script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Схема включения измерительных трансформаторов тока в цепи

Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

Назначение трансформаторов тока

Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими токами затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели используются трансформаторы тока (ТТ).

Первичная обмотка трансформатора тока включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

Орлов Анатолий Владимирович

Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

Соединение трансформаторов тока и обмоток реле в полную звезду

Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.

Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду Двухфазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду
Однофазное КЗ
Соединение трансформаторов тока и обмоток реле в полную звезду Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.
Соединение трансформаторов тока и обмоток реле в неполную звезду

На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

Соединение трансформаторов тока и обмоток реле в неполную звезду

КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.

Соединение трансформаторов тока и обмоток реле в неполную звезду Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

Особенности схемы этого соединения:

  1. при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
  2. ток в реле относится к фазному току в зависимости от вида КЗ;
  3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.

Соединение трансформаторов тока в треугольник, а обмоток реле в звезду

Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.

Схема восьмерки или включение реле на разность токов двух фаз.

На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

Соединение трансформаторов тока и обмоток реле в неполную звезду

 Включение реле на разность токов 2 – фаз (схема восьмерки)

Симметричная нагрузка при трехфазном КЗ.

Двухфазное КЗ  Включение реле на разность токов 2 – фаз (схема восьмерки) Двухфазно КЗ АВ или ВС
 Включение реле на разность токов 2 – фаз (схема восьмерки) При разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.

Соединение трансформаторов тока в фильтр токов нулевой последовательности

Соединение трансформаторов тока в фильтр токов нулевой последовательности

На рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.

Последовательное соединение трансформаторов тока

 Последовательное соединение трансформаторов тока

На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным.

Источник

Измерительные трансформаторы тока в схемах релейной защиты и автоматики

Энергетическое оборудование электрических подстанций организационно разделяется на два вида устройств:

1. силовые цепи, по которым передается вся мощность транспортируемой энергии;

2. вторичные устройства, позволяющие контролировать происходящие процессы в первичной схеме и управлять ими.

Силовое оборудование располагают на открытых площадках или закрытых распределительных устройствах, а вторичное — на релейных панелях, внутри специальных шкафов или отдельных ячеек.

Промежуточным звеном, выполняющим функцию передачи информации между силовой частью и органами измерения, контроля, защит и управления являются измерительные трансформаторы. Они, как и все подобные устройства, имеют две стороны с разным значением напряжения:

1. высоковольтную, которая соответствует параметрам первичной схемы;

2. низковольтную, позволяющую снизить опасность воздействия силового оборудования на обслуживающий персонал и материальные затраты на создание устройств управления и контроля.

Прилагательное «измерительные» отображает назначение этих электротехнических устройств, поскольку они очень точно моделируют все процессы, происходящие на силовом оборудовании, и разделяются на трансформаторы:

2. напряжения (ТН).

Они работают по общим физическим принципам трансформации, но обладают различным конструктивным исполнением и способами включения в первичную схему.

Как сделаны и работают трансформаторы тока

Принципы работы и устройства

В конструкцию измерительного трансформатора тока заложено преобразование векторных величин токов больших значений, протекающих по первичной схеме, в пропорционально уменьшенные по величине и точно так же направленные вектора во вторичных цепях.

Принцип работы измерительного трансформатора тока

Конструктивно трансформаторы тока, как и любой другой трансформатор, состоит из двух изолированных обмоток, расположенных вокруг общего магнитопровода. Он изготавливается шихтованными металлическими пластинами, для плавки которых используются специальные сорта электротехнических сталей. Это делается для того, чтобы снизить магнитное сопротивление на пути прохождения магнитных потоков, циркулирующих по замкнутому контуру вокруг обмоток и уменьшить потери на вихревые токи.

Трансформатор тока для схем релейных защит и автоматики может иметь не один магнитопровод, а два, отличающиеся количеством пластин и общим объемом используемого железа. Это делается для создания двух типов обмоток, которые могут надежно работать при:

1. номинальных условиях эксплуатации;

2. или при значительных перегрузках, вызванных токами коротких замыканий.

Первые конструкции используются для выполнения измерений, а вторые применяются для подключения защит, отключающих возникающие ненормальные режимы.

Устройство обмоток и клемм подключения

Обмотки трансформаторов тока, рассчитанные и изготовленные на постоянную работу в схеме электроустановки, отвечают требованиям безопасного прохождения тока и его теплового воздействия. Поэтому они выполняются из меди, стали или алюминия с площадью поперечного сечения, исключающей повышенный нагрев.

Поскольку первичный ток всегда больше вторичного, то обмотка для него значительно выделяется своими габаритами, как показано на картинке ниже для правого трансформатора.

Измерительные трансформаторы тока до 1000 В

На левой и средней конструкции силовой обмотки вообще нет. Вместо нее предусмотрено отверстие в корпусе, через которое пропускается питающий силовой электрический провод или стационарная шина. Такие модели используются, как правило, в электроустановках до 1000 вольт.

На выводах обмоток трансформаторов всегда предусмотрено стационарное крепление для подключения шин и соединительных проводов с помощью болтов и винтовых зажимов. Это одно из ответственных мест, где может быть нарушен электрический контакт, который способен привести к поломкам или нарушениям точной работы измерительной системы. Качеству его затяжки в первичной и вторичной схеме всегда обращается внимание при эксплуатационных проверках.

Читайте также:  Линия прохождения тока это

Клеммы трансформаторов тока маркируются на заводе во время изготовления и обозначаются:

Л1 и Л2 для входа и выхода первичного тока;

И1 и И2 — вторичного.

Эти индексы означают направление навивки витков относительно друг друга и влияют на правильность подключения силовых и моделируемых цепей, характеристику распределения векторов токов по схеме. На них обращают внимание при первичном монтаже трансформаторов или заменах неисправных устройств и даже исследуют различными методиками электрических проверок как до сборок устройств, так и после монтажа.

Количество витков в первичной W1 и вторичной W2 схеме не одинаково, а сильно отличается. Высоковольтные трансформаторы тока обычно имеют всего одну прямую шину, пропущенную сквозь магнитопровод, которая работает в качестве силовой обмотки. Вторичная же катушка имеет большее количество витков, которое влияет на коэффициент трансформации. Его для удобства эксплуатации записывают дробным выражением номинальных величин токов в обеих обмотках.

Например, запись 600/5 на шильдике корпуса означает, что трансформатор предназначен для включения в цепь высоковольтного оборудования с номинальным током 600 ампер, а во вторичной схеме будет трансформироваться только 5.

Каждый измерительный трансформатор тока включается в свою фазу первичной сети. Количество же вторичных обмоток для устройств релейной защиты и автоматики обычно увеличивается для раздельного использования в кернах токовых цепей для:

защит шин и ошиновок.

Такой способ позволяет исключить влияние менее ответственных цепочек на более значимые, упростить их обслуживание и проверки на действующем оборудовании, находящемся под рабочим напряжением.

С целью маркировки выводов таких вторичных обмоток применяют обозначение 1И1, 1И2, 1И3 для начал и 2И1, 2И2, 2И3 — концов.

Каждая модель трансформатора тока рассчитана для работы с определенной величиной высоковольтного напряжения на первичной обмотке. Слой изоляции, расположенный между обмотками и корпусом, должен длительно выдерживать потенциал силовой сети своего класса.

С внешней стороны изоляции высоковольтных трансформаторов тока в зависимости от назначения может применяться:

загустевшие эпоксидные смолы;

некоторые виды пластмасс.

Эти же материалы могут быть дополнены трансформаторной бумагой или маслом для изоляции внутренних пересечений проводов на обмотках и исключения межвитковых замыканий.

Класс точности ТТ

Идеально трансформатор теоретически должен работать точно, без внесения погрешностей. Однако, в реальных конструкциях происходят потери энергии на внутренний нагрев проводов, преодоление магнитного сопротивления, образование вихревых токов.

За счет этого хоть немного, но нарушается процесс трансформации, что сказывается на точности воспроизводства в масштабе первичных векторов тока их вторичными величинами с отклонениями ориентации в пространстве. Все трансформаторы тока имеют определенную погрешность измерения, которая нормируется процентным выражением отношения абсолютной погрешности к номинальному значению по амплитуде и углу.

Векторная диаграмма определения погрешностей трансформатора тока

Класс точности трансформаторов тока выражается числовыми значениями «0,2», «0,5», «1», «3», «5»,»10».

Трансформаторы с классом 0,2 работают для выполнения особо важных лабораторных замеров. Класс 0,5 предназначен для точных измерений токов, используемых приборами расчетных учетов 1-го уровня в коммерческих целях.

Измерения тока для работы реле и контрольных учетов 2-го уровня производится классом 1. К трансформаторам тока 10-го класса точности подключаются катушки отключения приводов. Они точно работают в режиме коротких замыканий первичной сети.

Схемы включения ТТ

В энергетике в основном применяются трех или черырехпроводные линии электропередач. Для контроля токов, проходящих по ним, используются разные схемы подключения измерительных трансформаторов.

1. Силовое оборудование

На фотографии показан вариант измерения токов трехпроводной силовой цепи 10 киловольт с помощью двух трансформаторов тока.

Измерительные трансформаторы тока в сети 10 кВ

Здесь видно, что шины присоединения первичных фаз А и С подключены болтовым соединением к выводам трансформаторов тока, а вторичные цепи спрятаны за ограждение и выведены отдельным жгутом проводов в защитной трубе, которая направляется в релейный отсек для подключения цепей на клеммники.

Этот же принцип монтажа применяется и в других схемах высоковольтного оборудования, как показано на фотографии для сети 110 кВ.

Измерительные трансформаторы тока в сети 110 кВ

Здесь корпуса измерительных трансформаторов смонтированы на высоте с помощью заземленной железобетонной платформы, что требуют правила безопасности. Подключение первичных обмоток к силовым проводам выполнено в рассечку, а все вторичные цепи выведены в рядом расположенный ящик с клеммной сборкой.

Кабельные соединения вторичных токовых цепей защищены от случайного внешнего механического воздействия металлическими чехлами и бетонными плитами.

2. Вторичные обмотки

Как уже отмечено выше, выходные керны трансформаторов тока собираются для работы с измерительными приборами или защитными устройствами. Это влияет на сборку схемы.

Если необходимо контролировать по амперметрам ток нагрузки в каждой фазе, то используется классический вариант подключения — схема полной звезды.

Схема включения измерительных трансформаторов тока в полную звезду

В этом случае каждый прибор показывает величину тока своей фазы с учетом угла между ними. Использование автоматических самописцев в этом режиме наиболее удобно позволяет отображать вид синусоид и строить по ним векторные диаграммы распределения нагрузок.

Часто на отходящих фидерах 6÷10 кВ в целях экономии устанавливают не три, а два измерительных трансформатора тока без задействования одной фазы В. Этот случай показан на расположенном выше фото. Он позволяет включить амперметры по схеме неполной звезды.

Схема включения трансформаторов тока в неполную звезду

За счет перераспределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети.

Случай включения двух измерительных трансформаторов тока для контроля линейного тока с помощью реле показан на картинке ниже.

Схема включения трансформаторво тока в неполную звезду

Схема полностью позволяет контролировать симметричную нагрузку и трехфазные короткие замыкания. При возникновении двухфазных КЗ, особенно АВ или ВС, чувствительность такого фильтра сильно занижена.

Распространенная схема контроля токов нулевой последовательности создается подключением измерительных трансформаторов тока в схему полной звезды, а обмотки контрольного реле к объединенному проводу нуля.

Схема включения трансформаторов тока в полную звезду

Ток, проходящий через обмотку создан сложением всех трех векторов фаз. При симметричном режиме он сбалансирован, а во время возникновения однофазных или двухфазных КЗ происходит выделение в реле составляющей дисбаланс величины.

Особенности эксплуатации измерительных трансформаторов тока и их вторичных цепей

При работе трансформатора тока создается баланс магнитных потоков, образованных токами в первичной и вторичной обмотке. В результате они уравновешены по величине, направлены встречно и компенсируют влияние созданных ЭДС в замкнутых цепях.

Если первичную обмотку разомкнуть, то по ней ток перестанет протекать и все вторичные схемы будут просто обесточены. А вот вторичную цепь при прохождении тока по первичной размыкать нельзя, иначе под действием магнитного потока во вторичной обмотке вырабатывается электродвижущая сила, которая не тратится на протекание тока в замкнутом контуре с малым сопротивлением, а используется в режиме холостого хода.

Это приводит к появлению на разомкнутых контактах высокого потенциала, который достигает несколько киловольт и способен пробить изоляцию вторичных цепей, нарушить работоспособность оборудования, нанести электрические травмы обслуживающему персоналу.

По этой причине все переключения во вторичных цепях трансформаторов тока производят по строго определенной технологии и всегда под надзором контролирующих лиц без разрыва токовых цепей. Для этого используют:

специальные виды клеммников, позволяющие устанавливать дополнительную закоротку на время разрыва выводимого из работы участка;

испытательные токовые блоки с закорачивающими перемычками;

специальные конструкции переключателей.

Регистраторы аварийных процессов

Измерительные приборы делят по виду фиксации параметров при:

номинальном режиме эксплуатации;

возникновении сверхтоков в системе.

Чувствительные элементы регистраторов прямо пропорционально воспринимают поступающий на них сигнал и также отображают его. Если величина тока поступила на их вход с искажением, то эта погрешность будет введена в показания.

По этой причине приборы, предназначенные для измерения аварийных токов, а не номинальных, подключают в керны защит трансформаторов тока, а не измерений.

Об устройстве и принципах работы измерительных трансформаторов напряжения читайте здесь: Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Источник



Измерительные трансформаторы тока и напряжения. Основные схемы включения

date image2015-01-13
views image4485

facebook icon vkontakte icon twitter icon odnoklasniki icon

Ответ: Для расширения пределов измерения измерительных приборов в цепях переменного тока высокого напряжения используются трансформаторы напряжения и трансформаторы тока. Расширение пределов измерения с помощью добавочных резисторов и шунтов в этих цепях неприемлемо по той причине, что обмотки измерительных приборов находились бы под высоким напряжением и эксплуатация их представляла бы большую опасность для обслуживающего персонала. Возникли бы большие трудности по выполнению надежной изоляции измерительных приборов. Для защиты высоковольтных сетей и оборудования используются всякого рода реле защиты, которые включаются в сеть так же, как и измерительные приборы,— с помощью трансформаторов тока и напряжения. При использовании измерительных трансформаторов измерительные приборы и реле подключаются к вторичной обмотке измерительного трансформатора, надежно изолированной от первичной высоковольтной обмотки. Вторичные обмотки выполняются на малые напряжения, не опасные для обслуживающего персонала. Расширение пределов измерения амперметров при использовании шунтов в цепях переменного тока приводит к существенным погрешностям из-за индуктивностей обмотки амперметра и шунта. По этой причине для расширения пределов измерения амперметров всегда используются трансформаторы тока независимо от значения напряжения измеряемой цепи.

Читайте также:  Что такое частица тока

Схема включения вольтметра с трансформатором напряжения изображена на рис. 8.31. Трансформатор напряжения устроен так же, как и обычный трансформатор. Для него справедливы соотношения

U1 E1 = w1 = KU, откуда U2 ≈ U1 w2
U2 E2 w2 w1

Если трансформатор напряжения выполнен как обычный трансформатор, то возникают значительные погрешности измерения из-за того, что U1E1 и U2Е2 по причине падения напряжения в его обмотках. Для повышения точности измерения необходимо уменьшить падение напряжения в обмотках трансформатора. Достигается это следующим образом. К вторичной обмотке трансформатора напряжения подключаются обмотки вольтметров, обмотки напряжения ваттметров и счетчиков, обмотки реле защиты. Указанные обмотки обладают значительными сопротивлениями, и если их количество ограничено, то трансформатор работает практически в режиме холостого хода. Падение напряжения во вторичной обмотке столь мало, что U2 = Е2. Так как I2 ≈ 0, падение напряжения в первичной обмотке обусловлено только током холостого хода

Таким образом, повышение точности измерений сводится к уменьшению тока холостого хода трансформатора. Реактивная составляющая тока холостого хода Iр определяется из уравнения Ipw1 = Hстlст + Hl. Ее уменьшение достигается тем, что магнитопровод выполняется из высококачественной электротехнической стали с высокой магнитной проницаемостью μаст . Кроме того, трансформатор рассчитывается для работы с малым значением амплитуды магнитной индукцииВm — около 0,4 — 0,8 Тл. Все это существенно снижает напряженность магнитного поля в стали Нст = Васт и в воздушном зазоре Н = В магнитопровода и, естественно, снижает реактивную составляющую тока холостого хода. С той же целью магнитопровод трансформатора выполняется с минимальным значением воздушного зазора, что достигается высококачественной обработкой пластин и сборкой магнитопровода. Активная составляющая Iа обусловлена потерями в стали магнитопровода. Ее уменьшение достигается тем, что для магнитопровода используется сталь с малыми значениями удельных потерь ΔP10, ΔP15 и, как уже было сказано, трансформатор работает при малых значениях Вm.

При выполнении указанных выше условий вторичное напряжение трансформатора пропорционально первичному:

U2 = U1 w2 = U1 .
w1 КU

Однако абсолютной точности получить невозможно, и трансформаторы напряжения имеют определенную погрешность, так же как и измерительные приборы. По точности измерений трансформаторы делятся на классы точности: 0,2; 0,5; 1 и 3. Трансформаторы напряжения бывают однофазные и трехфазные. На паспорте трансформатора указываются номинальная мощность, номинальное первичное U1ном и вторичноеU2ном напряжения, класс точности. Вторичное напряжение (у трехфазных линейное) всех трансформаторов 100 В. Начало первичной обмотки обозначено буквой А, конец — X, начало — вторичной а, конец — х.

Рис. 8.31. Схема включения вольтметра с трансформатором напряжения

Схема включения амперметра с трансформатором тока изображена на рис. 8.32, в. Первичная обмотка трансформатора включена в электрическую цепь, и ток в ней определяется сопротивлением приемников и, естественно, не зависит от тока во вторичной цепи, где включен амперметр. Обмотка имеет несколько витков и выполнена из провода значительного сечения (соответственно току цепи). К выводам вторичной обмотки, имеющей значительно большее количество витков, чем первичная, и рассчитанной на ток 5 А, подключаются последовательно обмотки амперметра, токовые обмотки ваттметра, счетчика, реле защиты. Сопротивление обмоток незначительное, и если их количество невелико, то трансформатор работает в режиме короткого замыкания. Из уравнения МДС:

I1w1 + I2w2 = I10w1 следует, что если бы намагничивающий ток I10 был равен нулю, то:

I1w1 = I2w2 и I2 = I1 w1 = I1KI .
w2

Так как трансформатор тока работает в режиме короткого замыкания, то для создания тока во вторичной цепи 5 А требуется небольшая ЭДС и, следовательно, небольшой магнитный поток и создающий его намагничивающий ток. Однако для повышения точности измерения принимаются дополнительные меры к его снижению. Эти меры аналогичны тем, что были рассмотрены применительно к трансформатору напряжения, но в этом случае достаточная точность измерений при выполнении рассмотренных выше мер получается, если амплитуда магнитной индукции для трансформатора тока выбирается в пределах 0,06 — 0,1 Тл.

Рис. 8.32. Трансформатор тока (а), обозначение трансформатора тока (б), схема включения амперметра с трансформатором тока (в)

Необходимо отметить, что точность измерений существенно снижается при возрастании сопротивления вторичной цепи трансформатора. Действительно, для создания того же тока во вторичной обмотке потребуются большие ЭДС и, следовательно, магнитный поток и намагничивающий ток. Возросший намагничивающий ток нарушит пропорциональность между первичным и вторичным токами. Обрыв вторичной цепи представляет серьезную опасность для обслуживающего персонала вследствие появления на вторичной обмотке большого напряжения и возможности выхода из строя трансформатора.

Рис. 8.33. К пояснению работы трансформатора тока при разомкнутой вторичной обмотке

Это объясняется тем, что МДС первичной обмотки определяется током приемников энергии и не зависит от того, замкнута или разомк­нута вторичная обмотка. Когда вторичная обмотка замкнута, она соз­дает МДС I2w2, направленную противI1w1, и результирующая МДС, которая практически равна их разности, будет создавать магнитную индукцию всего в 0,06 — 0,1 Тл (точка а, рис. 8.33). При разомкнутой вторичной обмотке (I2w2 = 0) магнитная индукция возрастает до значений 1,5 — 2,0 Тл, что соответствует точке б. Магнитная индукция возрастает в 10 — 20 раз, что приведет к появлению большого напряжения на вторичной обмотке и резкому возрастанию (в 100 — 400 раз) потерь в магнитопроводе. Для предотвращения отмеченных неприятностей перед тем как отсоединить на ремонт или проверку измерительный прибор, вторичную обмотку трансформатора тока необходимо замкнуть накоротко перемычкой.

В паспорте трансформатора тока указываются номинальные токи первичной I1ном и вторичной I2ном (он обычно 5 А) обмоток, класс точности, максимальное значение сопротивления и минимальное значение коэффициента мощности обмоток приборов, включаемых во вторичную обмотку, при которых гарантируется указанный класс точности, а также напряжение, на которое рассчитана его изоляция. Начало первичной обмотки трансформатора тока обозначается буквойЛ1, конец — буквой Л2, вторичной: начало — И1, конец — И2.

Рис 8.34 Схема включения амперметра, вольтметра, ваттметра с трансформаторами напряжения и тока

Необходимо отметить, что кроме погрешности измерения по коэффициенту трансформации (по модулю измеряемой величины) есть и погрешность по углу по той же причине: падение напряжения в обмотках. Погрешность объясняется тем, что направление вектора приведенного вторичного напряжения не совпадает с направлением вектора первичного напряжения трансформатора напряжения и направление вектора приведенного тока вторичной обмотки не совпадает с направлением вектора первичного тока трансформатора. Угловая погрешность составляет всего несколько минут и проявляет себя только при измерении мощности, энергии и фазы. На рис 8.34 изображена схема включения измерительных приборов и измерительных трансформаторов для измерения тока, напряжения и активной мощности. Для защиты обслуживающего персонала от действия высокого напряжения в случае пробоя изоляции между обмотками или высоковольтной обмоткой и корпусом корпус и один конец вторичной обмотки измерительных трансформаторов надежно заземляются. Цена деления измерительных приборов определяется следующим образом.

Источник

Измерительные трансформаторы тока — назначение, устройство, виды конструкций

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Читайте также:  Определить ток обмотки якоря если подводимое напряжение u 220в

Как устроен измерительный трансформатор тока

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

Технические характеристики измерительного трансформатора тока ТТ-В

Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

Катушечный ИТТ

  1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

Обозначения:

Пример установки встроенного ТТ

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
  • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider ElectricШинные ТТ производства Schneider Electric
  1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.Разъемный ТТ

Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.

Шильдик на ТТ с указанием его марки

Шильдик на ТТ с указанием его марки

Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

Подключение трехобмоточного ТТ «звездой» и «треугольником»

Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

Пример как подключить ТТ на разность двух фаз (А) и неполной звездой (В)

Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

Подключения: А – для суммы токов всех фаз, В и С - последовательное и параллельное включение двухобмоточных ТТ

Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

Пример расчета ТТ

Пример расчета трансформатора тока

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

  • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
  • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
  • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
  • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
  • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
  • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
  • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

Источник