Меню

Цепи синусоидального тока синусоидальный ток основные параметры

Лекция № 2 ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

1.Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

2. Идеальные резистивный, индуктивный и емкостный элементы в цепях синусоидального тока

1. Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

Токи, напряжения и ЭДС, значения которых периодически изменяются во времени по синусоидальному закону, называют синусоидальными (гармоническими).

По сравнению с постоянным током синусоидальный имеет ряд преимуществ:

производство, передача и использование электрической энергии наиболее экономичны при синусоидальном токе;

в цепях синусоидального тока относительно просто преобразовывать форму напряжения, а также создавать трехфазные системы напряжения.

В зависимости от типа решаемой задачи синусоидальные величины представляют:

— в виде аналитических выражений;
— графически, посредством временной или векторной диаграмм;

Аналитическое представление синусоидальных величин

Синусоидальные ЭДС, напряжение и ток можно задать с помощью вещественных функций времени (в виде аналитических выражений):

где е, u, i — соответственно мгновенные значения ЭДС, напряжения, тока;
— аргументы (фазы) синусоидальных

Для расчета электрических цепей аналитические выражения синусоидальных величин неудобны, т. к. алгебраические действия (сложение, вычитание, умножение и т. д.) с тригонометрическими функциями приводят к громоздким вычислениям.

Временная диаграмма

Графическое представление синусоидальных величин в виде временной диаграммы достаточно наглядно,

I2

но из-за сложности построения синусоид и операций с ними применяется сравнительно редко.

При построении временной диаграммы за аргумент синусоидальной функции, например, напряжения u(t) принимают время t или угол ωt .

Однако для большей наглядности угол φu часто выражают в градусах. Тогда аргумент ωt также переводят в градусы (напомним, что 1 рад » 57,3°). В этом случае период составляет 360°.

Основные параметры синусоидальных величин

Для характеристики синусоидальных функций времени используют следующие параметры:

— Мгновенное значение;
— Амплитуда;
— Период;
— Частота;
— Фаза;
— Начальная фаза;
— Угловая частота;
— Сдвиг фаз;
— Среднее значение гармонической функции;
— Действующее значение гармонической функции.

Цепь с активным сопротивлением

Элементы, обладающие активным сопротивлением R, нагреваются при прохождении через них тока.

Если к активному сопротивлению приложено синусоидальное напряжение

то и ток изменяется по синусоидальному закону

где

или в действующих значениях

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, т.к. их начальные фазы равны

Временная и векторная диаграммы

Активная мощность

Из временной диаграммы следует, что мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению.

Эта мощность (энергия) необратима.

От источника она поступает к потребителю и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется.

Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное преобразование, называется активным.

Количественно мощность в цепи с активным сопротивлением определяется

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин – постоянной мощности и переменной мощности , изменяющейся с двойной частотой

Среднее за период значение переменной составляющей

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учётом закона Ома

Единица активной мощности

Цепь с идеальной индуктивностью

Идеальной называют индуктивность такой катушки, активным сопротивлением и ёмкостью которой можно пренебречь

Если в цепи идеальной катушки проходит синусоидальный ток

то он создаёт в катушке синусоидальный магнитный поток

Этот поток индуцирует в катушке ЭДС самоиндукции

Эта ЭДС достигает амплитудного значения при

Тогда

ЭДС самоиндукции в цепи с идеальной индуктивностью, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстаёт от тока по фазе на угол π/2.

Согласно второго закона Кирхгофа для мгновенных значений

Тогда напряжение, приложенное к цепи с идеальной индуктивностью

Для существования тока в цепи с идеальной индуктивностью необходимо приложить к цепи напряжение, которое в любой момент времени равно по величине, но находится в противофазе с ЭДС, вызванной этим током

Напряжение достигает своего амплитудного значения при

Следовательно,

Напряжение, приложенное к цепи с идеальной индуктивностью, как и ток в этой цепи, изменяется по синусоидальному закону, но опережает ток по фазе на угол π/2.

Математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью

Читайте также:  Самостоятельная работа по теме напряжение сила электрического тока

Знаменатель уравнения – индуктивное сопротивление

Тогда закон Ома будет иметь вид

Индуктивное сопротивление – это противодействие, которое ЭДС самоиндукции оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи с идеальной катушкой индуктивности определяется

Следовательно,

Мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой

Среднее значение этой мощности за период, т.е. активная потребляемая мощность, равно нулю.

В 1-ю и 3-ю четверти периода мощность источника накапливается в магнитном поле индуктивности, а во 2-ю и 4-ю – возвращается к источнику.

В цепи переменного тока с идеальной катушкой мощность не потребляется, а колеблется между источником и катушкой индуктивности, загружая источник и провода

Такая колеблющаяся мощность, в отличие от активной, называется реактивной.

Цепь с ёмкостью

Если к конденсатору ёмкостью С приложено синусоидальное напряжение

то в цепи конденсатора проходит ток

Амплитудное значении тока , следовательно

Ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол π/2.

Математическое выражение закона Ома для цепи переменного тока с ёмкостью

Знаменатель этого выражения является ёмкостным сопротивлением

Тогда выражение для закона Ома будет иметь вид

Ёмкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему.

Реактивная мощность в цепи с идеальным конденсатором

Если в цепи с идеальным конденсатором проходит ток , то

напряжение, приложенное к этому конденсатору будет

Мгновенная мощность в цепи с конденсатором

Мощность в цепи с конденсатором, подключённым к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой.

Во 2-ю и 4-ю четверти периода мощность источника накапливается в электрическом поле конденсатора. В 1-ю и 3-ю четверти эта мощность из электрического поля конденсатора возвращается к источнику.

В цепи переменного тока с конденсатором происходит колебание мощности между источником и конденсатором.

Величина реактивной мощности в цепи с конденсатором

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Читайте также:  Статья в пипл ток 23 февраля кальцедония 20

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник



Основные параметры синусоидального тока

date image2015-05-26
views image13272

facebook icon vkontakte icon twitter icon odnoklasniki icon

ЛЕКЦИЯ 2

СИНУСОИДАЛЬНЫЙ ТОК. ФОРМЫ ЕГО ПРЕДСТАВЛЕНИЯ.

В практике электротехники в качестве переменного тока широкое применение нашел ток синусоидальной формы. Это обусловлено рядом преимуществ:

-генераторы синусоидального тока значительно дешевле в производстве, чем генераторы постоянного тока;

— переменный ток легко преобразуется в постоянный;

— трансформация и передача электрической энергии переменным током экономичнее чем постоянным;

-двигатели переменного тока имеют простую конструкцию, высокую надежность и невысокую стоимость.

В настоящее время переменный ток применяется в промышленном приводе и в электроосвещении, в сельском хозяйстве и на транспорте, в технике связи и в быту. Производство электрической энергии также осуществляется на переменном токе. Огромную роль в деле внедрения переменного тока сыграли русские ученые П.Н.Яблочков и М.О.Доливо-Добровольский.

Основные параметры синусоидального тока

Переменным называют ток (напряжение, ЭДС), изменяющийся во времени по величине и направлению. Синусоидальный ток может быть представлен посредством действительной функции времени — синусной и косинусной, например:

(2.1)

где Im — максимальная амплитуда тока (амплитудное значение);

w — угловая частота, причем ;

f — частота колебаний [Гц];

Т — период [C];

ji — начальная фаза, определяет значение тока в момент времени t=0, т.е.

На рис. 2.1 приведен график двух колебаний с разными начальными фазами j1 и j2, причем j1 > j2. Амплитуда гармоник проходит через нуль, когда:

wt + j = pn (n = 0,1,2. ), т.е. в моменты

.

Так как j1> j2, то t1 имеет место раньше t2:

Начальная фаза часто задается в градусах. Поэтому при определении мгновенного значения тока аргумент синуса ( слагаемые wt и j) нужно привести к одной единице измерения (рад. или градус).

Иногда гармоническое колебание представляется в косинусной форме. Легко видеть, что для перехода к такой форме в (2.1) достаточно изменить лишь начальную фазу, т.е.:

Промышленная частота переменного тока в России и всех странах Европы равна 50 Гц, в США и Японии — 60 Гц, в авиации — 400 Гц. Снижение частоты ниже 50 Гц ухудшает качество освещения. Увеличение частоты ухудшает условия передачи электроэнергии на большие расстояния.

Выражение для синусоидального напряжения аналогично (2.1), т.е.:

u(t) = Um × sin (wt + ju) (2.2)

Аналогично (2.1) определяются и основные параметры напряжения.

Кроме уже названных параметров, в практике электротехники часто пользуются понятиями среднего и действующего значений тока и напряжения. Рассмотрим их.

Под средним значением синусоидального тока понимают его среднее значение за полпериода:

(2.3)

Видим, что среднее значение синусоидального тока составляет 2/p » 0,64 от амплитудного. Аналогично определяется среднее значение синусоидального напряжения

.

Действующим называют среднее квадратичное значение синусоидального тока (напряжения) за период:

.

,

.

Видим, что действующее значение синусоидального тока составляет 0,707 от амплитудного. Аналогично определяется действующее значение синусоидального напряжения:

.

Если говорят о значениях переменного тока или напряжения, то, как правило, подразумевают их действующее значения. Например, напряжение в однофазной сети переменного тока 220 В — действующее. При этом амплитудное значение Um @ 310 В.

Источник

Синусоидальный ток и его основные параметры

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Величина обратная частоте называется периодом колебания T=1/f (с). Определение периода звучит так период это время полного колебания. Если представить себе маятник часов, то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока — это максимальное значение тока, которое он достигает за период колебания. Опять же, если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

Читайте также:  Ток в комплексной форме формула

Начальная фаза синусоидального тока — это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Математически синусоидальный ток описывается уравнением:

где i — мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Im — амплитуда тока.

j — начальная фаза.

w — угловая частота выражается как угловая частота —

Синусоидальный ток характеризуется амплитудой Im и периодом T.

Энергетические характеристики синусоидальных сигналов обычно описываются действующими значениями тока I, равными среднеквадратичному за период значению:

Аналогично вводятся действующие значения напряжения U и напряжения ЭДС E. Действующие значения наиболее часто используют для характеристики интенсивности синусоидальных сигналов: электроизмерительные приборы проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений. Для синусоидальных величин вычисление интеграла в последнем выражении приводит к соотношениям:

Способы представления синусоидального тока

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно: i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.

Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

Аналитический способ

Для тока: i(t) = Im sin(ωt + ψi), для напряжения: u(t) = Um sin (ωt +ψu), для ЭДС: e(t) = Em sin (ωt +ψe),

Im, Um, Em – амплитуды тока, напряжения, ЭДС;

значение в скобках – фаза (полная фаза);

ψi, ψu, ψe – начальная фаза тока, напряжения, ЭДС;

ω – циклическая частота, ω = 2πf;

f – частота, f = 1 / T; Т – период.

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени i(t) = Im sin(ωt — ψi).

Графоаналитический способ

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

i1(t) = Im1 sin(ωt)→ i2(t) = Im2 sin(ωt + ψ2) →i(t) = ?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt — ψ2) = Im sin(ωt + ψ).

Приравниваем проекции на вертикальную и горизонтальные оси

Im sin ψ = Im2 sin ψ2; Im cos ψ = Im2 cos ψ2 + Im1;

Источник