script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Связь плотности тока удельного сопротивления

Основные формулы. Плотность тока в проводнике

date image2015-05-13
views image6262

facebook icon vkontakte icon twitter icon odnoklasniki icon

Плотность тока в проводнике

где S – площадь поперечного сечения проводника; – средняя скорость упорядоченного движения зарядов в проводнике; n – концентрация зарядов.

Электродвижущая сила, действующая в цепи,

где . – работа сторонних сил; q – единичный положительный заряд,

(участок цепи 1 – 2),

где – напряженность поля сторонних сил.

Разность потенциалов между двумя точками цепи

где – напряженность электростатического поля; – проекция вектора на направление элементарного перемещения .

Напряжение на участке 1 – 2 цепи

где (j1 – j2) – разность потенциалов между точками цепи; – ЭДС, действующая на участке 1 – 2 цепи.

Сопротивление однородного линейного проводника, проводимость G

проводника и удельная электрическая проводимость g вещества проводника:

где r – удельное электрическое сопротивление; S – площадь поперечного сечения проводника; – его длина.

(для однородного участка цепи),

(для неоднородного участка цепи),

(для замкнутой цепи),

где U – напряжение на участке цепи; R – сопротивление цепи (участка цепи); (j1 – j2) – разность потенциалов на концах участка цепи; e12 – ЭДС источников тока, входящих в участок; e – ЭДС всех источников тока в цепи.

Зависимость удельного сопротивления rи сопротивления R от температуры

где r и r, R и R – соответственно удельное сопротивление и сопротивление проводника при t и 0°С; a – температурный коэффициент сопротивления, для чистых металлов (при не очень низкой температуре) близкий к .

Закон Ома в дифференциальной форме

где – плотность тока; – напряженность электростатического поля; g – удельная электрическая проводимость вещества проводника.

где U – напряжение, приложенное к концам однородного проводника; I – сила тока в проводнике; R – сопротивление проводника; dq – заряд, переносимый через сечение проводника за промежуток времени dt.

где U – напряжение, приложенное к концам однородного проводника; I – сила тока в проводнике; R – его сопротивление.

Закон Джоуля – Ленца

где dQ – количество теплоты, выделяющееся в участке цепи за промежуток времени dt; U – напряжение, приложенное к концам участка цепи; I – сила тока в цепи; R – сопротивление участка.

Закон Джоуля – Ленца в дифференциальной форме

где w– удельная тепловая мощность тока; j – плотность тока; Е – напряженность электростатического поля; g – удельная электрическая проводимость вещества.

Контактная разность потенциалов на границе двух металлов 1 и 2

где A1, A2 – работы выходов свободных электронов из металлов; k – постоянная Больцмана; n1, n2 – концентрации свободных электронов в металлах.

Термоэлектродвижущая сила в цепи из разнородных проводников, контакты между которыми имеют различные температуры

где k – постоянная Больцмана; е – элементарный заряд; (Т1 – Т2) – разность температур спаев.

Формула Ричардсона – Дешмана

где – плотность тока насыщения термоэлектронной эмиссии; С – постоянная, теоретически одинаковая для всех металлов; А – работа выхода электрона из металла.

Соединение n одинаковых элементов (источников тока) электрической цепи постоянного тока:

Схема электрической цепи Закон Ома

r – внутреннее сопротивление каждого источника; R – внешнее сопротивление цепи; e – ЭДС источника.

Источник

Сила и плотность тока. Линии тока

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S .

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков ( d q + и d q − ), справедливым будет заключение о том, что сила тока равна следующему выражению:

I = d q + d t + d q — d t .

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе С И роль основной единицы измерения силы тока играет Ампер ( А ) .

Читайте также:  Трехфазный ток в снт

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем d V случайной формы. С помощью следующего обозначения » open=» υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n 0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку d S , которая расположена ортогонально скорости » open=» υ (рис. 1 ).

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Проиллюстрируем на поверхности площадки d S очень короткий прямой цилиндр, имеющий высоту » open=» υ d t . Весь массив частиц, которые располагались внутри такого цилиндра за время d t пересекут плоскость d S и перенесут через нее, в направлении скорости » open=» υ , заряд, выражающийся в виде следующего выражения:

d q = n 0 q e » open=» υ d S d t ,

где q e = 1 , 6 · 10 — 19 К л является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на d S d t и получим:

где j представляет собой модуль плотности электрического тока.

j = n 0 q e » open=» υ ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j = ∑ n i q i » open=» υ i i ,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1 . Пускай n → представляет собой единичный перпендикуляр к плоскости d S . В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

d q d t = j → n → d S = j n d S .

Формула приведенная выше справедлива также в том случае, когда плоскость площадки d S неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j → , направленная под прямым углом к нормали, через сечение d S электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j = n 0 q e » open=» υ в таком виде:

j → = — n 0 q e » open=» υ → .

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника ( S 1 , S 2 ) с постоянным током справедливо следующее равенство:

j 1 j 2 = S 2 S 1 .

Основываясь на законе Ома для плотности токов можно записать такое выражение:

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока A м 2 .

Источник



Что такое плотность тока

Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения. Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий. Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

Что такое плотность тока

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.

Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Читайте также:  Сила взаимодействия между двумя параллельными проводниками с токами

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом. Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными. Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2. В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2. В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Читайте также:  За счет чего электролиты проводят электрический ток

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S. Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника. Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Источник

Электрический ток, проводимость, сопротивление

Электрический ток

Электрический ток — это направленное движение электрических зарядов в веществе

или в вакууме под воздействием электрического поля.

Носителями зарядов, движение которых создаёт электрический ток, служат:

— в металлах — свободные электроны;

— в жидкостях и газах — ионы.

Сила токаопределяется количеством электричества, проходящего через поперечное сечение проводника за единицу времени:

где: I — сила тока (А)

Q = — количество электричества (Кл)

е — заряд одного электрона

n — количество электронов

Плотность токапредставляет собой отношение тока к площади поперечного
сечения проводника:

где: J — плотность тока (А\мм 2 илиА\м 2 )
I — сила тока (А)
S — площадь поперечного сечения проводника ).

Постояннымназывается электрический ток, величина и направление которого не

меняются в зависимости от времени.

Переменнымназывается ток, который периодически изменяется как по величине,

Непосредственно наблюдать электрический ток человек не может , о наличии тока судят по сопровождающим его явлениям. Действия тока: тепловое (световое), химическое,

Человек ощущает ток начиная с 5 мА, при возрастании до 50 мА он становится опасным для

жизни. Для примера: ток ламп накаливания 0,1 — 1 А, электрической плитки 1,5 — 5 А, электродвигателей средней мощности 5-25 А, , в металлургических установках 50 кА.

Сопротивление, проводимость

Электрическое сопротивление— это способность элемента электрической цепи
противодействовать прохождению по нему электрического тока. Природу
сопротивления объясняют столкновением носителей заряда с узлами
кристаллической решётки материала, что вызывает его нагрев.

Сопротивление обозначается буквой R,r и измеряется в омах (Ом). 1 Ом равен сопротивлению
проводника с током в 1 А при напряжении на концах проводника 1 В.

Элемент электрической цепи, предназначенный для использования его
электрического сопротивления, называется резистором.

Резистор нерегулируемый. Резистор регулируемый. Резистор регулируемый (потенциометр).

Отношение напряжённости электрического поля к плотности тока в проводнике
является постоянной величиной для каждого материала и называется удельным
электрическим сопротивлением:

где: — удельное сопротивление (Ом\м)

Еп — напряжённость поля (В\м)

J- плотность тока (А\м 2 )

Общее сопротивлениепроводника или резистора определяется по формуле:

где: R — электрическое сопротивление (Ом)
— удельное сопротивление (Ом\м)

l — длина проводника (м)

S — площадь сечения проводника (м 2 )

Количественную зависимость между током, напряжением и сопротивлением
выражает закон Ома для участка цепи:

I= U/R

Величина, обратная сопротивлению, называется проводимостью и измеряется в сименсах (См):

Величина, обратная удельному сопротивлению, называется удельной проводимостью:

Согласны ли вы с утверждениями:

1. Электрический ток — это направленное движение электрических зарядов в веществе или в вакууме
под воздействием электрического поля.

2. В жидкостях и газах носителями зарядов являются положительные и отрицательные ионы.

3. Плотность тока определяется количеством электричества, проходящего через поперечное сечение
проводника за единицу времени.

4. Постоянным называется электрический ток, величина и направление которого меняются в

зависимости от времени.

5. Химическое действие тока можно наблюдать в электролитической ванне.

6. Электрический ток, начиная со значения 5мА, опасен для жизни человека.

7. Электрическое сопротивление объясняется столкновением носителей заряда с узлами
кристаллической решётки материала проводника.

8. Удельное электрическое сопротивление проводника обратно пропорционально плотности тока в нём

9. Общее сопротивление проводника тем больше, чем больше его длина.

10. Ток на участке цепи тем больше, чем больше сопротивление этого участка.

Дата добавления: 2018-04-04 ; просмотров: 1311 ; Мы поможем в написании вашей работы!

Источник