Меню

Сумма токов в разветвленной цепи равна

Сумма токов в разветвленной цепи равна

Вы будете перенаправлены на Автор24

Разветвленные цепи

На практике цепи могут быть очень сложными, могут состоять из нескольких источников тока, большого количества сопротивлений. Однако в цепь любой сложности входят два вида простых элементов:

  1. узлов — точек цепи, в которых встречаются более чем два проводника с током (рис.1) (Например, точки С и D);
  2. замкнутых контуров (рис. 1) (ABDCA, CDFEC, ABFEA).

Разветвленные цепи. Правила Кирхгофа

Правила Кирхгофа

Правила Кирхгофа используют для создания системы уравнений, из которой находят силы тока для цепи любой сложности. По своей сути они — законы Ома для каждого из контуров и законы сохранения заряда в каждом узле.

Готовые работы на аналогичную тему

Первое правило Кирхгофа (правило узлов): Сумма алгебраических значений токов $<(I>_l)$ сходящихся в каждом узле, равна нулю:

где n- количество проводников, сходящихся в узле. Надо отметить, что положительными обычно принимают токи, которые к узлу подходят.

Правило Кирхгофа номер два: (правило контуров): Сумма произведений на сопротивления соответствующих участков каждого из замкнутых контуров равна сумме алгебраических значений сторонних ЭДС ($\mathcal E$) в каждом замкнутом контуре:

В случае, когда используют правило Кирхгофа номер 2 задают направление обхода контура. Токи $<(I>_l)$, которые совпали по направлению с направлением обхода, полагают большими нуля. ЭДС $<(\mathcal E>_i)$ считают положительными, в том случае если они создают токи, которые направлены в сторону заданного обхода контура.

Система уравнений, которая получается в результате использования правил Кирхгофа, является полной и позволяет вычислять все токи в системе.

Таким образом, применения правил Кирхгофа следующий:

  1. произвольным образом выбираем для всех участков цепи направления токов;
  2. для $m$ узлов цепи записываем $m-1$ независимых уравнений первого правила Кирхгофа для токов;
  3. последовательно выделяем произвольные замкнутые контуры, которые содержат не меньше одного участка цепи, не входящего в предыдущие контуры. В разветвленной цепи, которая состоит из $n$ ветвей и $m\ $узлов, количество независимых уравнений, записанных с использованием второго правила Кирхгофа равно $n-m+1$.

Итак, если выписывать все уравнения по правилам Кирхгофа для всех контуров и всех узлов, то получится уравнений больше, чем необходимо, так как не все уравнения независимы. Чтобы не усложнять себе работы и не выписывать лишних уравнений, надо руководствоваться следующими правилами: записывая очередное уравнение для замкнутых контуров, надо следить, чтобы оно имело хотя бы одну величину, которая раньше в уравнения не входила, если все величины в уравнениях уже были, такое уравнение лишнее. Аналогично делают при выписывании уравнений для узлов. Затем, контроль правильности в написании уравнений состоит в проверке полноты системы уравнений. Количество уравнений должно быть равно числу неизвестных.

Задание: В электрической схеме, приведенной на рис. 2, заданы $R_2,\ R_3,\ R_4$ и ЭДС: $\mathcal E_1,\ \mathcal E_2$. Требуется определить $R_1$, при условии, что ток в цепи гальванометра G отсутствует ($I_G=0)$.

Разветвленные цепи. Правила Кирхгофа

Зададим направления токов рис. 2, тогда для узлов A,B,C первое правило Кирхгофа записывается в виде:

\[I_2-I_1=0\left(1.1\right).\] \[I_1+I_3=I(1.2),\] \[I_4-I_3=0\left(1.3\right).\]

За направление обхода контура примем движение против часовой стрелки, получим:

Решаем систему уравнений (1.1)-(1.6)и имеем:

При $\mathcal E_1=0$ результат не зависит от $ЭДС$, получаем схему мостика Уитстона для измерения сопротивлений:

Ответ: Искомое $R_1$ в заданной схеме можно найти в соответствии с формулой: $R_1=\frac-\frac\cdot \frac<\mathcal E_1><\mathcal E_2>$.

Задание: $R_1,R_2,R_3$, а также источник тока с ЭДС равным $\mathcal E_1$ соединены как показано на рис.3. Определите ЭДС источника тока, который надо подключить в цепь между точками А и В, чтобы через $R_3$ шел ток I в направлении, которое указано стрелкой. Сопротивлением источника пренебречь.

Разветвленные цепи. Правила Кирхгофа

За основу решения примем законы Кирхгофа одно для токов (2.1):

Выберем направление обхода — против часовой стрелки. Запишем два уравнения, используя второе правило Кирхгофа:

\[I_1R_1+I_2R_2=-_1\left(2.2\right).\] \[<-I>_2R_2-IR_3=\mathcal E \left(2.3\right).\]

Из уравнения (2.1) выразим $I_1$, получим:

Подставим в (2.2), получим:

\[\left(I_2-I\right)R_1+I_2R_2=-\mathcal E_1\to I_2=\frac\left(2.5\right).\]

Подставим $I_2$ из (2.5) в (2.3) получим искомую ЭДС:

Ответ: $\mathcal E=-\fracR_2-IR_3$ у ЭДС источника в точке A — минус, в точке В — плюс.

Источник

Разветвленные цепи. Правила Кирхгофа.

Законы Кирхгофа для разветвленной цепи (разветвленная цепь – электрическая цепь, содержащая узлы – места, где сходятся не менее трех проводников):

а) По первому закону Кирхгофаалгебраическая сумма токов, сходящихся в узле, равна нулю . Токи, приходящие к узлу, считаются положительными, а токи, отходящие от узла, отрицательными.

б)Второй закон Кирхгофа: в замкнутом контуре алгебраическая сумма произведений токов в участках на сопротивление этих участков равна алгебраической сумме электродвижущих сил, включенных в данный контур

,

где – алгебраическая сумма сил токов, сходящихся в узле; – алгебраическая сумма произведений сил токов на сопротивления замкнутых участков; – алгебраическая сумма ЭДС источников тока на замкнутом участке цепи.

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи.

2. Выбрать направление обхода контура; произведение положительно, если ток на участке совпадает с направлением обхода, и, наоборот; ЭДС, действующие по выбранному направлению обхода (перемещение происходит внутри источника тока от катода к аноду), считаются положительными.

Читайте также:  Как создать кратковременный индукционный ток в катушке k2 рис 137 упр 40

3. Составить столько уравнений, чтобы их число было равно числу неизвестных электрических величин; каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержавшийся в предыдущих контурах.

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:

Например, для рис. 148 первое правило Кирхгофа запишется так:

Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными.

Второе правило Кирхгофа получается из обобщенного закона Ома для разветвлен­ных цепей. Рассмотрим контур, состоящий из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с напра­влением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать:

Складывая почленно эти уравнения, получим

(101.1)

Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. , встречающихся в этом контуре:

(101.2)

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определяется при решении задачи: если искомый ток получится положительным, то его направление было выбрано правильно, отрицательным — его истинное направление противоположно выбранному.

2. Выбрать направление обхода контура и строго его придерживаться; произведе­ние IR положительно, если ток на данном участке совпадает с направлением обхода, и, наоборот, э.д.с., действующие по выбранному направлению обхода, считаются поло­жительными, против — отрицательными.

3. Составить столько уравнений, чтобы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рассматриваемой цепи); каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах, иначе получатся уравнения, являющиеся простой комбинацией уже составленных.

В качестве примера использования правил Кирхгофа рассмотрим схему (рис. 150) измеритель­ногомоста Уитстона.* Сопротивления R1, R2, R3и R4 образуют его «плечи». Между точками А и В моста включена батарея с э.д.с. и сопротивлением r, между точками С и D включен гальванометр с сопротивлением RG.Для узлов А, В и С, применяя первое правило Кирхгофа, получим

(10 1.3)

Для контуров АСВA, ACDA и CBDC, согласно второму правилу Кирхгофа, можно записать:

(101.4)

* Ч. Уитстон (1802—1875) — английский физик.

Если известны все сопротивления и э.д.с., то, решая полученные шесть уравнений, можно найти неизвестные токи. Изменяя известные сопротивления R2, R3 иR4, можно добиться того, чтобы ток через гальванометр был равен нулю (IG = 0). Тогда из (101.3) найдем

(101.5)

а из (101.4) получим

(101.6)

Из (101.5) и (101.6) вытекает, что

(101.7)

Таким образом, в случае равновесного моста (IG = 0) при определении искомого сопротивления R1 э.д.с. батареи, сопротивления батареи и гальванометра роли не играют.

На практике обычно используетсяреохордный мост Уитстона (рис. 151), где сопротивле­ния R3и R4 представляют собой длинную однородную проволоку (реохорд) с большим удельным сопротивлением, так что отношение R3/R4 можно заменить отношением l3/l4. Тогда, используя выражение (101.7), можно записать

(101. 8)

Длины l3 и l4 легко измеряются по шкале, a R2 всегда известно. Поэтому уравнение (101.8) позволяет определить неизвестное сопротивление R1.

Параллельное соединение приемников. Вначале рассмотрим графоаналитический метод расчета цепи с параллельным соединением потребителей (рис. 2.16, а). Для такой цепи характерно то, что напряжения на каждой ветви одинаковы, общий ток равен сумме токов ветвей.

Ток в каждой ветви определяется по закону Ома:

I1 = U ; I2 = U ; I3 = U (xL3 > xC3).
r1 2 + xL1 2 r2 2 + xC2 2 r3 2 + (xL3xC3) 2

Угол сдвига φ между током каждой ветви и напряжением определяют с помощью cos φ:

cos φ1 = r1 ; cos φ2 = r2 ; cos φ3 = r3 .
r1 2 + xL1 2 r2 2 + xC2 2 r3 2 + (xL3xC3) 2
Рис. 2.16. Цепь с параллельным соединением потребителей (а) и ее векторная диаграмма (б)

Общий ток в цепи, как следует из первого закона Кирхгофа, равен геометрической сумме токов всех ветвей:

Значение общего тока определяют графически по векторной диаграмме рис. 2.16, б.

Активная мощность цепи равна арифметической сумме активных мощностей всех ветвей:

Реактивная мощность цепи равна алгебраической сумме реактивных мощностей всех ветвей:

n
Q = Qk .

причем реактивную мощность ветви с индуктивностью берут со знаком плюс, ветви с емкостью — со знаком минус. Для цепи рис. 2.16 реактивная мощность равна

Полная мощность цепи

S = √P 2 + Q 2 .

Угол сдвига φ между общим током и напряжением определяют из векторной диаграммы или из выражения:

Графоаналитический метод не удобен для расчета разветвленных цепей: он отличается громоздкостью и невысокой степенью точности.

Читайте также:  Аккумуляторы rocket каким током заряжать

Для анализа и расчета разветвленных цепей переменного тока используют проводимости, с помощью которых разветвленную цепь можно преобразовать в простейшую цепь и аналитически рассчитать токи и напряжения всех ее участков.

В цепях постоянного тока проводимостью называется величина, обратная сопротивлению участка цепи:

g = 1/r

и ток в цепи выражается как произведение напряжения на проводимость:

Рис. 2.17. Электрическая цепь (а), ее векторная диаграмма (б) и эквивалентная схема (в); векторная диаграмма цепи при резонансе

В цепях переменного тока существуют три проводимости — полная,

активная и реактивная, причем только полная проводимость является величиной, обратной полному сопротивлению последовательного участка цепи.

Выражения проводимостей в цепях переменного тока можно получить следующим образом.

Ток в каждом неразветвленном участке цепи раскладывают на две составляющие, одна из которых есть проекция на вектор напряжения (активная составляющая тока Ia ), а другая — на линию, перпендикулярную вектору напряжения (реактивная составляющая тока Iр ).

Активная составляющая тока определяет активную мощность

P = UI cos φ = UIa ;

реактивная составляющая тока — реактивную мощность

Q = UI sin φ = UIр.

Из векторной диаграммы цепи рис. 2.17, а, изображенной на рис. 2.17, б, следует, что активная составляющая тока I1 равна

I1a = I1 cos φ1 = U r = Ur1/z1 2 = Ug1.
z1 z1

называется активной проводимостью ветви. Реактивная составляющая тока I1 равна

Ilp = I1 sin φ1 = U xL = UxL/z1 2 = Ub1.
z1 z1

называется реактивной проводимостью ветви цепи с индуктивностью и в общем случае обозначается bL.

Аналогично определяют активную g2 и реактивную b2 проводимости второй ветви цепи:

Реактивная проводимость ветви с емкостью в общем случае обозначается bC.

Вектор тока первой ветви равен геометрической сумме векторов активной и реактивной составляющих тока

а значение тока

Выразив составляющие тока через напряжение и проводимости, получим

где у1 = 1/z1 =g1 2 + bL1 2 — полная проводимость ветви.

Аналогично определяют и полную проводимость второй ветви:

Эквивалентные активную, реактивную и полную проводимости цепи получают следующим образом.

Вектор общего тока цепи равен геометрической сумме векторов токов Ī1 и Ī2:

и может быть выражен через активную и реактивную составляющие тока и эквивалентные проводимости всей цепи:

Активная составляющая общего тока (см. рис. 2.17, б) равна арифметической сумме активных составляющих токов ветвей:

а реактивная составляющая — арифметической разности реактивных составляющих этих токов:

Рис. 2.18. К расчету разветвлен- ной цепи с использова- нием проводимостей

Из выражений (2.24) и (2.25) следует, что эквивалентная активная проводимость цепи равна арифметической сумме активных проводимостей параллельно включенных ветвей:

а эквивалентная реактивная проводимость — алгебраической сумме реактивных проводимостей параллельно включенных ветвей:

При этом проводимости ветвей с индуктивным характером нагрузки берут со знаком плюс, ветвей с емкостным характером нагрузки — со знаком минус. Полная эквивалентам проводимость цепи

По эквивалентным активной, реактивной и полной проводимостям можно определить параметры эквивалентной схемы (рис. 2.17, в) цепи.

Эквивалентные активное, реактивное и полное сопротивления цепи определяют с помощью выражений

Необходимо отметить, что если ΣbL > ΣbC, то эквивалентное сопротивление хэ будет индуктивным, если ΣbC > ΣbLемкостным.

Смешанное соединение потребителей.Расчет цепи при смешанном соединении потребителей (рис. 2.18, а) может быть произведен путем замены ее простейшей эквивалентной цепью. Для этого вначале определяют активные, реактивные и полные проводимости параллельно включенных ветвей: g1, g2, b1, b2, у1, у2.

Затем находят эквивалентные активную, реактивную и полную проводимости параллельного участка цепи:

Далее определяют эквивалентные активное, реактивное и полное сопротивления параллельного участка цепи:

В результате расчетов цепь может быть заменена эквивалентной цепью (рис. 2.18, б), где все сопротивления включены последовательно. Общие активное, реактивное и полное сопротивления цепи равны

Цепь приобретает простейший вид, изображенный на рис. 2.18, в. Общий ток цепи определяют по закону Ома:

Источник



Сумма токов в разветвленной цепи равна

Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа , которые являются обобщением закона Ома на случай разветвленных цепей.

В разветвленных цепях можно выделить узловые точки ( узлы ), в которых сходятся не менее трех проводников (рис. 1.10.1). Токи, втекающие в узел, принято считать положительными; вытекающие из узла – отрицательными.

В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа :

Первое правило Кирхгофа является следствием закона сохранения электрического заряда.

В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами . На разных участках выделенного контура могут протекать различные токи. На рис. 1.10.2 представлен простой пример разветвленной цепи. Цепь содержит два узла и , в которых сходятся одинаковые токи; поэтому только один из узлов является независимым ( или ).

В цепи можно выделить три контура , и . Из них только два являются независимыми (например, и ), так как третий не содержит никаких новых участков.

Второе правило Кирхгофа является следствием обобщенного закона Ома.

Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 1.10.2, например, . Для этого на каждом участке нужно задать положительное направление тока и положительное направление обхода контура . При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 1.10.3.

Читайте также:  Как складывать вектора тока

Для участков контура обобщенный закон Ома записывается в виде:

Складывая левые и правые части этих равенств и принимая во внимание, что , получим:

.

Аналогично, для контура можно записать:

22 + 33 = 2 + 3.

Второе правило Кирхгофа можно сформулировать так: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура .

Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис. 1.10.2, система уравнений для определения трех неизвестных токов 1, 2 и 3 имеет вид:

11 + 22 = – 12,

22 + 33 = 2 + 3,

1 + 2 + 3 = 0.

Таким образом, правила Кирхгофа сводят расчет разветвленной электрической цепи к решению системы линейных алгебраических уравнений. Это решение не вызывает принципиальных затруднений, однако, бывает весьма громоздким даже в случае достаточно простых цепей. Если в результате решения сила тока на каком-то участке оказывается отрицательной, то это означает, что ток на этом участке идет в направлении, противоположном выбранному положительному направлению.

Источник

Правила Кирхгофа для разветвлённых цепей

Введём понятие узла. Узел – точка цепи, в которой сходится не менее трёх проводников.

Тогда разветвлённой цепью назовём цепь, имеющую один или более узлов.

Для расчёта таких цепей используются два правила Кирхгофа.

Первое правило Кирхгофа

Рис. 1. Первое правило Кирхгофа

Первое правило Кирхгофа: сумма токов, входящих в узел, равна сумме токов, выходящих из узла (рис. 1). A — узел в цепи постоянного тока. Путь в цепи протекают токи \displaystyle <<I data-lazy-src=

Рис. 2. Второе правило Кирхгофа (цепь)

Второе правило Кирхгофа касается такого понятия как контур. Назовём контуром замкнутый участок цепи, содержащий любые элементы цепи. Для визуализации правила введём произвольную цепь с узлами (рис. 2). Пусть наша цепь содержит резисторы \displaystyle <<R data-lazy-src=

Рис. 3. Второе правило Кирхгофа (Контур)

По нашей схеме нарисуем контуры (рис. 3). В цепе можно выделить 3 контура обхода: для определённости, красный, синий и зелёный.

Расставим токи для каждого из элементов, обладающих сопротивлением (рис. 4). Направление силы тока выбираем случайным образом.

Второе правило Кирхгофа (Сила тока)

Рис. 4. Второе правило Кирхгофа (Сила тока)

Тогда второе правило Кирхгофа — сумма падений напряжений на каждом из элементов контура равно сумме ЭДС в этом контуре.

\displaystyle U=IR(2)

  • где
    • \displaystyle U— напряжение,
    • \displaystyle I— сила тока,
    • \displaystyle R— сопротивление.

Тогда второе правило Кирхгофа формульно:

\displaystyle \sum\limits_<i data-lazy-src=