script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Схема испытание двигателя постоянного тока

ТЕХНОЛОГИЯ ИСПЫТАНИЯ МАШИН ПОСТОЯННОГО ТОКА

Машины постоянного тока мощностью до 200 кВт и напряжением до 440 В, вводимые в эксплуатацию после монтажа, проходят приемосдаточные испытания в объеме, предусмотренном ПУЭ.

Измерение сопротивления изоляции обмоток относительно корпуса и бандажей машины, а также между обмотками осуществляется мегаомметром на 1000 В. При проверке изоляции обмотки по отношению к корпусу один из щупов мегаомметра прикладывают к зачищенной металлической поверхности корпуса машины, второй к выводному концу той обмотки, сопротивление изоляции которой измеряют. Если в машине имеется несколько обмоток, то кроме измерения сопротивления изоляции каждой из них по отношению к корпусу проверяют состояние их изоляции между собой. С этой целью все остальные обмотки соединяют с корпусом или по окончании измерения сопротивления изоляции всех обмоток по отношению к корпусу определяют сопротивление изоляции между каждыми двумя обмотками. Согласно ПУЭ оно должно быть не ниже 0,5 МОм между обмотками и каждой обмоткой относительно корпуса при 10—30 °С.

Сопротивление изоляции ниже 0,5 МОм может быть вызвано попаданием в изоляцию влаги, поверхностной влажностью, оседанием токопроводящей пыли на выводах, обмотках, коллекторе. При этом рекомендуется продуть машину сухим сжатым воздухом, очистить выводы обмоток, торец коллектора, изоляционные детали щеткодержателей. Если после, чистки и продувки сопротивление изоляции не повысится, выполняют поверхностную сушку машины и осуществляют контрольное измерение сопротивления изоляции. Необходимо помнить, что показания мегаомметра зависят от продолжительности приложения напряжения к проверяемой обмотке. Чем больше время, прошедшее от момента приложения напряжения к изоляции до момента отсчета, тем больше измеренное сопротивление изоляции. С повышением температуры сопротивление изоляции уменьшается.

При измерении сопротивления обмоток постоянному току проверяют состояние их контактных соединений (паек, болтовых, сварных соединений), сопротивления измеряют методом амперметра— вольтметра, моста и микроомметра. Необходимо помнить о некоторых особенностях измерений сопротивлений обмоток машин постоянного тока:

-сопротивление последовательной обмотки возбуждения, уравнительной и обмотки добавочных полюсов невелико (тысячные доли ома), поэтому его измеряют с помощью микроомметра;

-сопротивление обмотки якоря определяют методом амперметра — вольтметра с использованием специального двухконтактного щупа с пружинами с изоляционной рукояткой;

Измерение сопротивления якоря с помощью двухконтактного щупа.

Сопротивление постоянному току реостатов и пускорегулировочных резисторов обычно измеряют мостами ММВ, МВУ-49, Р-333 и др. При этом измерения выполняют для всего реостата полностью и на каждом положении ползунка (ответвлении).

Испытание машин постоянного тока высоким напряжением производится при отключенных конденсаторах, так как их испытательное напряжение обычно ниже испытательного напряжения машин.

При испытаниях машин постоянного тока по методу взаимной нагрузки могут быть использованы три способа введения в контур испытуемых машин энергии, необходимой для компенсации потерь: параллельное и последовательное включение источника электрической энергии, а также подключение механического источника энергии.

При испытании машины постоянного тока напряжение повышается на 30% лишь при числе полюсов не более четырех.

Наименьшую опасность представляет испытание машин постоянного тока и асинхронных двигателей с фазовыми роторами, в которых наиболее слабым местом являются проволочные бандажи на лобовых частях обмотки.

Разрыв таких бандажей в закрытых и защищенных машинах представляет аварию, не выходящую из пределов машины; только при машинах совершенно открытого исполнения возможно нанесение повреждений окружающим предметам и персоналу. Вполне достаточным мероприятием по обеспечению безопасности в подобных случаях является удаление из опасной зоны всего того, что может пострадать от разлетающихся обрывков бандажей.

В ряде случаев для упрощения схем испытания машин постоянного тока с возвратом энергии в сеть вместо механически связанных двигателя постоянного тока и синхронного генератора используют статический преобразователь постоянного тока в переменный требуемой частоты ( инвертор), вход которого подключен к генератору ГПТ, а выход — к сети. Регулирование мощности в этом случае осуществляется за счет изменения длительности проводящего состояния преобразователя.

Приемо-сдаточные испытания проходит каждая машина после ремонта или выпуска завода-изготовителя. Программа приемо-сдаточных испытаний машины постоянного тока включает в себя внешний осмотр машины, измерения сопротивления обмоток, испытания на нагревание в течение 1 ч, проверку частоты вращения и реверсирования при номинальных значениях напряжения, токов нагрузки и возбуждения для электродвигателей, для тяговых генераторов — проверку напряжений, соответствующих продолжительному режиму при низшем и высшем напряжениях, при номинальной частоте вращения, испытания на повышенную частоту вращения, проверку биения коллектора, коммутации, сопротивления и электрической прочности изоляции.

При использовании этого метода в машине искусственно создается тепловой режим, соответствующий работе в номинальных условиях, что достигается путем чередования режимов холостого хода и короткого замыкания. Этот способ нагрузки может быть рекомендован при проведении испытаний машин постоянного тока и синхронных машин.

Способ самоторможения используется для машин постоянного тока и синхронных машин, имеющих значительный момент инерции ротора. Для определения потерь частоту вращения испытуемой машины доводят до значения, несколько превышающего номинальное, после чего источник энергии отключают. При этом в ходе испытаний машин постоянного тока проводят два опыта: самоторможение без возбуждения и самоторможение при холостом ходе и токе возбуждения, которому соответствует номинальное напряжение на выводах разомкнутой обмотки якоря при номинальной частоте вращения.

Испытание изоляции обмотки между смежными витками для работающего на холостом ходу электрического двигателя проводится напряжением, равным 1 3 от номинального, в течение 3 мин. Для гидрогенераторов изоляция обмотки между смежными витками должна испытываться напряжением, равным 1 5 от номинального, в течение 5 мин, для турбогенераторов — напряжением, равным 1 3 от номинального, в течение 5 мин. Требуемое значение испытательного напряжения генераторов достигается увеличением тока возбуждения. При испытаниях машин постоянного тока с числом полюсов более четырех напряжение между смежными коллекторными пластинами не должно превышать 24 В.

Измерение сопротивления изоляции обмоток относительно корпуса машины, а для машин с параллельной и смешанной обмоткой возбуждения и между обмотками производить в практически холодном состоянии в соответствии с правилой.
Величина сопротивления изоляции в мегомах, замеренная мегомметром на 500 В, должна быть не ниже:
-для машин на напряжение на 100 В — 0,5 Мом;
-для машин на напряжение свыше 100 В — 1 Мом.

Испытание при повышенной скорости вращения разрешается производить как в режиме двигателя, так и в режиме генератора, при этом превышение скорости должно быть:

а) для электродвигателей с последовательным возбуждением — на 20% сверх максимальной, но не менее чем на 50% сверх номинальной;

б) для электродвигателей с регулировкой скорости вращения — на 20% сверх максимальной;

в) для всех остальных электрических машин — на 20% выше номинальной.
При испытании скорость вращения плавно повысить до требуемого значения, выдержать в течение 2 мин и плавно снизить.

Номинальные данные машины (указанные на заводском щитке) проверять в течение 1 ч.
Реверсивные машины вращать по 30 мин в каждую сторону. При этом:

а) генераторы должны развивать номинальную мощность при отклонениях напряжения от номинального на ±5%;

б) двигатели должны отдавать номинальную мощность при отклонениях напряжения от номинального от -5 до +10%.

Испытания на кратковременную перегрузку по току производить в течение 1 мин с нагрузкой по току, превышающей на 50% номинальную.

ТЕХНИКА БЕЗОПАСНОСТИ

При производстве ремонтных работ без разборки на механической части электродвигателя последний должен быть остановлен, а на ключе управления или приводе выключателя повешен плакат: «Не включать, работают люди».

У работающего двухскоростного электродвигателя не используемая обмотка и питающий ее кабель должны рассматриваться как находящиеся под напряжением.

Уход за щетками, их замену на работающем двигателе допускается производить специально обученным лицам с квалификационной группой не ниже III при соблюдении следующих мер предосторожности:

а) работающие должны остерегаться захвата одежды или обтирочного материала вращающимися частями машины; работа должна производиться в налокотниках, плотно стягивающих руку у запястья или с застегнутыми у запястья рукавами;

б) у возбудителей со стороны коллекторов и у колец ротора должны быть разостланы резиновые диэлектрические маты или работа людей должна производиться в диэлектрических галошах;

в) запрещается касаться руками одновременно токоведущих частей различной полярности или токоведущих частей и заземленных частей машины.
Должен применяться инструмент с изолированными ручками.
При работе на двигателе постоянного тока допускается установка заземления на любом участке кабельной линии, соединяющей электродвигателе секцией РУ, щитом, сборкой.

Если работы на двигателе постоянного тока рассчитаны на длительный срок, не выполняются или прерваны на несколько дней, то отсоединенная от него кабельная линия должно быть заземлена так же со стороны электродвигателя.

В тех случаях когда сечение жил кабеля не позволяет применять переносное заземление, у электродвигателей напряжением до 1000В допускается заземлять кабельную линию медным проводником сечение не менее сечения жил кабелей либо соединять между собой жилы кабеля и изолировать их такое заземление или соединение жил кабеля должно учитываться в оперативной документации на равнее с переносным заземлением.

Порядок включения двигателя для опробования должен быть следующим:

1) Производитель работ удаляет бригаду с места работы, оформляет окончание работы и сдает наряд оперативному персоналу оперативный персонал снимает установленное заземление, плакаты, выполняет сборку схемы.

2) После опробования при необходимости продолжения работы на
электродвигателе оперативный персонал вновь подготавливает рабочее место, и бригада по наряду повторно допускается к работе на электродвигателе.

Работа на вращающемся двигателе без соприкосновения с токоведущими и вращающимися частями может проводится по распоряжению.

Обслуживание щеточного аппарата на работающем двигателе допускается выполнять по распоряжению для этой цели работку, имеющему 3-ю группу.

Читайте также:  Что такое предельный ток диода

Работать с использованием средств защиты лица и глаз, в застегнутой
спецодежде остерегаясь захвата ее вращающимися частями электродвигателя. Пользоваться диэлектрическими галошами, ковриками, не касаться руками одновременно токоведущих частей двух полисов или токоведущих и заземляющих частей.

Кольца ротора допускаются шлифовать на вращающемся двигателе лишь с помощью колодок из изоляционного материала.

Рабочее место должна быть обеспечена аптечками с медикаментами и средствами для оказания первой помощи пострадавшим. При несчастных случаях необходимо немедленно принять меры по оказанию пострадавшему первой помощи и в случае надобности направить его в ближайший медицинский пункт с сопровождающим или вызвать врача.

ЗАКЛЮЧЕНИЕ

При работе с электрическими машинами переменного тока были приобретены навыки работы с электродвигателем.Были закреплены теоретические знания, полученные в университете.

Двигатели постоянного тока имеют огромное значение для промышленности, они неприхотливы, надежны, имеют большую долговечность и более просты по устройству, но более дорожи, чем двигатели переменного тока. Недостатки двигателей устраняются при помощи различных модификаций, таких как двухклеточный ротор и глубокий паз на роторе и другими.

На мой взгляд полноценного заменителя двигателей постоянного тока в настоящее время не существует.

За время прохождения практики не было получено никаких замечаний, работа велась слажено и четко выполнялись все требования.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1 Правила устройства электроустановок ПУЭ-7 [Текст] : нормативно-технический материал / Деан — СПб, 2012. — 224 с.

2 Мысьянов А.М., Нестеренко В.М. Ремонт электрооборудования промышленных предприятий [Текст]: учебник для нач. проф. Образования. -М.: Академия, 2008. -448с.

3 Москаленко В.В. Электрический привод /Учебное пособие – М.: Ака- демия, 2009. – 366 с.

4 Савченко П.И. и др. Практикум по электроприводу в сельском хозяйст- ве.- М.: Колос, 1996. — 244с.

5 Аипов Р.С., Ярмухаметов У.Р. Электропривод: конспект лекций. Часть II/ Р.С.Аипов, У.Р.Ярмухаметов. – Уфа.: БГАУ, 2014. — 102 с.

6 Стандарт организации . Самостоятельная работа студента. Оформление текста рукописи [Текст] : СТО 0493582-004-2010. Взамен СТО 0493582-003-2006. – Введ. 2010-04-01. – Уфа.: БГАУ, 2013. – 36 с.

Источник

Наладка электрических машин электроприводов — Испытание и снятие характеристик двигателей постоянного тока при различном виде нагрузок

Содержание материала

  • Наладка электрических машин электроприводов
  • Введение
  • Общие указания по наладке
  • Основные достоинства и недостатки систем управления электрических машин
  • Подбор технической документации, подготовка аппаратуры и рабочего места
  • Внешний осмотр, проверка механической части и сведения о монтаже
  • Измерение сопротивления и контроль изоляции обмоток
  • Проверка изоляции подшипников
  • Измерение сопротивлений обмоток при постоянном токе
  • Испытание электрической прочности изоляции обмоток повышенным напряжением
  • Пуск двигателя
  • Проверка механической части и правильности установки щеток машин постоянного тока
  • Измерение сопротивлений обмоток машин постоянного тока
  • Проверка схемы соединений обмоток машин постоянного тока
  • Подъем напряжения генератора постоянного тока
  • Пуск двигателя постоянного тока
  • Снятие характеристик при холостом ходе машин постоянного тока
  • Снятие характеристик хх и кз генератора
  • Испытание генераторов под нагрузкой и графическое построение характеристик
  • Испытание и снятие характеристик двигателей постоянного тока при различном виде нагрузок
  • Наладочные работы при неподвижном состоянии машины переменного тока
  • Пуск и снятие характеристик асинхронных двигателей
  • Снятие характеристик синхронных генераторов
  • Пуск и снятие характеристик синхронных двигателей
  • Область применения и перспективы развития управляющих и измеряющих машин
  • Электромашинные усилители
  • Тахогенераторы
  • Сельсины
  • Исполнительные микродвигатели
  • Осциллографирование токов и напряжений
  • Осциллографирование скорости и ускорений

Во время работы двигателей под нагрузкой проверяется коммутация на коллекторе и производятся контрольные измерения токов, напряжений и скорости вращения. Потери в машине могут быть рассчитаны по каталожным и справочным данным [Л. 15 и др.]. У машин мощностью более 100 кВт желательно оценить потери при опытах холостого хода и короткого замыкания. Методика измерения потерь описана в учебниках (например, [Л. 2, 3, 4]). Мощность Р0, потребляемая двигателем при холостом ходе, слагается из механических потерь рмех потерь от вихревых токов в стали ротора рж и потерь в меди якоря. Механические потери в свою очередь включают потери на трение ртр (в подшипниках и на коллекторе) и вентиляционные рвент. При холостом ходе ток якоря очень мал, поэтому потерями в меди якоря можно пренебречь. Потери в меди якоря удобнее всего определять при невозбужденном двигателе.
Таблица 2-6

Якорь питается от сети через пусковое сопротивление или от отдельного генератора по схеме опыта короткого замыкания (см. рис. 2-20). Для правильной оценки падения напряжения на щетках ΔUщ желательно медленно, на ползучей скорости проворачивать якорь. По напряжению на якорных цепях Uк.з (включая ошиновку и токовые аппараты) и току Iк.з определяется полное сопротивление Rя=Uк.з/Iк.з
В табл. 2-6 для иллюстрации приведены потери некоторых машин постоянного тока.
Полезная мощность на валу двигателя Р рассчитывается по мощности, потребляемой из сети, Рс и потерям Σρ. Потери в двигателе складываются из потерь холостого хода и потерь в меди рм, созданных током нагрузки
(2-3)
МОмент на валу двигателя М рассчитывается по известной зависимости
(2-4)
где М — момент, кГ-м, Р — мощность, кВт; п— скорость вращения, об/мин.
Ниже рассматривается методика снятия характеристик двигателей некоторых распространенных электроприводов.

Рис. 2-26. Характеристики электропривода механизма передвижения.

  1. Электроприводы механизмов и машин, передвигаемых в горизонтальной плоскости, имеют момент нагрузки, зависящий в основном от трения. МОмент трения механизмов на колесах (тележек и мостов кранов, слитковозов, электрокар), а также механизмов скольжения (суппортов станков, толкателей) мало зависит от скорости, но может иметь большую величину при трогании с места.

Во время испытания подобных электроприводов желательно получить характеристику момента сопротивления (момента трения Мт, рис. 2-26) при разном состоянии смазки

При неизменном напряжении якоря (Uя= Uc = const) и регулировке в цепи возбуждения снимаются характеристики I’n = f(n) и IB = f(n); в системах с регулировкой напряжения якоря (при IB=const) снимаются характеристики I»я=f(п).

Рис. 2-27. Характеристики электроприводов с постоянными статическими моментами, определяемыми заданной технологической нагрузкой.

  1. Электроприводы подъемных механизмов, прокатных клетей, металлообрабатывающих станков и различных иных агрегатов имеют неизменные статические моменты, определяемые заданной технологической нагрузкой. Примерные рабочие характеристики такого привода даны на рис. 2-27. Разным скоростям соответствует обычно разный максимально допустимый ток якоря. Его величина зависит от многих факторов, например: чем выше скорость, тем лучше охлаждение двигателя (при отсутствии принудительной вентиляции) и, следовательно, можно допустить выделение большого количества теплав меди якоря.

Однако при больших скоростях сильнее проявляется реакция якоря, ухудшается коммутация щеток, а иногда возникают перегревы отдельных частей вследствие механических и электрических потерь. Учесть все эти факторы наладчик может только при тщательном испытании двигателя; в первую очередь он должен ориентироваться на те предельные значения тока Iмакс =f(n), которые дает завод- изготовитель.

  1. Мjмент сопротивления вентилятора резко возрастает с увеличением скорости вращения (рис. 2-28,а).

У регулируемых вентиляторов с приводными двигателями постоянного тока во время наладки необходимо оценить максимально возможные рабочие скорости. При открытых задвижках лимитировать может номинальный ток якоря или допустимая скорость двигателя; необходимо также проверить, не возникают ли опасные вибрации привода на больших скоростях.

Рис. 2-28. Характеристики электроприводов со статическим моментом, зависящим от величины скорости. а — привод с вентиляторным моментом; б — привод с моментом прямо пропорциональным скорости.
По результатам испытаний выбираются сопротивление реостата возбуждения и уставка максимальной защиты. В данном случае максимальную защиту рекомендуется настраивать на величину 1,1—1,15 пускового тока якоря Iп, соответствующего скорости, принятой за максимально допустимую по всем основным показателям (при nмакс).
Электроприводы насосов и ряда компрессоров имеют момент нагрузки, изменяющийся прямо пропорционально скорости M = kn; наклон характеристики моментов зависит от положения клапанов или задвижек (рис. 2-28,б). Двигатели насосов несколько менее чувствительны к изменению скорости, чем двигатели вентиляторов, но для них также должен быть строго ограничен верхний предел скорости. Максимальную защиту таких приводов обычно настраивают на (1,2-1,3)Iп (при n-макс).
Электроприводы многих механизмов работают в кратковременном или повторно-кратковременном режиме. Весьма часто привод даже не разгоняется до установившейся скорости и снять характеристики двигателя с помощью обычных стрелочных приборов не представляется возможным. При испытании двигателей таких приводов под нагрузкой в первую очередь проверяются коммутация щеток и величины толчков тока в переходных режимах, т. е. выполняются такие же операции, как при пробных пусках.
Основными показателями работы таких приводов являются время разгона и торможения, а иногда также время реверса.
Для оценки переходных процессов рекомендуется использовать электронный осциллограф с послесвечением; при необходимости проведения контрольных расчетов следует применять светолучевые осциллографы. Осциллограммы переходных процессов имеют существенное значение не только для наладки данного привода в рассматриваемых условиях, но позволяют оценить возможность интенсификации работы агрегата в целом и найти рациональные решения при проектировании аналогичных установок.
Добиваясь получения благоприятных переходных режимов, наладчик всегда должен иметь в виду тепловое состояние отдельных частей двигателя. У некоторых приводов необходимо проверить, допускает ли обмотка возбуждения длительное включение на полное рабочее напряжение.
Выбирая двигатели по среднеквадратичным величинам тока или мощности, иногда не учитывают ухудшение охлаждения в периоды пауз и работы с низкими скоростями. У приводов кратковременных включений допускаются значительные перегрузки двигателей. При этом исходят из того, что нагрев происходит медленно и температура обмоток не превысит нормируемых значений.
Во время наладки необходимо проверить, не превышает ли длительность включения принятых в расчетах величин (см. § 1-2); в случае затяжных включений при относительно низкой температуре корпуса возможен недопустимый перегрев якорных цепей двигателя.
Приведенные замечания показывают, как разнообразны могут оказаться причины перегрузки двигателей; от наладчика всегда требуется внимательное, вдумчивое отношение к режиму работы привода и умение определить, не превышает ли температура деталей машины допустимые величины.

Читайте также:  Схема управления возбуждением синхронного двигателя в функции тока

Источник



Наладка двигателей постоянного тока

Наладка двигателей постоянного токаНаладку двигателей постоянного тока выполняют в следующем объеме: внешний осмотр, измерение сопротивлений обмоток постоянному току, измерение сопротивлений изоляции обмоток относительно корпуса и между собой, испытание междувитковой изоляции обмотки якоря, пробный пуск.

Внешний осмотр двигателя постоянного тока, как и осмотр асинхронного двигателя, начинают со щитка. На щитке двигателя постоянного тока должны быть указаны следующие данные:

  • наименование или товарный знак завода-изготовителя,
  • тип машины,
  • заводской номер машины,
  • номинальные данные (мощность, напряжение, ток, частота вращения),
  • способ возбуждения машины,
  • год выпуска,
  • масса и ГОСТ машины.

Выводы обмотки двигателя постоянного тока должны быть надежно изолированы друг от друга и от корпуса, расстояние между ними и корпусом должно быть не менее 12—15 мм. Особое внимание при внешнем осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), так как их состояние в значительной мере влияет на коммутацию машины, а следовательно, и на устойчивость ее работы.

При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, а также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция между коллекторными пластинами должна быть выбрана на глубину 1—2 мм, с краев пластин должна быть снята фаска шириной 0,5—1 мм (в зависимости от мощности двигателя). Промежутки между пластинами должны быть совершенно чисты — в них не должно быть металлических стружек или опилок, пыли от графитовых щеток, масла, лака и т. п.

На работу двигателя постоянного тока, а особенно его щеточного механизма, влияют биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных двигателей предельно допустимая величина биения не должна превышать 0,02—0,025 мм. Величину амплитуды вибрации измеряют индикатором часового типа.

При проведении измерения наконечник индикатора прижимают к поверхности в том направлении, в котором необходимо произвести измерение вибрации. Так как поверхность коллектора прерывистая (чередуются пластины коллектора и впадины), используют хорошо притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.

При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в пределах определенного угла, величина которого и оценивается по шкале индикатора в сотых долях миллиметра. Однако этот прибор позволяет измерять вибрации при частоте вращения не более 750 об/мин. Для двигателей, частота вращения которых превышает 750 об/мин, необходимо пользоваться специальными приборами—виброметрами или вибрографами, которые позволяют измерять или записывать вибрацию тех или иных узлов машины.

Биение также измеряют с помощью индикатора. Биение коллектора измеряют как в холодном, так и в нагретом состоянии машины. При измерении обращают внимание на поведение стрелки индикатора. Плавное движение стрелки указывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, особенно опасной для щеточного механизма двигателя. Измерение биения носит условный характер, так как опыт работы оказывает, что есть двигатели, у которых при малых частотах вращения значения биений велики, а при номинальной скорости они работают удовлетворительно. Потому окончательное заключение о качестве работы коллектора можно дать лишь после проверки работы двигателя под нагрузкой.

Осматривая механическую часть двигателя постоянного тока, следует обращать внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном двигателе). Зазор, измеренный в диаметрально противоположных точках между якорем и главными полюсами двигателя, не должен отличаться от среднего значения более чем на 10% при зазорах менее 3 мм и не более чем на 5% при зазорах более 3 мм.

После проверки биений и вибраций приступают к регулировке щеточного механизма двигателя. Щетки в обоймах должны свободно перемещаться, но не должны пошатываться. Нормальный зазор между щеткой и обоймой в направлении вращения не должен превышать 0,1— 0,4 мм, в продольном направлении 0,2—0,5 мм.

Нормальное удельное давление щеток на коллектор в зависимости от марки материала щетки должно быть не менее 150—180 г/см2 для графитовых щеток, 220— 250 г/см2 для медно-графитовых. Во избежание неравномерного распределения тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом. Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.

Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.

У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.

Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183—66 первыми прописными буквами их наименования с добавлением после них цифры 1 — для начала обмотки и 2 — для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3—4, 5—6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.

Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N—п, S—s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.

Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.

Притирание щеток к коллектору

Рис. 1. Притирание щеток к коллектору: . а — неправильно; б — правильно

Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.

Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.

При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.

Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму — торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.

Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.

При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.

Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей.

Читайте также:  Как увеличить силу тока в инверторе

При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.

Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).

Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.

Точность обычных приборов невелика — в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.

Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.

Полярность щеток определяется одним из следующих способов.

1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» — в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.

2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.

Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра—вольтметра, одинарного или двойного моста и микроомметром.

Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

2. Сопротивление обмотки якоря измеряют по методу амперметра—вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4—6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря

Схема проверки правильности установки щеток на нейтраль

Рис. 6. Схема проверки правильности установки щеток на нейтраль

Схема определения полярности щеток

Рис. 7. Схема определения полярности щеток

Измерение сопротивления якоря с помощью двухконтактного щупа

Рис. 8 Измерение сопротивления якоря с помощью двухконтактного щупа

Аналогичные измерения проводят для всех остальных пластин. Значения сопротивлений между каждыми соседними пластинами не должны отличаться друг от друга более чем на 10% от номинального значения (при наличии у машины уравнительной обмотки отличие может достигать 30%).

Измерение сопротивления изоляции обмоток и проверку электрической прочности изоляции обмоток проводят аналогично соответствующим пунктам проверки асинхронных двигателей.

Первоначальное включение двигателя постоянного тока проводят непосредственно после наладки двигателя с целью окончательной проверки его исправности. Аналогично асинхронным двигателям двигатели постоянного тока испытывают в режиме холостого хода при отсоединенном механизме и редукторе. Подобное испытание двигателя постоянного тока в режиме холостого хода необходимо для правильной настройки схемы управления.

Пуск двигателя на холостом ходу и под нагрузкой нужно проводить с большими предосторожностями. Непосредственно перед пуском необходимо убедиться в легкости вращения якоря, отсутствии задевания якоря о статор, в наличии смазки в подшипниках, а также проверить реле защиты. Ток срабатывания максимальной защиты не должен превышать 200% максимального тока двигателя. При пробном пуске двигателя постоянного тока контролируют качество коммутации, наблюдая за коллектором во время толчков пускового тока, а затем при работе двигателя вхолостую на максимальном напряжении и при максимальной частоте вращения.

Нагрузка не должна вызывать усиления степени искрения по сравнению с работой на холостом ходу. Допускается работа двигателя постоянного тока при степени искрения щеток 11/2 и даже 2. При более значительной степени искрения проводят наладку коммутации: установку щеток на нейтраль, проверку правильности включения обмотки дополнительных полюсов, проверку нажатия щеток на коллектор и степени прилегания щеток к коллектору.

Следует помнить, что недопустимое искрение на коллекторе может быть связано с неисправностью схемы управления, так как от схемы зависит скорость изменения тока в цепях якоря и возбуждения, максимальные значения толчков тока, соотношение тока якоря и магнитного потока машины в различные моменты времени. После наблюдения работы под нагрузкой и настройки коммутации двигателя постоянного тока процесс наладки можно считать законченным.

Источник

Испытание двигателя постоянного тока параллельного возбуждения

Цель работы

Изучить конструкцию двигателя постоянного тока параллельного

Произвести пуск, регулирование скорости вращения и реверсирование двигателя.

Исследовать двигатель параллельного возбуждения по характеристике холостого хода.

Краткая теория

Двигатели постоянного тока в зависимости от способа включения обмотки возбуждения по отношению к якорю делятся на: двигатели параллельного, независимого, последовательного, смешанного возбуждения.

Двигатель постоянного тока преобразует подводимую к нему электрическую энергию постоянного тока в механическую. К зажимам двигателя подводят напряжение U, при этом в цепи якоря будет протекать ток IЯ, а в цепи возбуждения ток IВ. Напряжение U, приложенное к зажимам якоря двигателя, уравновешивается индуктируемой в проводниках якоря электродвижущей силой (э.д.с.) – Е и падением напряжения в цепи якоря IЯ RЯ:

U = E+IЯ RЯ, откуда ток якоря IЯ = , и

где RЯ сопротивление в цепи якоря,

IК.З. − ток короткого замыкания двигателя.

При пуске двигателя в начальный момент времени якорь вследствие инерционности остаётся неподвижным (n=0) и E=0. Поэтому ток якоря, определяемый формулой IЯ = = IК.З., в 1030 раз больше номинального тока якоря IН.Я..

Для уменьшения пускового тока и пускового момента последовательно

с якорем включают пусковой реостат RП. Тогда ток якоря в начальный момент пуска IЯ = .

С момента начала вращения якоря появляется э.д.с., и величина тока якоря определяется равенством

IЯ = .

Процесс пуска в дальнейшем состоит в том, что пусковое сопротивление RПпостепенно уменьшают и в конце пуска доводят до нуля. Сопротивление пускового реостата RП должно быть таким, чтобы ток в якоре при пуске двигателя не превышал (1.32.0) IН.Я.. Пуск необходимо производить при максимальном потоке Ф, поэтому сопротивление регулировочного реостата Rр в цепи возбуждения должно быть минимальным.

Измерение сопротивлений обмоток якоря и возбуждения производят методом амперметра и вольтметра. На рис. 10.2 А(см. порядок выполнения работы) представлена схема для измерения сопротивления обмотки якоря. Зная показания амперметра и вольтметра, по закону Ома определяют сопротивление обмотки якоря. Для получения более точного результата делают не менее 3-х измерений при трёх различных положениях якоря. Истинное значение сопротивления определяется как среднее арифметическое из результатов отдельных измерений.

Сопротивление обмотки возбуждения измеряют по схеме рис.10.2 В(см. порядок выполнения работы).

Изменение направления вращения якоря двигателя (реверсирование)

можно осуществить двумя способами:

изменением направления тока в цепи якоря,

изменением полярности магнитных полюсов, т.е. направления тока возбуждения.

В обоих случаях нужно поменять местами присоединение

соответствующих проводников цепей.

На рис. 10.1 Априведена схема включения обмоток двигателя до реверсирования, на рис. 10.1 Ви 10.1 С схемы после реверсирования, где Я1, Я2 − концы якорной обмотки; Ш1, Ш2 − концы обмотки возбуждения.

Рис. 10.1 А Рис. 10.1 В Рис. 10.1 С

Изменение полярности приложенного напряжения не даёт реверсирования, т.к. одновременно изменяется направление тока и в цепи якоря и в цепи обмотки возбуждения. Чтобы не перемагничивать машину, реверсирование двигателя рекомендуется проводить по рис. 10.1 С.

Приборы и лабораторное оборудование

Амперметры, вольтметры постоянного тока.

Двигатель постоянного тока параллельного возбуждения.

Источник питания – 110 В.

Порядок выполнения работы

Произвести осмотр двигателя. Записать паспортные данные двигателя: тип, мощность, номинальное напряжение, ток, скорость вращения.

Собрать для измерений поочерёдно схемы (рис. 10.2 А, и 10.2 В).

Измерить сопротивление обмоток якоря и возбуждения. Показания приборов записать в таблицу 10.1, выполнить необходимые расчёты.

Собрать рабочую схему рис. 10.2 С.

Проверить правильность выбора регулировочных реостатов (по сопротивлению, номинальному току) и измерительных приборов.

Произвести пуск и остановку двигателя.

Исследовать характеристику холостого хода двигателя параллельного

возбуждения, т.е. зависимость э.д.с. Е, индуктируемой в якоре, от тока возбуждения Iв при постоянной номинальной скорости nн:

Е = (Iв) при n = nн = const.

Рис. 10.2 А Рис. 10.2 С

Источник