script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Таблица разряда постоянным током

Таблица разряда постоянным током

Рассмотрим маркировку LiPo аккумуляторных батарей на примере батареи, на которой имеются следующие надписи:

  • 3000 — емкость в мАч (mAh);
  • 11,1 В — номинальный вольтаж;
  • 3S — количество и порядок соединения банок (отдельных аккумуляторов, из которых собрана батарея) – это означает, что батарея соединена последовательно из 3-х аккумуляторов, то есть емкость батареи будет 3000мАч, а напряжение будет 3,7х3 = 11,1В;
  • 20С — ток разряда (на аккумуляторе 3000 мАч означает, что максимальный непрерывный ток разряда равен 20*3000=60000 мА=60А).

Напряжение

На аккумуляторах вместо напряжения пишут количество банок.

Напряжение одной банки равно 3,7 В. Соответственно 3 банки равны 11,1 В.

Количество банок обозначается буквой S.

Ток разряда

Обозначается буквой C и числом коэффициентом емкости.

Пиковый ток разряда

Ток, который аккумулятор может отдавать короткий промежуток времени (который тоже указан в характеристиках). Обычно это 10-30 с.

Обозначается так же как и ток разряда, вторым числом.

Емкость

Обозначается в мАч (миллиампер-час). 1000 мА/ч = 1 А/ч.

LiPo батареи заряжают током 1С (если только другое не указанно на самой батарее, в последнее время появились с возможностью зарядки током 2 и 5C). Штатный зарядный ток батареи 1000 мАч — Ампер. Для батареи 2200 — будет 2.2 ампера и тд.
Компьютеризированный зарядник производит балансировку батареи (выравнивание вольтажа на каждой банке батареи) во время зарядки. Хотя можно заряжать 2S батареи и без подключения балансировочного кабеля мы настоятельно рекомендуем подключать балансировочный разъем всегда! 3S и большие сборки заряжать только с подключенным баланировочным проводом! Если вы не подключите и одна из банок наберет больше чем 4.4 вольта, то вас ждет незабываемый фейерверк!
Батарея заряжается до 4.2 вольта на банку (обычно на несколько милливольт меньше).

На компьютеризированном заряднике можно перевести LiPo в режим хранения,при этом батарея дозарядится/доразрядится до 3,85В на банку. Полностью заряженные батареи при хранении более 2-х месяцев (может и меньше) дохнут. Говорят что и полностью разряженные тоже, но за больший срок.

Разряжать аккумулятор LiPo ниже чем на 3 вольта на банку не рекомендуется — может сдохнуть. Регуляторы двигателя имеют функцию отключения двигателя при наступлении такого состояния. Мы используем звуковые индикаторы на 2-3 или более банок. Также рекомендуем применять электронные вольтметры. Подсоединяется в балансирный разъем и как запищит — то пора на посадку.
При потреблении мотором тока больше того, что может отдать аккумулятор, LiPo норовит вздуться и подохнуть. Так что за этим надо следить строго!
Сейчас появились батареи nano-tech с токоотдачей 25-50С.

Подготовка к работе.

Подготовить LiPo к эксплуатации очень просто — просто зарядите ее и все! 🙂
Данный тип батареи не имеет эффекта памяти (не нужно доразряжать перед новой зарядкой), не требуется циклировать — делать циклы заряд-разряд перед эксплуатацией.
Если вы заряжаете в поле, то стоит поискать аккумуляторы с ускоренной зарядкой, на них пишут Fast charge 2С или 5С. По идее их можно заряжать током 33 Ампера!
Зарядник имеет максимум 5А, но и это позволит сократить зарядку с 50 минут до 20! (аккумулятор 1000 мАч)

Источник

Расчет и выбор аккумуляторной батареи на объектах энергетики

Н аиболее предпочтительными типами аккумуляторных батарей (АБ), для использования на объектах энергетики являются свинцово-кислотные АБ закрытого типа с жидким электролитом.

Обзор типов аккумуляторных батарей

В зависимости от конструкции положительного электрода различают АБ следующих типов:
OGi, OSP, VARTA BLOCK − c намазным положительным электродом.
Д анный тип батарей имеет наиболее широкое применение в конструкциях стационарных свинцовых аккумуляторов.
В качестве положительного электрода(токоотвода) используется стержневая решетчатая пластина из свинцового сплава с низким содержанием сурьмы.
В решетку закладывается электродная паста, которая получается путем смешивания свинцового порошка и серной кислоты.
С рок службы батарей данного типа составляет 15-20лет.
П рименяются при смешанном виде нагрузок – циклических и толчковых.

OpzS, OCSM − c панцирным (трубчатым) положительным электродом.
Э лектрод изготавливается в виде стержня с ответвлениями.
Н а стержень надевается перфорированный чехол из кислостойкого диэлектрика, имеющий набивку активной массы(электродная паста) положительного электрода.
Ч ехол обеспечивает контакт активной массы с токоотводом и предотвращает ее унос с поверхности электрода.
С рок службы батарей данного типа составляет 20лет.
П рименяются при циклическом виде нагрузок

GroE − c поверхностным положительным электродом (PLANTE).
И меют наиболее низкое внутреннее сопротивление из всех рассмотренных типов.
И х электроды изготавливаются из рафинированного свинца и представляют собой ламель с весьма высокой эффективной поверхностью.
Н изкое внутреннее сопротивление аккумуляторов GroE обуславливает стабильный уровень напряжение разряда, особенно при больших токах нагрузки.
С рок службы батарей данного типа составляет 25лет.
П рименяются при высоком уровне толчковых нагрузок.

О трицательные электроды у всех аккумуляторов изготавливаются по намазной технологии.

Н а менее ответственных объектах зачастую применяют свинцово-кислотные АБ герметизированного типа по технологии типа AGM, еще их называют необслуживаемые АБ.

Т ехнология типа AGM – аккумуляторы с жидким электролитом, впитанным в стекловолоконный сепаратор.
С епаратор пропитан растовором не полностью, свободый объем используется для рекомбинации газов, поэтому аккумулятор не требует долива воды на протяжении своего срока службы.
П оложительные и отрицательные пластины батарей AGM – намазного типа.

Нагрузки систем постоянного тока энергетических объектов

Н агрузки системы постоянного тока можно разделить на следующие виды:

1. Постоянная нагрузка – соответствует току, потребляемому с шин системы постоянного тока в нормальном режиме и остается неизменной в течении всего аварийного режима.
В нормальном режиме постоянную нагрузку принимают на себя зарядно-подзарядные устройства.
К постоянной нагрузке относятся — устройства управления, блокировки, сигнализации и релейной защиты, постоянно включенная часть аварийного освещения.

2.Временная нагрузка — соответствует току потребителей, подключенных к аккумуляторной батарее при исчезновении переменного тока и характеризует установившийся аварийный режим;
К временной нагрузке относится — аварийное освещение, электродвигатели аварийных маслонасосов системы смазки, уплотнения и регулирования, преобразовательный агрегат связи.

3.Кратковременная нагрузка – длительностью несколько секунд, она характеризуется потребляемым от аккумуляторной батареи током в переходном аварийном режиме.
К кратковременной нагрузке относится — пуск электродвигателей, включение и отключение приводов выключателей.

Д лительность аварийного режима(исчезновения переменного тока) принимается согласно заданию на проектирование.

П ри отсутствии в задании принимается равным:
-для тепловых электростанций входящих в систему – 30мин;
-для изолированных электростанций – 1 час;
-для электрических подстанций – 2 часа.

Расчет и выбор аккумуляторной батареи для электростанций

Н а электростанциях, как правило, устанавливается несколько аккумуляторных батарей.

К оличество зависит от мощности турбоагрегатов и типа тепловой схемы.

Н а ТЭЦ с поперечными связями в тепловой части мощностью до 200 МВт устанавливается одна аккумуляторная батарея, а при мощности более 200 МВт — две одинаковой емкости.

Н а ТЭЦ с блочными тепловыми схемами выдачи мощности, для каждого из двух блоков, обслуживаемых с одного блочного щита, предусматривается установка, как правило, одной аккумуляторная батареи.

Д ля блоков мощностью 300 МВт и выше в тех случаях, когда применение одной батареи на два блока невозможно по условиям выбора коммутационной аппаратуры постоянного тока, допускается установка отдельной батареи для каждого блока.

Д ля примера рассмотрим выбор аккумуляторной батареи для блочной ТЭЦ с блоками мощностью 300МВт.

Р асчет производим для АБ одного из блоков ТЭЦ.

И сходные данные по нагрузкам системы постоянного тока в аварийном режиме:
-постоянная нагрузка – 50А;
-преобразовательный агрегат связи №1 – 35А, пусковой ток – 175А;
-преобразовательный агрегат связи №2 – 25А, пусковой ток – 150А;
-аварийное освещение – 100А;
-маслонасос системы уплотнения №1 – 30А, пусковой ток – 90А;
-маслонасос системы уплотнения №2 – 115А, пусковой ток – 345А;
-маслонасос системы смазки №1 – 65А, пусковой ток – 195А;
-маслонасос системы смазки №2 – 65А, пусквой ток – 195А;
-привод выключателя ОРУ-110кВ – пусковой ток 400А.

С оставим график аварийного режима

график аварийного режима разряда для электростанций

И тоговые показатели графика аварийного режима:
-время разряда – 30мин;
-установившийся ток аварийного разряда – 485А;
-максимальный пиковый ток – 400А;
-максимальный пиковый ток с учетом установившегося – 885А.

Выбор числа элементов аккумуляторной батареи

Н апряжение на шинах щита постоянного тока(ЩПТ) в режиме эксплуатации должно поддерживаться на 5% выше номинального, т.е. 220*0,05+220=231В.
Р ежим подзаряда 2,23В/эл – 231/2,23 = 104 элемента.
О бычно на электростанциях принимают на 1-2 элемента больше, т.е 105-106 элементов.

Читайте также:  По каким схемам соединяются трансформаторы тока дифференциальной защиты трансформатора

Д анное увеличение требуется для компенсации падения напряжения в кабельных линиях и с учетом необходимости поддержания нормативного уровня напряжения у нагрузок, особенно с большими пусковыми токами.
О кончательное количество элементов определяется расчетами падения напряжения в сети постоянного тока.

Применение элементного коммутатора

Э лементный коммутатор – устройство для безобрывного переключения элементов АБ в аварийном режиме для поддержания требуемого уровня напряжения на шинах ЩПТ, и в ремиме дозаряда АБ.
В аварийном режиме при постепенном разряде АБ и снижении напряжения количество элементов добавляется посредством переключения разрядной щетки в сторону увеличения количества подключенных элементов.
В режиме дозаряда, когда на каждый элемент АБ необходимо подать повышенное напряжение, количество элементов АБ с помощью зарядной щетки переключается в сторону уменьшения, для поддержания на шинах ЩПТ заданного уровня напряжения.
О бщее количество элементов при использовании элементного коммутатора обычно принимают 130, чтобы в конце аварийного режима при напряжении на элементе АБ равном 1,8 В/эл напряжение на АБ сставило 1,8х130= 234В.

Применение устройства стабилизации напряжения постоянного тока

У стройства данного типа, например УТСП, представляет собой транзисторный преобразователь постоянного напряжения в постоянное повышенного уровня.
В аварийном режиме при постепенном разряде АБ, напряжение на выходе устройства поддерживается постоянным на уровне заданного.

Выбор емкости аккумуляторной батареи

В ыбор емкости аккумуляторной батареи производится в следующем порядке:

1.Определяется установившийся ток в конце аварийного режима с учетом снижения емкости АБ по выражению

I уст1 = Iуст/(0,8хKt);

г де Iуст, А – установившийся ток аварийного режима;
0 ,8 – коэффициент емкости аккумуляторной батареи (в конце срока службы емкость составит 80%);
K t — температурный коэффициент, зависящий от минимально возможной температуры в помещении.

Д ля нашего примера получаем Iуст1 = 485/(0,8х1)=606,3 А.

2.Определяется эквивалентное время нагрузки с учетом броска тока в конце аварийного режима по выражению

г де Тавар, мин – продолжительность аварийного режима;

I т1=Iт/0,8 А – максимальный толчковый ток в конце аварийного режима с учетом установившегося и учетом снижения емкости батареи к концу срока службы;
г де Iт, А – максимальный толчковый ток в конце аварийного режима с учетом установившегося;
0 ,8 – коэффициент емкости аккумуляторной батареи;

Э квивалентное время T1=(606,3х30)/1106,3=16,4мин;

I т1=Iт/0,8 А=885/0,8=1106,3А

Д алее необходимо взять разрядные характеристики предварительно выбранных типов батарей и посмотреть какой емкости нужно взять батарею, чтобы она выдержала ток 1106,3 А в течение 16,4 мин при напряжении 1,8 В/эл.
Н апример это батареи 13 GROE 1300 или 22 OGI 1600 LA.

Расчет и выбор аккумуляторной батареи для подстанций

Н а подстанциях обычно устанавливают одну или две аккумуляторные батареи.
Д ля подстанций с высшим напряжением 220-750кВ и ПС 110кВ с более чем тремя выключателями в распределительном устройстве высшего напряжения устанавливаются две аккумуляторные батареи.
Д ля подстанций напряжением 35кВ и подстанций 110кВ с тремя и менее выключателями в распределительном устройстве высшего напряжения устанавливается одна аккумуляторная батарея.
К аждая АБ выбирается с учетом полной нагрузки постоянного тока на подстанции.
Д ля примера рассмотрим выбор аккумуляторной батареи для ПС 110кВ.

И сходные данные по нагрузкам системы постоянного тока в аварийном режиме:
-постоянная нагрузка – 10А;
-аварийное освещение – 20А;
-привод выключателя ОРУ-110кВ – пусковой ток 100А.

С оставим график аварийного режима

график аварийного режима разряда для подстанций

И тоговые показатели графика аварийного режима:
-время разряда – 180мин;
-установившийся ток аварийного разряда – 30А;
-максимальный пиковый ток – 100А;
-максимальный пиковый ток с учетом установившегося – 130А.

Выбор числа элементов аккумуляторной батареи

Н апряжение на шинах ЩПТ в режиме эксплуатации на 5% выше номинального – 231В.
Р ежим подзаряда 2,23В/эл – 231/2,23 = 104 элемента.
Д алее необходимо выполнить расчет падения напряжения в сети постоянного тока и при необходимости добавить 1-2 элемента.
Е сли уровень напряжения окажется окажется недостаточным, тогда следует применить схему с разделением шинок питания(ШП) и шинок управления(ШУ).
В этом случае привода выключателей подключаются к шинам ШП, которые включены на всю батарею, а остальные нагрузки на шинки ШУ, которые подключены к 104 элементам АБ.
В последнее время наблюдается тенденция к снижению пусковых токов включения приводов выключателей, поэтому при проектировании новых подстанций оказывается достаточным применение АБ состоящей из 104 элементов.

Выбор емкости аккумуляторной батареи

П орядок выбора емкости АБ точно такой же как и для электростанций.

1.Определяем установившийся ток в конце аварийного режима с учетом снижения емкости АБ

I уст1 = 30/(0,8х1)=37,5 А;

2.Определяем эквивалентное время нагрузки с учетом броска тока в конце аварийного режима

I т1=Iт/0,8 А=130/0,8=162,5А

Пиковый ток 162,5А в течение 41,5 мин при напряжении 1,8 В/эл может выдать аккумуляторная батарея 11GROE275 или 5OGI325 LA.

П ри выборе аккумуляторной батареи для создания проекта по электроснабжению энергообъектов важно учитывать актуальность данных по разрядным характеристикам аккумуляторных батарей.

Х арактеристики довольно часто обновляются, поэтому перед началом расчета и выбора АБ обратитесь к производителю за актуальными разрядными характеристиками АБ.

Отправить заявку

Оставьте свои контактные данные, и наши специалисты свяжутся с вами, для консультации или оформления заказа

Промышленные аккумуляторные батареи

© 2011- ТОО «ПромСпецАккумуляторы»

  • О компании
  • Аккумуляторы
  • Аксессуары
  • Сервис
  • Буклеты
  • Условия работы
  • Новости
  • Контакты
  • Статьи

Перед началом работы с каталогом товаров, укажите ваш регион.

В дальнейшем Вы всегда можете изменить выбранный регион в верхней части сайта.

Во время следующего посещения регион будет выбран автоматически.

Источник



ликбез от дилетанта estimata

Новичку об основах в области экстремальных и чрезвычайных ситуаций, выживания, туризма. Также будет полезно рыбакам, охотникам и другим любителям природы и активного отдыха.

четверг, 28 февраля 2019 г.

Основные характеристики аккумуляторов

Разрядные характеристики аккумуляторных батарей

Разрядные характеристики аккумуляторных батарей

При разряде током в 0,1 С время работы составляет 10 часов и батарея полностью выдаст в нагрузку аккумулированную энергию. При разряде током 2 С (в 20 раз большим) время работы будет около 15 минут (1/4 часа) и при этом батарея выдаст в нагрузку только половину аккумулированной энергии. При больших токах разряда это значение еще меньше. Зачастую в источниках бесперебойного питания аккумуляторные батареи работают в еще более тяжелых режимах, при которых токи разряда достигают 4 С. При этом время разряда сравнимо с 5 минутами и батарея выдает в нагрузку менее 40% энергии.

Ёмкость аккумулятора

Количество энергии, которое может быть сохранено в батарее, называется ее ёмкостью. В системе СИ ёмкость аккумуляторов измеряют в кулонах (Кл), на практике часто используется внесистемная единица — ампер-час (А⋅ч). 1 А⋅ч = 3600 Кл. Ёмкость аккумулятора указывается производителем.

В настоящее время всё чаще на аккумуляторах указывается энергетическая ёмкость — энергия, отдаваемая полностью заряженным аккумулятором при разряде до наименьшего допустимого напряжения. В системе СИ она измеряется в джоулях (Дж), на практике используется внесистемная единица — ватт-час (Вт⋅ч). 1 Вт⋅ч = 3600 Дж.

Одна АКБ емкостью 100 Ач может питать нагрузку током 1 А в течение 100 часов, или током 4 А в течение 25 часов, и т.д., хотя емкость батареи снижается при увеличении разрядного тока. На рынке продаются батареи емкостью от 1 до 2000 Ач.

Для увеличения срока службы свинцово-кислотной АКБ желательно использовать только малую часть ее емкости до повторной зарядки. Каждый процесс разряда-заряда называется зарядным циклом, причем не обязательно полностью разряжать аккумулятор. Например, если вы разрядили аккумулятор на 5 или 10% и затем снова зарядили его — это тоже считается как 1 цикл. Конечно, количество возможных циклов будет сильно отличаться при различной глубине разряда (см. ниже). Если возможно использовать более 50% энергии, запасенной в АКБ до ее заряда, без заметного ухудшения ее параметров, такая батарея называется батареей «глубокого разряда».

Заряд-разрядные кривые.

Можно повредить батареи, если перезарядить их. Максимальное напряжение кислотных АКБ должно быть 2,5 вольта на элемент, или 15 В для 12-ти вольтовой батареи. Многие фотоэлектрические батареи имеют мягкую нагрузочную характеристику, поэтому при увеличении напряжения ток заряда снижается значительно. Поэтому всегда необходимо использовать специальный контроллер заряда для солнечных батарей. В случае применения ветроэлектрических станций или микроГЭС, такие контроллеры также обязательны.

Читайте также:  Контрольная работа по физике 8 класс сила тока напряжение сопротивление вариант 1 ответы

Напряжение аккумулятора

Напряжение на аккумуляторе зачастую является основным параметром, по которому можно судить о состоянии и степени заряженности аккумулятора. Особенно это относится к герметизированным аккумуляторам, у которых не возможно измерить плотность электролита.

Напряжение при заряде, разряде и отсутствие тока очень сильно отличаются. Для определения степени заряженности аккумулятора измеряют напряжение на его клеммах при отсутствии как зарядного, так и разрядного токов в течение как минимум 3-4 часов. За это время напряжение обычно успевает стабилизироваться. Значение напряжения при заряде или разряде ничего не скажет от состоянии или степени заряженности АКБ. Примерная зависимость степени заряженности аккумулятора от напряжения на его клеммах в режиме холостого хода, приведена в таблице ниже. Это типичные значения для стартерных аккумуляторов с жидким электролитом. Для герметизированных аккумуляторов (AGM и гелевых) обычно эти напряжения немного выше (нужно запрашивать производителя). Например, AGM батареи полностью заряжены, если напряжение составляет 13-13,2 В (сравните с напряжением стартерных батарей с жидким электролитом 12,5-12,7 В).

Степень заряженности аккумулятора

1. Напряжение на аккумуляторе.

2. По плотности электролита.

Этот метод подходит только для аккумуляторов с жидким электролитом. Также, нужно подождать 2 часа перед измерениями. Для измерения используется ареометр. Обязательно наденьте резиновые перчатки и защитные очки! Держите рядом пищевую соду и воду на случай, если вода попадет на кожу.

Степень заряженности аккумулятора

Срок службы аккумуляторов

Срок службы аккумуляторов определяется числом циклов заряд-разряд (но не в годах или месяцах!) и значительно зависит от условий ее эксплуатации. Чем глубже разряжается батарея, чем большее время она находится в разряженном состоянии, тем меньшее число возможных циклов работы.

Срок службы аккумуляторных батарей в циклах

Само понятие «количество рабочих циклов «заряда-разряда» аккумулятора» относительное, так как сильно зависит от различных факторов. Кроме того, значение количества рабочих циклов, например для одного типа аккумулятора, не является универсальным понятием, так как зависит от технологии, различной у каждого из производителей.
Срок службы аккумуляторов определяется в циклах, поэтому время работы в годах — приблизительное и рассчитано для типичных условий работы. Поэтому, если, например, в рекламе указано, что срок службы аккумуляторов составляет 12 лет, это значит, что производитель посчитал срок службы для буферного режима с средним числом циклов заряд-разряд 8 в месяц.

Еще один важный момент — в процессе эксплуатации полезная емкость аккумулятора уменьшается. Все характеристики по количеству циклов обычно приводятся не до полной смерти аккумулятора, а до момента потери им 40% своей номинальной емкости. Т.е, если производителем приведено количество циклов 600 при 50% разряде, это значит, что через 600 идеальных циклов (т.е. при температуре 20 ° С и разряде током одной величины, обычно 0,1 С) полезная ёмкось аккумулятора будет 60% от начальной. При такой потере емкости уже рекомендуется замена аккумулятора.

Свинцово-кислотные АКБ, предназначенные для использования в системах автономного электроснабжения имеют, срок службы от 300 до 3000 циклов в зависимости от типа и глубины разряда. В системах на базе ВИЭ батарея может разрядиться гораздо сильнее, чем при буферном режиме. Для обеспечения длительного срока службы, в типичном цикле разряд не должен превышать 20-30 % емкости АКБ, а глубокий разряд — не более 80% емкости. Очень важно сразу же после разряда заряжать свинцово-кислотные аккумуляторы. Длительное нахождение (более 12 часов) в разряженном или не полностью заряженном состоянии приводит к необратимым последствиям в аккумуляторах и снижению их срока службы.

Как определить, что аккумулятор уже близок к окончанию своего срока службы? Очень просто — у аккумулятора повышается внутреннее сопротивление, это приводит к более быстрому росту напряжения при заряде (и, соответственно, снижению времени, требуемого для заряда), и более быстрому разряду аккумулятора. Если заряд производится током, близким к предельно допустимому, умирающий аккумулятор будет нагреваться при заряде сильнее, чем раньше.

Максимальные токи заряда и разряда аккумуляторов

Токи заряда и разряда любой аккумуляторной батареи измеряются относительно ее емкости. Обычно для аккумуляторов максимальный ток заряда не должен превышать 0,2-0,3 С. Превышение зарядного тока ведет к сокращению срока службы аккумуляторов. Мы рекомендуем устанавливать максимальный ток заряда не более 0,15-0,2 С. Смотрите характеристики на конкретные модели аккумуляторов для определения максимального зарядного и разрядного токов.

Саморазряд аккумуляторов

Явление саморазряда характерно в большей или меньшей степени для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены в отсутствие внешнего потребителя тока.

Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCD аккумуляторов считается допустимым саморазряд до 10 % в течение первых 24 часов после окончании заряда, для NiMH – немного больше, а для Li-ION пренебрежимо мал и оценивается за месяц. Саморазряд в герметизированных свинцово-кислотных аккумуляторах значительно уменьшен и составляет 40% в год при 20 °С и 15% при 5 °С. При более высоких температурах хранения саморазряд увеличивается: при 40 °С батареи лишаются 40 % емкости за 4-5 месяцев.

Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается. Глубокий его разряд и последующий заряд увеличивают ток саморазряда.

Саморазряд аккумуляторов в основном обусловлен выделением кислорода на положительном электроде. Этот процесс еще больше усиливается при повышенной температуре. Так, при повышении окружающей температуры на 10 градусов по отношению с комнатной возможно увеличение саморазряда в два раза.

В некоторой степени саморазряд зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Потери емкости могут быть вызваны повреждением сепаратора, когда образования слипшихся кристаллов пробивают его. Сепаратором принято называть тонкую пластину, разделяющую положительный и отрицательный электроды. Это обычно происходит из–за неправильного обслуживания аккумулятора, его отсутствия или применения несоответствующих или некачественных зарядных устройств. У изношенного аккумулятора пластинки электродов разбухают, слипаясь друг с другом, что приводит к повышению тока саморазряда, при этом поврежденный сепаратор невозможно восстановить проведением циклов заряда/разряда.

Источник

Основные характеристики аккумуляторов

Значения напряжения и емкости обычно входят в название модели батареи. Например: RA12-200DG — батарея напряжением 12 вольт и емкостью 200 ампер*часов, гелевая, глубокого разряда. Это значит, что батарея может выдать в нагрузку энергию 12 х 200 = 2400 Вт*ч при 10 часовом разряде током в 1/10 от емкости. При больших токах и быстром разряде емкость батареи понижается. При меньших токах — обычно увеличивается. Это можно видеть на графике разрядных характеристик аккумуляторных батарей. Также, нужно смотреть на разрядные характеристики на конкретные батареи. Иногда производители в названии пишут завышенную емкость аккумулятора, которая имеет место только в идеальных условиях — так, например, делает Haze (у аккумуляторов Haze реальная емкость процентов на 10-20 ниже, чем указано в названии батареи).

При разряде током в 0,1 С время работы составляет 10 часов и батарея полностью выдаст в нагрузку аккумулированную энергию. При разряде током 2 С (в 20 раз большим) время работы будет около 15 минут (1/4 часа) и при этом батарея выдаст в нагрузку только половину аккумулированной энергии. При больших токах разряда это значение еще меньше. Зачастую в источниках бесперебойного питания аккумуляторные батареи работают в еще более тяжелых режимах, при которых токи разряда достигают 4 С. При этом время разряда сравнимо с 5 минутами и батарея выдает в нагрузку менее 40% энергии.

Емкость батареи

Количество энергии, которое может быть сохранено в батарее, называется ее емкостью. Она измеряется обычно в ампер-часах, хотя правильнее приводить значения в ватт-часах.

Емкость (Вт*ч) = U*I*t

где U — напряжение аккумулятора, В; I — ток, который он может отдавать в течение времени t.

Так как обычно принимается, что для различных аккумуляторов напряжение одинаковое, то из формулы убирается напряжение, и остается емкость в ампер-часах.

Напряжение

Напряжение на аккумуляторе зачастую является основным параметром, по которому можно судить о состоянии и степени заряженности аккумулятора. Особенно это относится к герметизированным аккумуляторам, у которых не возможно измерить плотность электролита.

Напряжение при заряде, разряде и отсутствии тока очень сильно отличаются. Для определения степени заряженности аккумулятора измеряют напряжение на его клеммах при отсутствии как зарядного, так и разрядного токов в течение как минимум 3-4 часов. За это время напряжение обычно успевает стабилизироваться. Значение напряжения при заряде или разряде ничего не скажет от состоянии или степени заряженности АБ . Примерная зависимость степени заряженности аккумулятора от напряжения на его клеммах в режиме холостого хода, приведена в таблице ниже. Это типичные значения для стартерных аккумуляторов с жидким электролитом. Для герметизированных аккумуляторов (AGM и гелевых) обычно эти напряжения немного выше (нужно запрашивать производителя) — например, AGM батареи полностью заряжены, если напряжение составляет 13-13,2В (сравните с напряжением стартерных батарей с жидким электролитом 12,5-12,7В).

Читайте также:  Сеть постоянного тока с источником постоянного напряжения

Степень заряженности

Степень заряженности зависит от очень многих факторов, и точно ее могут определить только специальные зарядные устройства с памятью и микропроцессором, которые отслеживают как заряд, так и разряд конкретного аккумулятора в течение нескольких циклов. Этот метод наиболее точный, но и наиболее дорогой. Однако он сможет сэкономить много денег при обслуживании и замене аккумуляторов. Применение специальных устройств, контролирующих работу аккумуляторов по степени их заряженности, позволяет очень сильно повысить срок службы свинцово-кислотных аккумуляторов. Ряд предлагаемых нами контроллеров для солнечных батарей имеют встроенные устройства вычисления степени заряженности аккумулятора и регулируют заряд в зависимости от ее величины.

Для определения степени заряженности можно использовать также следующие 2 упрощенных метода.

  1. Напряжение на аккумуляторе. Этот способ наименее точный, но требует только наличия цифрового вольтметра, способного измерять десятые и сотые доли вольта. Перед измерениями нужно отсоединить от аккумулятора всех потребителей и все зарядные устройства и подождать как минимум 2 часа. Затем можно измерить напряжение на терминалах аккумулятора. Ниже в таблице приведены напряжения для аккумуляторов с жидким электролитом. Для полностью заряженной новой AGM или гелевой батареи напряжение составляет 13-13,2В (сравните с напряжением стартерных батарей с жидким электролитом 12,5-12,7В). По мере старения аккумуляторов это напряжение снижается. Можно измерять напряжение на каждой банке аккумулятора, чтобы найти неисправную банку (разделите напряжение для 12В на 6 для того, чтобы определить нужное напряжение на одной банке).
  2. Второй метод определения степени заряженности — по плотности электролита. Этот метод подходит только для аккумуляторов с жидким электролитом.

Также, нужно подождать 2 часа перед измерениями. Для измерения используется ареометр. Обязательно наденьте резиновые перчатки и защитные очки! Держите рядом пищевую соду и воду на случай, если вода попадет на кожу.

Степень заряженности Батарея 12В Батарея 24 В Плотность электролита
100 12.70 25.40 1.265
95 12.64 25.25 1.257
90 12.58 25.16 1.249
85 12.52 25.04 1.241
80 12.46 24.92 1.233
75 12.40 24.80 1.225
70 12.36 24.72 1.218
65 12.32 24.64 1.211
60 12.28 24.56 1.204
55 12.24 24.48 1.197
50 12.20 24.40 1.190
40 12.12 24.24 1.176
30 12.04 24.08 1.162
20 11.98 23.96 1.148
10 11.94 23.88 1.134

Срок службы аккумуляторов

Неправильно определять срок службы аккумуляторов в годах или месяцах. Срок службы батареи определяется числом циклов заряд-разряд и значительно зависит от условий ее эксплуатации. Чем глубже разряжается батарея, чем большее время она находится в разряженном состоянии, тем меньшее число возможных циклов работы.

Само понятие «количество рабочих циклов «заряда-разряда» аккумулятора» относительное, так как сильно зависит от различных факторов. Кроме того, значение количества рабочих циклов, например для одного типа аккумулятора, не является универсальным понятием, так как зависит от технологии, различной у каждого из производителей.Срок службы аккумуляторов определяется в циклах, поэтому время работы в годах — приблизительное и рассчитано для типичных условий работы. Поэтому, если, например, в рекламе указано, что срок службы аккумуляторов составляет 12 лет, это значит, что производитель посчитал срок службы для буферного режима с средним числом циклов заряд-разряд 8 в месяц. Например, для AGM аккумуляторов Haze указывается срок службы 12 лет и максимальное число циклов 1200 при разряде на 20%. В год получается 100 таких циклов, в месяц — около 8.

Еще один важный момент — в процессе эксплуатации полезная емкость аккумулятора уменьшается. Все характеристики по количеству циклов обычно приводятся не до полной смерти аккумулятора, а до момента потери им 40% своей номинальной емкости. Т.е, если производителем приведено количество циклов 600 при 50% разряде, это значит, что через 600 идеальных циклов (т.е. при температуре 20С и разряде током одной величины, обычно 0,1С) полезная емкось аккумулятора будет 60% от начальной. При такой потере емкости уже рекомендуется замена аккумулятора.

Как определить, что аккумулятор уже близок к окончанию своего срока службы? Очень просто — у аккумулятора повышается внутреннее сопротивление, это приводит к более быстрому росту напряжения при заряде (и, соответственно, снижению времени, требуемого для заряда), и более быстрому разряду аккумулятора. Если заряд производится током, близким к предельно допустимому, умирающий аккумулятор будет нагреваться при заряде сильнее, чем раньше.

Максимальные токи заряда и разряда

Токи заряда и разряда любой аккумуляторной батареи измеряются относительно ее емкости. Обычно для аккумуляторов максимальный ток заряда не должен превышать 0,2-0,3С. Превышение зарядного тока ведет к сокращению срока службы аккумуляторов. Мы рекомендуем устанавливать максимальный ток заряда не более 0,15-0,2С. Смотрите характеристики на конкретные модели аккумуляторов для определения максимального зарядного и разрядного токов.

Саморазряд

Явление саморазряда характерно в большей или меньшей степени для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены в отсутствие внешнего потребителя тока.

Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCD аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH – немного больше, а для Li-ION пренебрежимо мал и оценивается за месяц. Саморазряд в герметизированных свинцово-кислотных аккумуляторах значительно уменьшен и составляет 40% в год при 20 °С и 15% при 5 °С. При более высоких температурах хранения саморазряд увеличивается: при 40 °С батареи лишаются 40 % емкости за 4-5 месяцев.

Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается. Глубокий его разряд и последующий заряд увеличивают ток саморазряда.

Саморазряд аккумуляторов в основном обусловлен выделением кислорода на положительном электроде. Этот процесс еще больше усиливается при повышенной температуре. Так, при повышении окружающей температуры на 10 градусов по отношению с комнатной возможно увеличение саморазряда в два раза.

В некоторой степени саморазряд зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Потери емкости могут быть вызваны повреждением сепаратора, когда образования слипшихся кристаллов пробивают его. Сепаратором принято называть тонкую пластину, разделяющую положительный и отрицательный электроды. Это обычно происходит из–за неправильного обслуживания аккумулятора, его отсутствия или применения несоответствующих или некачественных зарядных устройств. У изношенного аккумулятора пластинки электродов разбухают, слипаясь друг с другом, что приводит к повышению тока саморазряда, при этом поврежденный сепаратор невозможно восстановить проведением циклов заряда/разряда.

Каргиев Владимир, «Ваш Солнечный Дом»
©При цитировании ссылка на эту страницу и на «Ваш Солнечный Дом» обязательна

Дополнительная информация по теме в Разделе «Библиотека«. Настоятельно рекомендуем почитать эту статью

ГЛОССАРИЙ

Емкость (С) — энергия, которую способен отдать аккумулятор в нагрузку, выражаемая в ампер-часах (А·ч, мA·ч). Она будет больше при следующих условиях: меньшем токе разряда, разряде с меньшими перерывами, более высокой температуре окружающей среды, а также более низком конечном напряжении.

Номинальная емкость — номинальное значение емкости: количество энергии, которую способен отдать полностью заряженный аккумулятор при разряде в строго определенных условиях.

Саморазряд — потеря емкости в отсутствие внешнего потребителя тока.

Срок службы батареи — наработка, при которой разрядная емкость сделается меньше определенной нормированной величины, обычно оценивается рабочим количеством циклов «заряд-разряд».

Срок хранения — максимальный период времени, в течение которого батарея может храниться при оговоренных условиях, не требуя дополнительной зарядки.

Источник