Меню

Сила тока в цепи зависит от потребителя

Каким образом потребитель задаёт силу тока для источника?

  • Facebook
  • Вконтакте
  • Twitter
  • Google

a_volkov1987

  • Facebook
  • Вконтакте
  • Twitter
  • Google

Могу посоветовать сходить в институт. Есть такой предмет «Теоретические основы электротехники» (ТОЭ). Есть разные варианты названий, но суть одна.
Изучаются от простых цепей (линейных) и простых расчётов, и до сложных схем. И заканчивается нелинейными элементами, как диоды, транзисторы (хотя это уже вроде электроника? — но всё же тот же закон Ома действует). И вишенкой на торте — переменный ток, импульсный, переходные процессы, конденсаторы-индуктивности. и вычисления в комплексных числах (да, математика тут нужна, и физика тоже).

P.S. график ВАХ светодиодов уже Вам дали, осталось изучить такие понятия как источник напряжения, источник тока, уяснить принципы и разницу, и понять, чем отличаются реальные источники от идеальных. А также изучить способы решения задач с нелинейными ВАХ. Проще всего — графически, ибо графики ВАХ (свето)диодов сильно нелинейны, и редко когда просто описываются какими-либо уравнениями. Подозреваю, что если это всё объяснять тут — ответ растянется на сотню страниц, и всё равно не получится объяснить лучше чем в учебнике.

  • Facebook
  • Вконтакте
  • Twitter
  • Google
  • Facebook
  • Вконтакте
  • Twitter
  • Google

totorialman, берем наглядную физическую аналогию — поток воздуха.
потребитель — трубка, по которой протекает воздух.
его скорость (аналогия электрического тока) определяется поперечным сечением и длиной трубки (сопротивление нагрузки) и разностью давлений на входе и выходе трубки (разность потенциалов оно же напряжение).

трубка ограничена свои габаритами, больше чем «ее отверстие» она запросить не может.

ProgrammerForever

Если закон Ома не поддаётся, то всегда можно представить аналогию с водой.
Напряжение — высота столба воды (или давление воды)
Ток — расход воды в литрах/сек, сколько воды протечет через какой-то участок за 1 секунду
Сопротивление — то насколько участок тормозит воду. Это может быть связано с сечением трубы, длиной или её состоянием (ржавая, забитая и т.п.)

Есть источник напряжения (или точнее, ЭДС) — насос, который создаёт постоянный перепад давления (в электричестве — батарейка, или блок питания, который держит напряжение)
Или источник тока — насос, который держит постоянный расход воды, вне зависимости от сопротивления
Подключаем нагрузку, которая имеет сопротивление — зависимость расхода воды от давления (в электронике — тока от напряжения). Это называется вольт-амперная характеристика.
Если возвратиться к первому вопросу — то прибор пропускает через себя столько воды (тока), сколько вообще сможет. Тут будет ограничение или источника тока (насос не может дать столько воды в секунду) или самого прибора (его сопротивление), или соединительных проводов (труб, шлангов).
На easyelecronics была серия статей по «канализационной электронике», это поможет вникнуть в азы.

Источник

Главный закон электричества для «чайников»

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.

электрикСопротивление

Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий.
Расчет сопротивления осуществляется между точками подключения.

Напряжение

В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.

Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.

НапряжениеСила тока

Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.

Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

Читайте также:  Схема однопутной автоблокировки постоянного тока

закон омаГлавный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

Источник



Как определить силу тока в цепи?

Как определить силу тока в цепи?

Определение электрической цепи подразумевает набор некоторых объектов и устройств, между собой соединенных определенным образом, которые являются путем для протекания электрического тока. Физическая величина, характеризующаяся отношением заряда, который сечение проводника за время, к значению этого временного промежутка – это сила тока в цепи.

Какие бывают электрические цепи?

Составляют цепь:

  • генератор (источника энергии);
  • нагрузки (энергопотребителей);
  • провода.

Какие бывают электрические цепи?

Их также делят на разветвленные и неразветвленные, т.е. простые, где ток, протекающий к потребителю от источника энергии, не меняет значения. Другими словами, его величина одинакова на всех элементах. Примером простейшей цепи служит освещение помещения одной лампой, где от источника энергии течет ток через выключатель к лампе накаливания и возвращается назад к источнику.

Для разветвленных цепей характерно одно или несколько ответвлений, т.е. на своем пути разветвляется ток, идущий от источника, и течет по ветвям к независимым потребителям, изменяя свое значение.

В качестве примера служить тоже освещение, но при наличии люстры, состоящей не из одной, а из нескольких лампочек и многоклавишного выключателя. Ток, дойдя до выключателя от источника, разделяется, чтобы питать лампы. Затем, возвращается по общему для них проводу назад.

Определение ветви

Определение ветви

Ветвь – это один или больше элементов, которые соединены последовательно.

Определение ветви

Напряжение измеряют относительно земли, где его величина составляет ноль. Ток течет из узла, в котором напряжение высокое, к узлу с низким.

Вычислить напряжение в узле легко:

V1-V2=I1*(R1), где

I1 — ток, текущий из 1 узла ко 2;

V1 — известное напряжение;

R1 — сопротивление между этими узлами;

V2 – искомое напряжение.

Проведя определенные действия, имеем — V2=V1-(I1*R1).

Так же определяется ток ответвления, когда известно напряжение узлов: I 1=(V1-V2)/R1 или I 1+ I3=I2, что означает, что входящий ток узла и выходящий одинаковы

Нелинеые и линейные цепи

В первых присутствует минимум один элемент, у которого существует зависимость параметров от тока, текущего по ним, и прикладываемого напряжения.

Во втором случае, ни одна характеристика составляющих цепь элементов, от вида тока, текущего по ним, и его величины не зависит. Кроме этого, в самих цепях различают внешние части и внутренние.

К первой принадлежит источник электроэнергии, а к внешней – провода, включатели и выключатели, измерительные приборы, т.е. все подсоединенное к источнику при помощи зажимов. Ток может течь исключительно по замкнутой цепи. Если же в каком-либо месте возникает разрыв, он прекращается.

Цепи еще бывают постоянного тока, т.е. в для которых не свойственно изменение направления тока (полярность источников ЭДС постоянна), и переменного, для которых характерно изменение во времени протекающего тока.

В цепях выступать источниками питания могут быть: аккумуляторы, электромеханические генераторы и термоэлектрические, фотоэлементы и гальванические. У них сопротивление внутреннее настолько мало, по отношению к другим нагрузкам, что им можно пренебречь.

Приемниками постоянного тока служат осветительные приборы, электромоторы, преобразующие в механическую электрическую энергию, и др.

К оборудованию вспомогательному относят:

  • рубильник;
  • приборы для измерения различных параметров (вольтметры и амперметры);
  • элементы защиты типа плавких предохранителей.

Оборудование

Для всех электроприемников важны два параметра – напряжение на их зажимах и мощность. Элементы, составляющие электрическую цепь, могут быть активными, т.е. индуцирующими ЭДС (моторы, аккумуляторные батареи) и пассивными (провода, резисторы, конденсаторы, катушки индуктивности).

Схема

Цепь с активным сопротивлением и индуктивностью

Для цепи, питающейся от переменного тока, в которую включена катушка индуктивности, принято считать, что активное сопротивление ее равняется нулю. В действительности и провод катушки, и соединительные обладают, путь и очень маленьким, активным сопротивлением. Поэтому цепь будет потреблять энергию.

Читайте также:  Измерение электрической энергии в трехфазной цепи переменного тока

Рекомендуем:

  • Схемы подключения трехфазного электродвигателя на 220 вольт
  • Частотный преобразователь для однофазного электродвигателя
  • Электродвигатели асинхронные трехфазные: технические характеристики, виды, особенности

Следовательно, определяя общее сопротивление цепи, учитывать необходимо активное и реактивное сопротивление. Однако, они разнятся по характеру, поэтому обычным способом их складывать невозможно. Использовать нужно метод геометрического сложения, выглядит который следующим образом (рисунок ниже):

Требуется построить треугольник, одна из сторон которого равна величине сопротивления активного, а другая – индуктивного. Величина суммарного сопротивления соответствует третьей стороне, т.е. гипотенузе.

Измеряется полное сопротивление омами, а обозначается «Z». Из выполненного построения понятно, что оно (гипотенуза) больше всегда, чем взятые отдельно величины активного и индуктивного (катетов).

В виде алгебраического выражения это выглядит так:

Здесь:

Z — полное сопротивление;

R — активное;

XL — индуктивное.

Так выглядит зависимость между сопротивлениями составляющих цепь элементов и полным.

Мощность цепи с катушкой индуктивности

Мощность, как известно из программы средней школы, это произведение тока и напряжения, которые являются величинами переменными. Значит, переменной величиной в цепи с активным сопротивлением и индуктивностью будет и мощность.

Ее значение в определенный момент можно вычислить, перемножив значения тока и напряжения в этот же момент. Проделав эти действия для каждого временного момента, получаем графики: а – для содержащей индуктивность цепи, б – активное:

Пунктирной кривой p показана мощность цепи переменного тока, которая состоит из индуктивности. Для ее построения справедливо алгебраическое умножение: умножение двух величин с одинаковым знаком (два минуса или два плюса) в результате дают величину положительную, а при умножении их с разными знаками – отрицательную.

Для цепи, которая помимо индуктивности содержит резистор, график мощности выглядит так:

Линия мощности при этом расположена оси времени. Означает это, что генератор с цепью не обмениваются энергией, поэтому отдаваемая в цепь генератором мощность, цепью потребляется полностью.

Получается, что при большем сдвиге фаз между током и напряжением, меньше мощности, потребляемая цепью.

Мощность электрического тока

Ток, идущий от высокого потенциала к низкому, совершает работу. Скорость ее совершения называется мощностью тока в цепи. Поскольку, силой тока называют количество проходящего в течении секунды через сечение цепи электричества, то мощность является величиной, находящейся в прямо пропорциональной зависимости от силы тока в цепи с резистором и напряжения (разности потенциалов). Измеряют ее в Вт (ваттах) и обозначают «Р».

P = I*U

Если же известны лишь сопротивление и сила тока, ее вычисляют по формуле:

В результате имеем:

Если известными величинами являются сопротивление и напряжение, ее высчитывают так:

Источник

Электрический ток и закон Ома

теория по физике 🧲 постоянный ток

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.

Носители электрического тока в различных средах

Среда Носители электрического тока
Металлы Свободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) Положительные и отрицательные ионы
Газы Ионы и электроны
Полупроводники Электроны и дырки (атом, лишенный одного электрона)
Вакуум Электроны

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Читайте также:  Как уменьшить вихревые токи в электрической машине

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Основные параметры постоянного тока

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I = q t . . = Δ q Δ t . . = N q e t .

N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).

Заряд, проходящий по проводнику за время t при силе тока, равной I:

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q = I t = 0 , 2 · 120 = 24 ( К л )

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δ q = I 1 + I 2 2 . . Δ t

Сила тока и скорость движения электронов:

n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .

Отсюда сопротивление второго проводника равно:

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Источник