соответственно выпросли расчетные токи, в связи с чем пришлось корректировать уставки АВ-0,4 кВ на КТП. Внес изменения, поехал на согласование корректировок по всем инстанциям. Дошел до Энергонадзора.

Начинаю объяснять инспектору, что по результатам выполнения проекта по внутреннему электроснабжению предприятия требуется поднять уставки на АВ в РУ-0,4кВ КТП. Показываю в качестве примера:

— «Рассмотрим ВРУ-5, у которого изначально предусмотрена уставка аппарата на вводе (ВА88-37+МР211) — 320А, при этом уставка автомата на питающем фидере от ТП к ВРУ-5 — тоже 320 А (Eaton NZM3). Не хорошо, не обеспечивается селективность срабатывания автоматов. Для этого я поднял уставку до 400 А».

Инспектор: — «Покажите нормативный документ или дайте на него ссылку, где сказано, что в сетях до 1 кВ уставка АВ на питающем фидере от ТП к ВРУ должна быть больше уставки вводного автомата на вводе этого ВРУ? Я считаю, что они могут быть одинаковыми, а отключится первым тот, у которого чувствительность выше. Докажите обратное».

— «Я руководствуюсь, в первую очередь, логикой. Разрешенную мощности мы не превышаем. При этом если в результате перегрузки питающей линии отключится аппарат защиты в голове линии (на фидере в ТП), то обслуживающему персоналу придется идти в КТП для его включения. А если обслуживаем занимается сторонняя организация, то время на включение значительно увеличивается».

Читайте также:  Как поменять пакетный выключатель

-«Не вижу проблемы. Докажите обратное. Еще вопросы есть?» — таков был ответ инспектора.

И я не смог подтвердить требование селективности ничем, кроме потери времени на включение автомата в КТП.

Какие у вас соображения на этот счет? Где прописаны такие требования?

А еще он сказал, что для вновь проектируемых объектов в РБ коэффициент мощности должен быть не ниже 0,9. А где про это написано, я у него не спросил.

Источник

Селективность автоматических выключателей бытового назначения на примере

Как известно профессиональным электрикам, используя автоматические выключатели бытового назначения, обеспечить гарантированную селективную защиту при коротких замыканиях невозможно.

Обеспечить, с помощью автоматических выключателей бытового назначения (далее по тексту АВ), можно лишь частичную селективность при небольших перегрузках и небольших токах короткого замыкания. Почему так, а не иначе – я расскажу далее в этой статье.

Важно! Для начала условимся, что наши АВ соответствуют требованиям современных стандартов ГОСТ Р 50345–2010 и МЭК 60898-1:2015.

Фото иллюстрация автоматических выключателей бытового назначения из моей рабочей коллекции. Для справки: эти АВ соответствовали еще ГОСТ Р 50345-99, который был со временем заменен ГОСТом Р 50345–2010

Далее, согласно ГОСТ Р 50345–2010, напомню, что такое селективность по сверхтокам вообще и частичная селективность в частности, чтобы и читатель и я говорили на одном языке.

Селективность по сверхтокам (overcurrent discrimination) — это координация рабочих характеристик двух или нескольких устройств для защиты от сверхтоков с таким расчетом, чтобы в случае возникновения сверхтоков в пределах указанного диапазона срабатывало только устройство, предназначенное для оперирования в данном диапазоне, а прочие не срабатывали.

Частичная селективность (partial discrimination (partial selectivity)): Селективность по сверхтокам, когда при последовательном соединении двух аппаратов для защиты от сверхтоков аппарат, расположенный со стороны нагрузки, осуществляет защиту до определенного уровня сверхтока без срабатывания второго защитного аппарата.

«Вооружились терминологией», а значит далее можно переходить к простому примеру. Условимся, что у нас есть 2 последовательно подключенных АВ. Возьмем для примера, что первый QF1, с номинальным током в 50А и типом мгновенного расцепления C, стоит на вводе в квартирный щиток (КЩ), а второй QF2, с номинальным током в 16 А и типом мгновенного расцепления B, защищает электрическую цепь штепсельных розеток.

Наша задача обеспечить надлежащую координацию (селективность) между этими 2 последовательно соединенными устройствами защиты от сверхтоков.

Это нужно сделать таким образом, чтобы в случае перегрузки или короткого замыкания, АВ, который находится ближе к месту появления сверхтока (наш АВ на 16 А), срабатывал раньше АВ, который находится ближе к источнику питания (QF1 на вводе в КЩ). То есть, QF1 в итоге сработать не должен и электроустановка здания продолжит работу за исключением одной из электрических цепей штепсельных розеток, которую обесточил в результате селективного оперирования QF2. Это то, что мы хотели бы. Теперь читайте далее при каких условиях это возможно.

В п. 5.3.5 ГОСТ Р 50345–2010 для каждого типа мгновенного расцепления уставлены следующие стандартные диапазоны токов мгновенного расцепления (для простоты назовем его Iм.р):

Тогда наш АВ QF1, который установлен на вводе в КЩ, может мгновенно сработать при сверхтоке большем чем 250 А (например 251 А) и обязан мгновенно расцепиться при сверхтоке больше либо равном 500 А.

Ниже я подготовил рисунок-график, на котором показаны области сверхтоков, в которых селективное срабатывание двух последовательно соединенных АВ, обеспечено (зона 1), возможно (зона 2) или невозможно (зона 3).

Области сверхтоков

Важно: этот график действителен для случая, когда мы подключаем последовательно автоматический выключатель с типом мгновенного расцепления C (первый) и АВ с типом магнитного расцепления B (второй). При этом первый АВ находится ближе к источнику питания, а второй ближе к потенциальному месту возникновения сверхтока. И к тому же выполняется требование по номинальным токам АВ: In1 > In2, где

  • In1 – номинальный ток первого АВ;
  • In2 – номинальный ток второго АВ;

Таким образом, между QF1 и QF2 можно обеспечить селективное оперирование при сверхтоках до 250 А, так как в этом диапазоне сверхтоков время расцепления QF1 ( Tt1) будет всегда больше времени отключения QF2 (Tb2), то есть Tt1 > Tb2. Другими словами в этом диапазоне сверхтоков QF2 «сработает» первым, а QF1 не сработает вообще, то есть будет обеспечена селективность.

В диапазоне сверхтоков от 251 до 499 селективное срабатывание возможно (тут дать однозначного ответа нельзя!). При сверхтоке от 500 А селективное срабатывание невозможно, так как в таком случае оба QF1 и QF2 сработают почти одновременно (менее чем за 0.1 секунду).

Как итог, используя автоматические выключатели бытового назначения можно обеспечить частичную селективную защиту только при незначительных перегрузках и небольших токах КЗ.

Также хочу заметить, что не стоит ждать селективности от АВ, которые для этого не предназначены. Если вам нужна гарантированная селективность (но только для целей НЕ БЫТОВОГО НАЗНАЧЕНИЯ), то покупайте и ставьте специальные селективные АВ категории применения B, которые соответствуют ГОСТ Р 50030.2-2010 .

Читайте также:  Настенный светильник влагозащищенный с выключателем

Использованная литература

При подготовке данной статьи я использовал следующие источники:

  • Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 5// Приложение к журналу «Библиотека инженера по охране труда». – 2017. – № 2. – 160 c.
  • ГОСТ Р 50345–2010
  • ГОСТ Р 50030.2-2010

Источник



Селективность автоматических выключателей iek

При построении систем электроснабжения одна из важнейших задач – подбор аппаратов защиты и координация их рабочих характеристик, обеспечивающих селективность при любых аварийных ситуациях.

«ИЭК» предоставляет полный набор аппаратов защиты, отвечающих требованиям работоспособности и координации защит на каждом уровне системы электроснабжения. Остановимся подробнее на обеспечении селективности при построении защиты в системах электроснабжения низкого напряжения с применением аппаратов компании «ИЭК» (рис. 1).

Рис. 1. Использование выключателей IEK на разных уровнях распределения

К вводному аппарату главного распределительного щита предъявляются жесткие требования (большие номинальные токи, надежность, исключающая ложные срабатывания), поэтому в качестве вводного аппарата ГРЩ рекомендуется использовать воздушный автоматический выключатель типа ВА07.

ВА07 имеют предельную отключающую способность до 220 кА и In до 4000 А. Уникальная конструкция главных контактов аппарата, использующая систему двойного разрыва, обеспечивает кратковременный выдерживаемый ток Icw, равный предельной отключающей способности Icu, и быстрый обрыв дуги при КЗ, уменьшая тем самым износ главных контактов.

Электронный расцепитель ВА07 позволяет регулировать время задержки срабатывания при перегрузке и КЗ. Гибкие настройки времятоковой кривой гарантируют более пяти миллионов комбинаций характеристик расцепления, что дает возможность реализовать полную временную селективность с нижестоящими аппаратами защиты.

ВА07 позволяют также проектировать системы защиты с применением логической селективности и обеспечивать отключение автомата, ближайшего к месту КЗ, в кратчайшие сроки, сводя на нет негативное влияние тепловых и механических перегрузок на аппараты (при классической временной селективности).

На уровне вторичного распределения ожидаемые токи КЗ всё еще велики, поэтому автоматические выключатели должны быть рассчитаны на существенные номинальные токи и обладать высокой предельной наибольшей отключающей способностью Icu. На данном уровне защиты рекомендуется использовать выключатели серии ВА88 с Icu до 50 кА и In до 1600 А.

Аппараты выпускаются в двух модификациях: с электромагнитным и тепловым расцепителями, имеющими неизменную времятоковую характеристику, а также с электронным расцепителем, позволяющим изменять времятоковую характеристику отключения аппарата. Обе модификации ВА88 отвечают требованиям полной временной селективности с выключателями ВА07 (см. табл.).

Таблица. Селективность выключателей IEK

Т – полная селективность нижестоящего и вышестоящего аппаратов

ВА88 являются токоограничивающими, что позволяет на уровнях защиты, расположенных ниже ВА88 в системе электроснабжения, использовать аппараты с Icu меньшей, чем ожидаемый ток КЗ на защищаемом участке. ВА88 снижает протекающий ток КЗ во всей цепи, помогая нижестоящему аппарату отключить защищаемые участки. Так, если при ожидаемом токе КЗ 8 кА недопустимо устанавливать одиночный выключатель типа ВА47-60, то его можно включить в каскаде с ВА88-37. Суммарное токоограничение обоих аппаратов по-зволит использовать их для защиты цепи с током КЗ 8 кА.

На уровне конечного распределения используются аппараты, защищающие непосредственно потребителя. Они должны обладать эффективным токоограничением, повышенной электрической и механической износостойкостью и электробезопасностью. Аппараты выбираются в зависимости от ожидаемого тока КЗ: это могут быть ВА47-29 с номинальной отключающей способностью Icu 4,5 кА, либо ВА47-60 c Icu 6 кА, либо ВА47-100 с Icu 10 кА. За счет сдвига времятоковых кривых аппаратов по оси тока (рис. 2) обеспечивается не полная, а токовая селективность. Для последовательно включенных ВА88 и ВА47-60 селективность будет обеспечена только в зоне, ограниченной ISВА88.

Рис. 2. Токовая селективность выключателей IEK

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Источник

Многозначительная новинка – селективный автомат АД12 S.

Это, действительно, не просто еще один дифференциальный автомат, из целого ряда модульного оборудования.

Все, кому приходится сталкиваться с оборудованием защиты не только частных квартир, а с более крупными и сложными потребителями, знают, какое значение имеют многоступенчатые схемы защиты от дифференциальных токов.

Именно для внедрения таких схем и используются селективные автоматы.

В селективном автомате АД12S применены все, разработанные на сегодняшний день инновации группы компаний IEK.

Благодаря этому, получилась более компактная и совершенная модель, позволяющая помимо всего прочего, сэкономить место в распределительном щите.

Автоматы серии АД12S используются в однофазных сетях, с номинальным током от 20 до 63А.

Номинальный отключающий дифференциальный ток 100 мА или 300 мА.

Разработчики компании IEK запатентовали и внедрили улучшенную дугогасительную камеру.

В автомате реализована монолитная лицевая панель, что в совокупности с доп.

Заклепками, обеспечивает дополнительную прочность в месте подключения проводников.

Положение контактов визуально идентифицируется в помощью индикатора.

Есть кнопка «возврат» для распознавания срабатывания по дифференциальному току.

Повышенная износостойкость Автомата и увеличение числа срабатываний обеспечивается за счет покрытия контактной группы серебром.

Также есть возможность присоединения доп. устройств, таких как КС47, КСВ47.

Благодаря продуманной конструкции возможно равномерное распределение нагрузки и снижение теплопотерь, при двойном присоединении (PIN и FORK). И, в селективных автоматах АД12 S, монтаж производится безинструментальным способом.

Источник