script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Ток сквозной проводимости обусловлен

Лекции по курсу Электротехнические материалы

Общие представления об электропроводности диэлектриков

Сквозной ток — I с к в (ток утечки) протекает по диэлектрику под воздействием постоянного напряжения — обусловлен наличием в диэлектриках свободных носителей заряда различной природы.

Вид диэлектрикаНосители заряда (область слабых полей)Природа носителей заряда (происхождение)
Газообразные Положительные и отрицательные ионы Ионизация молекул газа
В сильных полях также электроны Главным образом ударная ионизация и фотоионизация молекул газа
Жидкие Ионы Диссоциация молекул примеси (реже собственных молекул)
Коллоидные заряженные частицы Характерны для эмульсий (коллоидные частицы жидкость) и суспензий (взвешенная фаза твердое вещество)

Твердые Ионы Диссоциация примесей или собственных молекул
Точечные дефекты кристаллической решетки: вакансии (пустые узлы) межузельные ионы Зависят от структуры кристаллического диэлектрика
Электроны проводимости или дырки в заполненной зоне В диэлектриках с электронным механизмом проводимости

Зависимость тока от времени приложения постоянного напряжения

В момент включения постоянного электрического поля через диэлектрик электрического конденсатора протекает ток смещения — Iсм , обусловленный быстрыми видами поляризаций.

В неполярных однородных диэлектриках затем устанавливается ток сквозной проводимости — Iскв .

В полярных и неоднородных диэлектриках протекает также ток абсорбции — Iабс , вызываемый активными составляющими токов, связанных с установлением замедленных (релаксационных) поляризаций. Во многих диэлектриках, используемых в качестве электрической изоляции, Iабс устанавливается за время меньше 1 мин .

Изменение тока через неполярный диэлектрик в зависимости от времени подключения постоянного напряжения показано на рисунке.

Токи абсорбции

Токи абсорбции могут устанавливаться в диэлектрике в течение длительного времени в зависимости от типа диэлектрика и механизма поляризации. Уменьшение тока Iабс может наблюдаться в течение минут или даже часов. После установления тока абсорбции через диэлектрик будет протекать только ток сквозной проводимости.

При расчете сопротивления изоляции на постоянном напряжении необходимо расчет вести по току сквозной проводимости Iскв , исключая токи абсорбции .

Посмотрите как изменяется ток в зависимости от времени приложения постоянного напряжения к диэлектрику, в котором возникают токи абсорбции.

Механизмы возникновения и уменьшения тока абсорбции Iабс

При ионной проводимости наличие блокирующих контактов (БК) с электродами.

[Действие блокирующих контактов]

Блокирующие контакты препятствуют прохождению носителей заряда через границу электрод-диэлектрик или разряда носителей, подходящих из объема на границе с электродом.

Лекции по курсу Электротехнические материалы

Источник

3.1.2. Токи смещения, абсорбции и сквозной проводимости

Вторая характерная особенность электропроводности диэлектри­ков — спадание тока со временем после приложения постоянного напряжения. При включении постоянного напряжения ток в диэлек­трике вначале резко возрастает, а затем постепенно снижается, асим­птотически приближаясь к некоторой установившейся величине (рис. 3.3). Резкое возрастание тока вначале и последующее его сни­жение вызваны током смещения Iсм в диэлектрике. Плотность тока смещения jсм определяется скоростью изменения вектора электриче­ского смещения D (или вектора Е, поскольку D = εεoЕ):

(3.4)

Рис. 3.3. Зависимость величины тока I в диэлектрике от времени τ приложения постоянного напря­жения (схематически):

Iсм — ток смещения, вызванный де­формационными видами поляриза­ции;

Iаб — ток абсорбции;

Iск — ток сквозной проводимости;

1 — электри­ческое старение (электролиз); 2 — электроочистка

Ток смещения Iсм вызван как мгно­венными (деформационными) видами поляризации, так и замедленными (ре­лаксационными), а также перераспре­делением свободных зарядов — их дрейфом (без разряжения на электро­дах).

В первом случае из-за кратковре­менности установления электронной и ионной поляризаций Iсм не удается за­фиксировать с помощью прибора. Ток смещения, обусловленный деформаци­онными видами поляризации, имеет важное значение в работе p-n -перехода полупроводниковых приборов и под­робно рассматривается в гл. 8.6.

Во втором случае ток смещения на­блюдается в технических диэлектриках от нескольких минут до нескольких де­сятков минут после приложения напря­жения и называется током абсорбции Iаб.

Ток абсорбции Iаб вызван релаксационными видами поляризации и перераспределением свободных зарядов в объеме диэлектрика. Он приводит к накоплению носителей заряда в местах наибольшей кон­центрации ловушек (уровней захвата) — дефектов решетки, неоднородностей, границ раздела и т.п. В результате в диэлектрике возни­кают объемные заряды, и электрическое поле в нем становится неоднородным. Поле, создаваемое объемными зарядами, направлено в данном случае обратно приложенному полю. Ток абсорбции при постоянном напряжении наблюдается только в момент включения и выключения, при переменном напряжении — в каждый полупериод изменения электрического поля, т.е. практически в течение всего времени приложения переменного напряжения.

Читайте также:  Для знаков тока характерно

Под действием образовавшихся объемных зарядов, а также поляризации диэлек­трика (особенно при наличии дипольно-релаксационной составляющей), образец за­ряжается. Но если от него отключить внешний источник напряжения и его закоро­тить, то по образцу пойдет обратный так называемый ток деполяризации, который образуется в результате освобождения носителей заряда с различных ловушек и дез­ориентации диполей. Зависимость тока деполяризации от времени несет информацию о закономерностях молекулярной подвижности, дефектах строения, и в ряде случаев с ее помощью возможно прогнозирование срока службы полимерной изоляции (см. гл. 5.4.3). При нагревании (с постоянной скоростью) заряженного образца образуется ток деполяризации, или ток термостимулированной деполяризации (ТСД). Метод ТСД широко используют при изучении релаксационных переходов (Tс, Tт и др.) в по­лимерных диэлектриках, а также закономерностей накопления и переноса носителей заряда.

Составляющая тока, которая не изменяется со временем прило­жения постоянного напряжения, представляет собой стационарный поток электрически заряженных частиц, разряжающихся на электродах, и называется током сквозной проводимости Iск (сквозным током I, или остаточным током). По величине сквозного тока определяют удельную объемную (или поверхностную) электропроводность ди­электрика.

Ток сквозной проводимости обусловлен направленным движением носителей заряда, поставляемых ионогенной примесью, самим ди­электриком и в сильных полях инжектируемых из электродов, и со­провождается обязательным их разряжением на электродах.

Только в результате разряжения носителей заряда на электродах (положительным ион принимает электрон(ы) из катода, а отрицательный ион отдает электрон(ы) ано­ду) во внешней цепи возникает электрический (электронный) ток, измерив величину которого, можно определить удельное объемное (или поверхностное) сопротивление диэлектрика. Если носители заряда не смогут преодолеть потенциальный барьер на границе диэлектрик—металл, то они не разрядятся на электродах и в приэлектродных областях образуют объемные заряды, которые создадут в диэлектрике электрическое поле, направленное противоположно приложенному полю.

Ток сквозной проводимости измеряют тогда, когда после прило­жения к образцу постоянного напряжения ток абсорбции спадет практически до нуля. Это время составляет от нескольких минут до нескольких десятков минут и определяется экспериментально.

Величина тока сквозной проводимости при длительном прило­жении постоянного напряжения может существенно изменяться в результате электрохимических процессов, а также образования объ­емных зарядов. Величина сквозного тока не изменяется только при чисто электронном типе проводимости. Если при длительном прило­жении постоянного напряжения к твердому или жидкому диэлектри­ку ток сквозной проводимости со временем продолжает уменьшаться (см. рис. 3.3, кривая 2), значит электропроводность данного мате­риала обусловлена в основном ионами примеси и уменьшается в ре­зультате электроочистки образца. Ток сквозной проводимости также уменьшается, если носители заряда, подходя к электродам, не разря­жаются (из-за высокого потенциального барьера на границе ме­талл—диэлектрик). Накапливаясь в приэлектродных областях, носи­тели заряда образуют объемные заряды (положительный — у катода и отрицательный — у анода), препятствующие прохождению тока. Объемные заряды в приэлектродных областях могут также образовы­ваться (в сильных полях) в результате инжекции зарядов со стороны электродов, однако в этом случае знак объемных зарядов соответст­вует полярности электродов (см. гл. 7.15.5).

Таким образом, если до приложения электрического поля ди­электрик был электронейтральным, т.е. суммарный заряд всех его микрообъемов был равен нулю, то после приложения поля, в резуль­тате перемещения зарядов (в том числе инжектированных из элек­тродов) на макроскопические расстояния и закрепления части из них на ловушках, электронейтральность нарушается, и в диэлектри­ке возникают объемные заряды. Образец поляризуется. Объемные заряды образуются при прохождении как тока смещения, в частно­сти тока абсорбции, так и тока сквозной проводимости.

Если же ток сквозной проводимости увеличивается (см. рис. 3.3, кривая 7), то это указывает на участие в образовании электрического тока собственных зарядов материала, являющихся его структурными элементами, т.е. имеет место электролиз. В этом случае материал ста­реет — в нем протекают необратимые электрохимические процессы, постепенно приводящие к разрушению (пробою) образца (см. гл. 5). Например, приложив к нагретому неорганическому стеклу постоян­ное напряжение, можно наблюдать благодаря его прозрачности, как в стекле продукты электролиза, в частности выделяющийся на катоде металлический натрий, образуют ветвистые отложения — металличе­ские дендриты (подробнее см. гл. 5.4.3). При достаточном времени прохождения тока дендриты могут прорасти сквозь всю толщину ди­электрика от катода к аноду и образовать проводящий канал.

Читайте также:  Катушка зажигания пробивает ток

Источник



Токи смещения, абсорбции и сквозной проводимости

Токи смещения, абсорбции и сквозной проводимости Токи смещения, абсорбции и сквозной проводимости Токи смещения, абсорбции и сквозной проводимости Токи смещения, абсорбции и сквозной проводимости

Токи смещения, абсорбции и сквозной проводимости

  • Ток смещения, поглощения и сквозной проводимости Вторая особенность проводимости диэлектрика заключается в том, что ток затухает с течением времени после приложения постоянного напряжения. Когда напряжение постоянного тока включено ток до dielec- 69.3. 3.3. Зависимость величины тока I в диэлектрике от времени t приложения постоянного напряжения (схематично):/cm-ток смещения, обусловленный вариантным типом поляризации;/AB-ток поглощения;/SC-ток смещения.-

Трайк сначала резко увеличивается, затем постепенно уменьшается, асимптотически приближаясь к значению постоянного установившегося состояния(рис. 3.3). Резкое увеличение тока в начале и его последующее уменьшение вызвано током смещения 1 см в диэлектрике. Плотность тока смещения USM определяется скоростью изменения вектора электрического смещения D (или вектора E, D=eoee): jCM=dD/dr=£OE(dE/dt). (3.4) ток смещения / см обусловлен как мгновенной (деформированной)

В первом случае из-за короткого периода установления электронной и ионной поляризации/см невозможно зафиксировать с помощью измерительного прибора. Ток смещения, индуцированный поляризационным вариантным типом, является существенным в работе р-р-перехода в полупроводниковых приборах и подробно рассматривается в главе 8.6. Во втором случае ток смещения наблюдается в техническом диэлектрике от нескольких минут до нескольких десятков минут после подачи напряжения, называемого током поглощения / AB.

Ток поглощения 1А обусловлен типом поляризационной релаксации и перераспределением свободного заряда диэлектрического объема. Последнее приводит к накоплению носителей заряда в местах наибольшей концентрации дефектов решетки, неоднородностей, ловушек типа интерфейсов (уровней захвата). Это способствует поляризации организма. При поляризации диэлектрика на поверхности, обращенной к электроду, образуется поверхностно связанный заряд (см. главу 2.1.2). Для того чтобы компенсировать эти заряды на электродах, далее протекают сторонние заряды+0D и — (?)d (см. 2.1, J) образование и рост связаны с возникновением и ростом токов поглощения.

  • Когда поляризация диэлектрика начинает завершаться, рост заряда третьей стороны замедляется, а затем полностью прекращается, так что по мере завершения поляризации ток поглощения уменьшается и становится нулевым. Поток поглощения при постоянном напряжении наблюдается только в момент включения / выключения, переменное напряжение-при каждом полупериоде изменения электрического поля, то есть во все время приложения переменного напряжения. В результате поляризации диэлектрика, вызванной релаксацией вида, а также под действием образующегося объемного заряда, образец заряжается.

В диэлектриках возникает электрическое поле (ЭКФ), вектор которого направлен в противоположную сторону от приложенного магнитного поля. Если внешний источник напряжения от него и его короткозамкнутого выключается, а в паттерне идет обратный так называемый ток деполяризации, который образуется в результате высвобождения носителя в различные ловушки, то временная зависимость тока деполяризации включает информацию о молекулярной подвижности, структурных дефектах и в некоторых случаях предсказывает закономерность протекания тока полимерного диэлектрика или генерируется термически стимулированный ток деполяризации (ТДК).

Составляющая тока, которая не изменяется при подаче постоянного напряжения, представляет собой постоянный поток заряженных частиц, разряженных в электрод, называемый сквозным током 1СК (сквозным током, током утечки или остаточным током), а величина сквозного тока определяет удельную объемную (или поверхностную) проводимость диэлектрика. Ток проводимости обусловлен направленным движением свободного заряда за счет обязательного разряда на электроде. Эти заряды питаются ионообразующими примесями, самими диэлектриками, и инжектируются с электродов сильным магнитным полем.

Только в результате разряда носителя заряда на электродах внешнего контура (положительные ионы принимают электроны с катода, отрицательные ионы излучают электроны на анод), если ток, протекающий в диэлектрике, имеет ионную величину, то во внешнем контуре-электроны. В результате ток преобразуется из ионного типа в электронный на электроде. Ток сквозной проводимости измеряется при подаче на образец постоянного напряжения, а затем ток поглощения падает почти до нуля. Это время, как упоминалось выше, составляет от нескольких минут до нескольких десятков минут и определяется экспериментально.

71 величина проникающего тока при длительном приложении постоянного напряжения может существенно изменяться в результате электрохимического процесса, а также образования объемного заряда. Величина сквозного тока не изменяется только при чисто электронных видах проводимости. Когда постоянное напряжение непрерывно прикладывается к твердому или жидкому диэлектрическому току, проходящему через проводимость, оно продолжает уменьшаться со временем (см. Рисунок). 3. 3, кривая 2), это означает, что электропроводность этого материала в основном обусловлена примесными ионами и снижается в результате электрической очистки образца.

Читайте также:  Какао ток что это

Кроме того, проникающий ток уменьшается, если носители заряда, приближающиеся к электродам, не разряжаются над ними из-за высокого потенциального барьера на границе металл-диэлектрик. Накапливаясь в области вблизи электрода, носитель заряда образует объемный заряд (положительный на катоде, отрицательный на аноде), который препятствует прохождению тока. Объемный заряд области вблизи электрода также может формироваться (в сильном магнитном поле) в результате инжекции заряда с электрода, но в этом случае знак объемного заряда не совпадает с полярностью электрода.

Перед подачей электрического поля диэлектрик электрически нейтрален, то есть суммарный заряд всех малых объемов равен нулю, а после приложения электрического поля заряд (электрод или образец поляризуется) на макроскопическом расстоянии. Разряженный на электроде заряд образует ток сквозной проводимости. Таким образом, поляризация и проводимость всегда появляются одновременно, и через некоторое время поляризация завершается, а проводимость сохраняется. Если ток сквозной проводимости увеличивается со временем(см. Рисунок). 3.3, кривая 7), что указывает на участие в формировании тока заряда, являющегося структурным элементом материала.

При этом хронологический возраст материала-в нем происходит необратимый электрохимический процесс, постепенно приводящий к разрушению (разложению) образца (см. Главу 5). Например, прикладывая постоянное напряжение к нагретому неорганическому стеклу, дендрит может расти по всей толщине диэлектрика от катода к аноду и образовывать проводящий канал через ответвление отложений продукта — достаточное время прохождения тока за счет того, как электролитические продукты в стекле, особенно металлический натрий, выделяющийся на катоде, являются проводящими.

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Большая Энциклопедия Нефти и Газа

Ток — сквозная проводимость

Ток сквозной проводимости пропорционален площади изоляции и обратно пропорционален ее толщине. С увеличением влажности изоляции ток проводимости возрастает. [1]

Ток сквозной проводимости не изменяется со временем. Его зависимость от величины напряжения рассматривается ниже. [2]

Проходящий через изоляцию ток сквозной проводимости 1щ не зависит от длительности приложения напряжения и увеличивается с повышением температуры. Величина тока сквозной проводимости зависит от температуры изоляции, степени ее увлажненности, материала изделия и его геометрических размеров. Кроме того, на нее влияют и сосредоточенные дефекты, подобные тем, которые привели к образованию ограниченной зоны с повышенной проводимостью, распространившейся на всю толщу изоляции — от одного электрода к другому. Поэтому измерение тока сквозной проводимости может явиться дополнительным критерием состояния изоляции. [3]

Проходящий через изоляцию ток сквозной проводимости inp не зависит от длительности приложения напряжения и увеличивается с повышением температуры. [4]

Сопротивление R определяется током сквозной проводимости . В общем случае количество электричества на обкладках диэлектрика, схематически показанного на фиг. [5]

Измерительный прибор для измерения токов сквозной проводимости ( утечки) для большинства встречающихся объектов должен давать воаможность отсчета токов от 0 5 — 1 0 до 1000 мка. [7]

Измерительный прибор для измерения токов сквозной проводимости ( утечки) всех встречающихся кабелей должен давать возможность отсчета токов от 0 5 — 1 0 до 1000 мка. [8]

Если при постоянном токе все токи, кроме тока сквозной проводимости , затухали, то при переменном токе они будут существовать до тех пор, пока приложено напряжение. [9]

Следовательно, существуют другие механизмы потерь, кроме обусловленных током сквозной проводимости . Эти механизмы связаны с поляризацией диэлектрика. [11]

Следовательно, существуют другие механизмы потерь, кроме обусловленных током сквозной проводимости . Эти механизмы связаны с поляризацией диэлектрика. [13]

На рис. 5 показана примерная зависимость сопротивления волокнистой изоляции и тока сквозной проводимости от величины приложенного напряжения. Как видно из рисунка, значение сопротивления изоляции в некоторых пределах ( до испытательных значений) практически не зависит от величины приложенного напряжения и ток сквозной проводимости пропорционален напряжению. [15]

Источник