Меню

Ток фазы в схеме звезда

Цепи трехфазного переменного тока (соединение потребителей по схеме «звезда»)

Цель работы. Исследовать электрическую цепь трехфазного переменного тока, содержащую приемник электрической энергии, соединенный по схеме «звезда» с нулевым (нейтральным) проводом и без него.

Краткие теоретические сведения

Трехфазная симметричная система ЭДС состоит из трех ЭДС, одинаковых по амплитуде и частоте, но сдвинутых друг относительно друга на 120º.

При соединении «звездой» концы обмоток фаз генератора X, Y, Z соединяют в одну общую точку N , называемую нейтральной или нулевой. К началам фаз генератора А, В, С подключают провода, с помощью которых источник питания (генератор) соединяется с приемником. Эти провода называются линейными, а трехфазная система – трехпроводной (рис.20).

Рис.20. Трехпроводная система трехфазного переменного тока (соединение по схеме «звезда»).

Если нейтральная (нулевая) точка N генератора соединена проводом с нейтральной (нулевой) точкой n приемника, то система называется четырехпроводной с нулевым (нейтральным) проводом (рис.19).

Рис.21. Четырехпроводная система трехфазного переменного тока с нулевым (нейтральным) проводом (соединение по схеме «звезда»).

При соединении «звездой» каждая фаза генератора, линейный провод и фаза нагрузки соединены между собой последовательно и через них проходит один и тот же ток. Следовательно, при соединении «звездой» линейный ток равен фазному, т.е.

Напряжения между началом и концом каждой фазы нагрузки А, В, С, равные (при пренебрежении падением напряжения в проводах) напряжениям на фазах генератора, называются фазными напряжениями. Напряжения между линейными проводами AB, BC, CA называются линейными напряжениями. Токи, протекающие в фазах нагрузки A, B, C, называются фазными токами. Для системы «звезда» линейные токи одни и те же с фазными Л = Ф.

По второму закону Кирхгофа можно определить соотношения между фазными и линейными напряжениями

Так как трехфазная система генератора симметрична, то действующие значения ЭДС генератора равны между собой и равны действующим значениям на нагрузке при пренебрежении падением напряжения в линии A = B = C = A = B = C = Ф .

Исходя из равенства угла сдвига между фазами 120 на генераторе и нагрузке и выведенных из второго закона Кирхгофа уравнений (37), равны между собой и действующие значения линейных напряжений

Векторная диаграмма фазных и линейных напряжений (рис.20) будет для симметричного генератора и четырехпроводной системы «звезда» неизменна при любой нагрузке. На рис.20а приведена полярная, а на рис. 20б – топографичекая векторная диаграмма.

а) б)

Рис.22. Полярная и топографическая векторные диаграммы напряжений в четырехпроводной системе «звезда»

Из векторной диаграммы (рис.20а) получим соотношение между линейными и фазными напряжениями.

UAB = 2UА cos 30º = UА = UФ.

В общем случае для четырехпроводной системы «звезда» при любой нагрузке

К симметричному трехфазному генератору с нейтральным проводом может быть присоединена любая симметричная и несимметричная нагрузка. Нагрузка называется симметричной, если сопротивления и углы сдвига фаз между напряжением и током всех ее фаз одинаковы

Несоблюдение любого из условий (39) приведет к нарушению симметричности нагрузки трехфазной системы.

Рассмотрим четырехпроводную трехфазную систему с нагрузкой, соединенной по схеме «звезда».

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Так как UA = UB = UC = UФ = , то

Топографическая векторная диаграмма токов и напряжений при симметричной активной нагрузке представлена на рис.21.

Рис.23. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

По первому закону Кирхгофа

Для симметричной нагрузки

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

Топографическая векторная диаграмма токов и напряжений при несимметричной нагрузке представлена на рис.22

Рис.24. Топографическая векторная диаграмма четырехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Для нахождения значения тока IN по выражению (42) необходимо найти геометрическую сумму векторов A , B и C (рис.22). В результате получаем

Общая мощность трехфазной цепи в этом случае будет равна

Трехпроводная трехфазная система с соединением нагрузки по схеме «звезда» без нулевого (нейтрального) провода (рис.20).

Рассмотрим, что произойдет с токами и напряжениями при отключении нейтрального провода (рис.20).

В трехпроводной системе, соединенной по схеме «звезда» между нулевой точкой нагрузки и нулевой точкой генератора возникает напряжение UnN , величина и направление которого зависят от величины и характера нагрузки.

Согласно методу двух узлов в случае активной нагрузки напряжение UnN, можно выразить следующим образом

Составим уравнения по второму закону Кирхгофа

Токи в фазах нагрузки определяются

Проанализируем электрическое состояние трехпроводной трехфазной системы, соединенной по схеме «звезда», при различных значениях нагрузки.

1) Симметричная активная нагрузка: ZA = ZB = ZC = RA = RB = RC

Векторная диаграмма токов и напряжений приведена на рис.25.

Рис.25. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при симметричной активной нагрузке

Векторная диаграмма аналогична диаграмме, построенной для четырехпроводной системы с симметричной активной нагрузкой. Подобным образом аналогична диаграмма для симметричной активно-реактивной нагрузки, поэтому при симметричной нагрузке отпадает необходимость нулевого провода, т.к. ток в нем равен нулю.

2) Несимметричная активная нагрузка: ZA = RA ; ZB = RB ; ZC = RC ; RARBRC ; IAIBIC

При отключении нейтрального провода ток I становится равным нулю, следовательно, при несимметричной нагрузке должны измениться и токи IA , IB , IC. изменение же этих токов может произойти только при условии, что изменились напряжения на фазах нагрузки. Следовательно, фазные напряжения нагрузки теперь не будут представлять симметричную систему векторов, т.к. действующие значения этих напряжений не будут равны между собой, а их фазовый сдвиг относительно друг друга будет отличаться от 120º (рис.26).

Рис.26. Топографическая векторная диаграмма трехпроводной трехфазной системы «звезда» при несимметричной активной нагрузке

Нулевая точка нагрузки n смещена относительно нулевой точки генератора N.

Из рис.25 видно, что напряжения на фазах нагрузки определяются как

что соответствует выражению (47)

Проведя геометрическое сложение векторов , , и разделив полученный результат на значение проводимости Y = , в соответствии с выражением (45), получаем вектор nN.

Вычитая полученный результат из векторов , , и , находим соответственно , и .

В результате получаем выражения для расчета действующих значений фазных напряжений UA, UВ, UС и токов IA, IВ, IС.

Для измерения мощности в работе используется метод двух ваттметров W1 и W2 (рис.27).

Рис.27. Схема измерения мощности методом двух ваттметров

Поясним принцип работы этого метода.

Приборы для измерения активной мощности (ваттметры), включенные в цепь однофазного переменного тока, измеряют величину

Читайте также:  Устройство для ограничения силы тока короткого замыкания

Р = UI ∙ cos (U ^ I) , (50)

где U — напряжение, приложенное к обмотке напряжения ваттметра;

I — ток, протекающий по токовой обмотке ваттметра;

U ^ I = φ — угол сдвига между напряжением и током.

Активная мощность трехфазной цепи при симметричной нагрузке фаз может быть выражена двумя равноценными формулами

Р = 3∙UФIФ ∙ cos φ или

Р = ∙UЛIФ ∙ cos φ . (51)

Для измерения активной мощности в трехпроводных цепях трехфазного тока как при симметричной, так и при несимметричной нагрузке фаз (независимо от способа соединения нагрузки «звездой» или «треугольником»), широкое практическое применение получил метод двух ваттметров, включенных как показано на рис.14.

Показания ваттметров W1 и W2 можно записать следующим образом

Обозначим через α и β соответственно углы (UAB ^ IA) и (UCB ^ IC) . Для определения α и β построим векторную диаграмму для случая симметричной активно-индуктивной нагрузки (рис.27). Согласно построению α = 30º + φ, β = 30º – φ.

Учитывая, что при симметричной нагрузке UАВ = UСВ = UЛ и IА = IС = IЛ, показания ваттметров можно записать следующим образом:

Р = Р1 + Р2 = UЛIЛ ∙ [cos (30º + φ) + cos (30º – φ)] = UЛIЛ ∙ cos φ. (53)

Полученное выражение совпадает с выражением (45). Таким образом доказано, что сумма показаний двух ваттметров будет равна активной мощности трехфазной цепи.

Рис.28. Векторная диаграмма трехпроводной системы трехфазного переменного тока с симметричной активно-индуктивной нагрузкой

Разность показаний двух ваттметров, умноженная на , будет равна реактивной мощности цепи Q.

Q = ( Р1Р2) = UЛIЛ ∙ [cos (30º + φ) – cos (30º – φ)] = UЛIЛ ∙sin φ. (54)

Показания каждого из ваттметров в отдельности не имеют никакого физического смысла, за исключением случая симметричной и чисто активной нагрузки, при которой Р1 = Р2 и составляет половину измеряемой мощности трехфазной цепи.

ПЛАН РАБОТЫ

Задание 1. Определить электрические параметры четырехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» с нулевым (нейтральным) проводом.

1. Собрать электрическую схему (рис.29).

Рис.29. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3, А — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В.

2. Установить симметричную нагрузку фаз, включив по пять ламп в каждой фазе, и измерить IA, IB, IC, IN, UA, UB, UC, UAB, UBC, UCA.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и осуществить измерения электрических параметров, указанных в п.2.

4. Вычислить электрические параметры, указанные в табл.7.

5. занести результаты измерений и вычислений в табл.7.

Задание 2. Определить электрические параметры трехпроводной трехфазной цепи при симметричной и несимметричной нагрузке, соединенной по схеме «звезда» без нулевого (нейтрального) провода.

1. Собрать электрическую схему (рис.30).

Рис.30. Схема лабораторной установки: А-х, В-y, C-z — трехфазный ламповый реостат, установленный на стенде; А1 — амперметр на ток 1–2 А; А2, А3 — амперметры на ток 0,25–0,5–1 А; V – вольтметр на 75-150-300-600 В; W1 и W2 — ваттметры на напряжение 75−150−300−600 В и ток 1−2,5−5 А.

2. Установить симметричную нагрузку, включив по пять ламп в каждой фазе, и измерить линейные и фазные напряжения, фазные токи, активные мощности.

3. Установить несимметричную нагрузку фаз, включив 5 ламп в фазе А, 4 лампы в фазе «В» и 3 лампы в фазе «С» и измерить электрические параметры, указанные в п.2.

4. Вычислить электрические параметры, указанные в табл.8.

5. Занести результаты измерений и вычислений в табл.8.

1. Схемы измерений (рис.29 и 30) с обозначениями используемых приборов.

2. Расчет электрических параметров.

3. Таблицы 7 и 8 с результатами измерений и вычислений.

4. Построенные в масштабе топографические векторные диаграммы (две к заданию 1 по данным п.1-2 табл.7 в соответствии с рис. 21 и 22 и две к заданию 2 по данным пп.1-2 табл.8 в соответствии с рис. 24 и 25.

Измеренные величины Вычисленные величины
IA IВ IС I UA UВ UС UAВ UВС UСА UЛ/ UФ РА РВ РС Р
А А А А В В В В В В В Вт Вт Вт Вт
0,6 0,6 0,6
0,6 0,45 0,35 0,21
Измеренные величины Вычисленные величины
IA IВ IС UA UВ UС UAВ UВС UСА Р1(W1) Р2(W2) UЛ/ UФ РА РВ РС Ррасч Р(W1+W2)
А А А В В В В В В Вт Вт В Вт Вт Вт Вт Вт
0,6 0,6 0,6
0,525 0,475 0,375

1. Как относятся друг с другом ЭДС, составляющие трехфазную систему?

2. Как соединяются обмотки генератора при соединении «звездой»?

3. Чем отличается схема четырехпроводной системы трехфазного тока от схемы трехпроводной системы?

4. Что соединяет нулевой (нейтральный) провод?

5. Что такое линейные и фазные токи и напряжения и каковы соотношения между ними при соединении звездой в векторной форме?

6. Как связаны линейные и фазные напряжения в четырехпроводной системе трехфазного тока?

7. Что такое симметричная и несимметричная нагрузка?

8. Чему равна геометрическая сумма токов в четырехпроводной трехфазной системе при симметричной нагрузке?

9. Чему равен ток в нулевом проводе при симметричной нагрузке?

10. отличаются ли токи и напряжения в четырехпроводной и трехпроводной системах трехфазного тока при одинаковой симметричной нагрузке?

11. При какой нагрузке необходимо включить в трехфазную систему нулевой провод и зачем?

12. Как определить ток в нулевом проводе четырехпроводной системы при несимметричной нагрузке, зная линейные токи?

13. При каких условиях будут равны напряжения на всех фазах нагрузки в трехпроводной трехфазной системе?

14. Каков характер нагрузки в осветительных сетях?

15. Какую систему трехфазного тока нужно использовать в осветительных сетях и почему?

Читайте также:  Резонанс в цепи переменного тока наступает если

16. какую мощность можно определить методом двух ваттметров?

17. Чему равна активная мощность цепи при применении метода двух ваттметров?

18. В каких системах трехфазного тока может быть применен метод двух ваттметров?

19. Можно ли определить полную мощность трехфазной системы, используя метод двух ваттметров?

20. Можно ли определить коэффициент мощности трехфазной системы, используя метод двух ваттметров?

Источник

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

  • Различия между «звездой» и «треугольником» ↓
  • Соединение «звездой» и его преимущества ↓
  • Соединение «треугольником» и его преимущества ↓
  • Тип соединения «звезда-треугольник» ↓
  • Блиц-советы ↓

Соединение треугольником в двигателе

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Схемы подключения звездой и треугольником

Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Источник



Трехфазная нагрузка, соединенная по схеме «звезда»

Трехфазная нагрузка, соединенная по схеме «звезда»

Если нагрузки (приемники) соединены в трехфазную цепь по схеме «звезда» (рис.1), то к сопротивлениям нагрузки приложены фазные напряжения. Линейные токи равны фазным и определяются по закону Ома:

а ток в нейтрали равен векторной сумме этих токов: IN = IA + IB + IC.

При симметричных напряжениях UA, UB, UC и одинаковых сопротивлениях RA= RB = RC = R токи IA, IB, IC также симметричны и их векторная сумма (IN) равна нулю. Тогда

IЛ = = ¤ R; IN = 0.

Если же сопротивления фаз нагрузки неодинаковы, то через нулевой провод протекает некоторый ток IN ¹ 0. Это поясняется на векторных диаграммах (рис.2).

Мощность трёхфазной нагрузки складывается из мощностей фаз: SP = PА + PВ + PС.

Когда нагрузка симметричная и чисто резистивная, имеем

SP = 3 = 3 × .

При смешанной (активно-индуктивной или активно-емкостной) нагрузке:

SP = 3 × × × cosj = Ö3 × × × cosj.

Читайте также:  Таблица мощностей токов сечений

SQ = 3 × × × sinj = Ö3 × × × sinj.

SS = 3 × IФ = Ö3 × × .

Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду

Аварийными являются режимы, возникают при коротких замыканиях в нагрузке или в линиях и обрыве проводов. Остановимся на некоторых типичных аварийных режимах.

Обрыв нейтрального провода при несимметричной нагрузке

В симметричном режиме IN = 0, поэтому обрыв нейтрального провода не приводит к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако, при несимметричной нагрузке IN ¹ 0, поэтому обрыв нейтрали приводит к изменению всех фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки, совпадающая до этого с точкой «N» генератора, смещается таким образом, чтобы сумма фазных токов оказалась равной нулю (рис.3). Напряжения на отдельных фазах могут существенно превысить номинальное напряжение.

Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом

При обрыве провода, например, в фазе А ток этой фазы становится равным нулю, напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток

IN = IB + IC. Он равен току, который до обрыва протекал в фазе А (рис. 4).

Обрыв фазы при симметричной нагрузке в схеме без нулевого провода

При обрыве, например, фазы А сопротивления RA и RB оказываются соединёнными последовательно и к ним приложено линейное напряжение UBC. Напряжение на каждом из сопротивлений составляет от фазного напряжения в нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений смещается на линию ВС и при RB = RC находится точно в середине отрезка ВС (рис.5)

Короткое замыкание

При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой фазе становится очень большим (теоретически бесконечно большим) и это приводит к аварийному отключению нагрузки защитой. В схеме без нулевого провода при замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора. Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих фазах возрастают в раз, а ток в фазе А – в 3 раза (рис. 6).

Короткие замыкания между линейными проводами и в той и в другой схеме приводят к аварийному отключению нагрузки.

Лабораторная работа № 13

Трёхфазная нагрузка, соединённая по схеме «ЗВЕЗДА»

Цель работы:

Исследовать трёхфазную цепь, соединённую по схеме «ЗВЕЗДА», в различных

Для трёхфазной цепи с соединением «ЗВЕЗДА» при симметричной и несимметричной нагрузках измерьте с помощью мультиметра действующие значения фазных и линейных напряжений и ток в нейтральном проводе. Вычислите линейные токи и мощности фаз. Постройте в масштабе векторные диаграммы напряжений и токов.

1.Соберите цепь с симметричной нагрузкой (RA= RB= RC=1кОм) согласно схеме.

2.Измерьте действующие значения напряжений и тока в нейтральном проводе согласно табл. 1 и вычислите токи и мощности фаз.

3.Повторите измерения и вычисления для несимметричной нагрузки (RA=1 кОм,

RB=680 Ом, RC=330 Ом).

4.Постройте в масштабе векторные диаграммы напряжений и токов.

Источник

Соединение фаз звездой

Соединение фаз звездой На рисунке представлена схема соединения фаз генератора звездой. Условное обозначение этой схемы Y . Концы К всех трех фаз соединяют в общую точку, называемую нулевой. Если отводят только три провода от генератора А, В, С, то такую систему называют трехфазной трехпроводной. Если отводят также четвертый, нейтральный, или «нулевой» провод N (О), то систему называют трехфазной четырехпроводной. Нулевую точку генератора, а следовательно, и нулевой провод надежно заземляют.

Ток в нулевом проводе появится только тогда, когда три фазы будут нагружены неравномерно. Ток, протекающий по нулевому проводу, равен алгебраической сумме токов в трех фазах:

По абсолютной величине in всегда меньше, чем ток в любой из фаз, если нагрузка включена во все фазы. Поэтому сечение нулевого провода принимается меньшим, чем сечение фазных проводов.

Схема соединения обмоток генератора в звезду

Рис. 1. Схема соединения обмоток генератора в звезду.

Только в том случае, если нагрузка включена между одной из фаз и нулевым проводом, а к другим фазам нагрузка не включена, ток в нагруженной фазе равен току в нулевом проводе.

Напряжение между любой из фаз и нулевым проводом называется фазным напряжением и обозначается U ф . Оно равно напряжению между началом каждой из фаз и ее концом (рис. 2).

Напряжение между фазными проводами называется линейным напряжением и обозначается U л . Оно равно геометрической разности двух фазных напряжений (рис. 2), то есть линейные напряжения между фазами А и В, В и С, С и А

Векторы линейных и фазных напряжений

Рис. 2. Векторы линейных и фазных напряжений.

Абсолютная величина линейного напряжения может быть определена из треугольника векторов АОВ. Основание этого треугольника АВ равно линейному напряжению:

Таким образом, в трехфазной четырехпроводной системе получают два напряжения: U ф — фазное и U л — линейное. Линейное напряжение больше, чем фазное, в 1,73 раза. Сила тока в линейном проводе I л равна но величине и направлению току в фазной обмотке I ф .

Приняты следующие напряжения для низковольтных сетей (табл. 1).

Таблица 1 Стандартные напряжения в потребительских сетях

Стандартные напряжения в потребительских сетях

Стандартные напряжения в потребительских сетях

Как видно из таблицы 1, напряжение источника электроснабжения (генератора или вторичной стороны трансформатора) берут всегда па 5% больше номинального сетевого напряжения с учетом того обстоятельства, что около 5% напряжения будет потеряно в линии. Это делают для того, чтобы подать потребителям электроэнергию номинального напряжения и обеспечить их удовлетворительную работу.

В сельском хозяйстве наибольшее распространение получила трехфазная четырехпроводная система 380/220 В, то есть система с линейным напряжением в сети Uл =380 В и фазным Uф = 220 В. Три фазы с напряжением между ними 380 В используют для питания электрических двигателей и трехфазных нагревательных приборов, а напряжение между фазой и нулевым проводом 220 В используют для питания источников света и бытовых электроприборов.

Источник