script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Ударный коэффициент тока короткого замыкания таблица 110 кв

Расчет ударного тока короткого замыкания

6.5.1. Ударный ток трехфазного КЗ в электроустановках с одним источником энергии (энергосистема или автономный источник) рассчитывают по формуле

, (6.18)

где ударный коэффициент, который может быть определен по кривым на рис. 6.1;

Та постоянная времени затухания апериодической составляющей тока КЗ (см. п. 6.4.2):

tуд время от начала КЗ до появления ударного тока, с, равное

;

.

6.5.2. При необходимости учета синхронных и асинхронных электродвигателей или комплексной нагрузки ударный ток КЗ следует определять как сумму ударных токов от автономных источников и от электродвигателей (см. п. 6.7) или от комплексной нагрузки (см. п. 6.8).

6.5.3. Если точка КЗ делит расчетную схему на радиальные, независимые друг от друга ветви, то ударный ток КЗ допустимо определять как сумму ударных токов отдельных ветвей по формуле

, (6.19)

где т — число независимых ветвей схемы;

Iп0i — начальное действующее значение периодической составляющей тока КЗ в i-й ветви, кА;

tудi — время появления ударного тока в i-й ветви, с;

Tai — постоянная времени затухания апериодической составляющей тока КЗ в i-й ветви, с.

Рис. 6.1. Кривые зависимости ударного коэффициента Kуд от отношений R/Х и X/R

6.6. Расчет периодической составляющей тока КЗ

для произвольного момента времени

6.6.1. Методика расчета периодической составляющей тока трехфазного КЗ для произвольного момента времени в электроустановках до 1 кВ зависит от способа электроснабжения — от энергосистемы или от автономного источника.

6.6.2. При электроснабжении электроустановки от энергосистемы через понижающий трансформатор действующее значение периодической составляющей тока трехфазного КЗ в произвольный момент времени в килоамперах без учета подпитки от электродвигателей следует определять по формуле

, (6.20)

где Uср.НН — среднее номинальное напряжение сети, в которой произошло КЗ, В;

Х1S, R1S соответственно суммарное индуктивное и суммарное активное сопротивления прямой последовательности цепи КЗ, мОм, (см. п. 6.2.4) без учета активного сопротивления электрической дуги и кабельной (воздушной) линии;

Rдt — активное сопротивление дуги в месте КЗ в произвольный момент времени, мОм, которое рассчитывают в соответствии с п. 6.9;

R1кбJt — активное сопротивление прямой последовательности кабельной линии к моменту t с учетом нагрева его током КЗ, мОм. Это сопротивление рассчитывают в соответствии с п. 6.10.

6.6.3. Если электроснабжение электроустановки осуществляется от энергосистемы через понижающий трансформатор и вблизи места КЗ имеются синхронные и асинхронные электродвигатели или комплексная нагрузка, связанные с точкой КЗ по радиальной схеме, то действующее значение периодической составляющей тока КЗ в произвольный момент времени следует определять как сумму токов от энергосистемы и от электродвигателей или комплексной нагрузки (см. пп. 6.7 и 6.8).

6.6.4. В электроустановках с автономными источниками электроэнергии уточненный расчет периодической составляющей тока КЗ от источников электроэнергии (синхронных генераторов) в произвольный момент времени следует выполнять путем решения соответствующей системы дифференциальных уравнений переходных процессов с использованием ЭВМ и выделения периодической составляющей. В приближенных расчетах для определения действующего значения периодической составляющей тока КЗ при радиальной схеме следует применять типовые кривые, приведенные на рис. 6.2.

Типовые кривые разработаны на базе параметров схемы замещения эквивалентного генератора, полученных в результате эквивалентирования синхронных генераторов напряжением 230/400 В различных серий, а именно: МСК-1500 (400 В); МСК-1500 (230 В); МС-1500 (400 В); МС-1500 (230 В); МС-1000 (400 В); МС-1000 (230 В); СГДС (400 В); ЕСС, ЕСС5 (230 В); ЕСС, ЕСС5 (400 В); ГСФ5; ГМ; СВГ; СГ и др.

Действующее значение периодической составляющей тока КЗ в произвольный момент времени от синхронного генератора (или нескольких однотипных синхронных генераторов, находящихся в одинаковых условиях по отношению к точке КЗ) следует определять по формуле

, (6.21)

причем при нескольких генераторах под номинальным током следует понимать сумму номинальных токов всех генераторов.

При необходимости учета синхронных и асинхронных электродвигателей или комплексной нагрузки в автономной электрической системе действующее значение периодической составляющей тока КЗ в произвольный момент времени при радиальной схеме связи двигателей с точкой КЗ следует определять как сумму токов от автономных источников и от электродвигателей или комплексной нагрузки (см. пп. 6.7 и 6.8).

Читайте также:  Принцип действия промышленного генератора переменного тока

Учет влияния на ток КЗ сопротивления электрической дуги и увеличения активного сопротивления проводников под действием тока КЗ рекомендуется выполнять в соответствии с пп. 6.9 и 6.10.

Рис. 6.2. Типовые кривые для синхронного генератора автономных систем

Источник

Расчет ударного тока КЗ в сети свыше 1 кВ

В данной статье речь пойдет о вычислении ударного тока к.з. в сети свыше 1 кв, согласно РД 153-34.0-20.527-98.

При выборе аппаратов и проводников учитывают ударный ток к.з. наступающий через 0,01 с с момента возникновения короткого замыкания.

Ударным током (iуд.) принято называть наибольшее возможное мгновенное значение тока к.з (см. рис.5 [Л1, с.11]).

Ударный ток кз

Расчет ударного тока к.з. для схемы с последовательным включением элементов

Для схем с последовательным включением элементов ударный ток к.з. определяется по выражению 5.16 [Л3, с.48]:

Ударный ток кз для схем с последовательным включением элементов

  • Iп.о – начальное значение апериодической слагающей трехфазного тока к.з.
  • Kуд – ударный коэффициент для времени t = 0,01 с, определяется по одной из следующих выражений 5.17 – 5.19 [Л3, с.48]:

Расчет ударного коэффициента для схем с последовательным включением элементов

Если же Xэк/Rэк > 5, допускается определять ударный коэффициент по выражению 5.20 [Л3, с.48]:

Расчет ударного коэффициента

Та – постоянная времени затухания апериодической составляющей тока к.з, определяется по выражению 65 [Л1, с.9 и 74] и по выражению 5.11 [Л3, с.46]:

Та – постоянная времени затухания апериодической составляющей тока к.з

  • Хэк и Rэк – соответственно суммарное индуктивное и активное сопротивления схемы от источника питания до места к.з.
  • ω = 2πf = 2*3,14*50 = 314 – угловая частота (f = 50 Гц – частота сети).

Для ориентировочных расчетов значение Та можно определять по таблице 3.8 [Л2, с.150].

Таблица 3.8 - Значения постоянной времени затухания апериодической состовляющей тока кз и ударного коэффициента

Расчет ударного тока к.з. для схемы с разветвленным включением элементов

Для схем с разветвленным включением элементов, ударный ток к.з. определяется по такой же формуле 5.16 как и при схеме с последовательном включении элементов:

Ударный ток кз для схем с разветвленным включением элементов

Ударный коэффициент определяется по следующим выражениеям 5.17а – 5.18а [Л3, с.46]:

Расчет ударного коэффициента для схем с разветвленным включением элементов

При Xэк/Rэк > 5, ударный коэффициент определяется по аналогичной формуле как и при схеме с последовательным включением элементов:

Расчет ударного коэффициента

где: Та.эк – эквивалентная постоянная времени затухания апериодической составляющей тока к.з, определяется по выражению 67 [Л1, с.9 и 74] и по выражению 5.13 [Л3, с.47]:

Та.эк – эквивалентная постоянная времени затухания апериодической составляющей тока к.з

Хэк и Rэк – соответственно суммраное индуктивное и активное сопротивления, полученные из схемы замещения, составленной из индуктивных и активных сопротивлений, поочередным исключением из нее сначала всех активных, а затем всех индуктивных сопротивлений.

Для схемы последовательного включения так и для схемы разветвленного включения согласно п.5.3.3 [Л3, с. 45].

Определение апериодической составляющей тока к.з согласно пункта 5.3.3 РД 153-34.0-20.527-98

При определении Та (Та.эк) необходимо учитывать, что синхронные машины вводяться в расчетную схему индуктивным сопротивлением обратной последовательности – Х2(ном) и сопротивлением обмотки статора при нормальной рабочей температуре – Rа.

Для асинхронных двигателей учитывается индуктивное сопротивлением обратной последовательности – Х2(ном) равное сверхпереходному индуктивному сопротивлению Х”.

Сверхпереходное сопротивление электродвигателя и сверхпереходное ЭДС междуфазное в относительных единицах, можно определить по таблице 5.2 [Л4, с.14]:

Таблица 5.2 - Сверхпереходное сопротивление электродвигателя и сверхпереходное ЭДС междуфазное в относительных единицах

Соотношения x/r для различных элементов сети приведены ниже [Л1, с.75].

Соотношения x/r для различных элементов сети

Расчет ударного тока к.з. с учетом влияния синхронных и асинхронных электродвигателей

Согласно п.5.6.3 [Л3, с.54] ударный ток к.з. от синхронных и асинхронных электродвигателей определяется по выражению 5.16 [Л3, с.48]:

Ударный ток кз с учетом влияния синхронных и асинхронных электродвигателей

где: Kуд – ударный коэффициент цепи двигателя, определяется согласно гл. 5.6 [Л3, с.54] и таблиц 2.74 — 2.75 [Л5].

Значения ударных коэффициентов асинхронных и синхронных двигателей

Также для ориентировочных расчетов ударный коэффициент для двигателей, связанных непосредственно с местом кз через линейные реакторы или кабельные линии можно определить согласно таблицы 6.3 (стр.213) типовой работы №192713.0000036.02955.000АЭ.01 «Релейная защита элементов сети собственных нужд 6,3 и 0,4 кВ электростанций с турбогенераторами» Атомэнергопроект.

Данные двигатели объединяются в один эквивалентный двигатель суммарной мощности ΣРном.дв., со средними расчетными параметрами, значения которых приведены в таблице 6.3.

Ударный ток кз с учетом влияния синхронных и асинхронных электродвигателей

  1. Беляев А.В. Как рассчитать ток короткого замыкания. Учебное пособие. 1983 г.
  2. Электрооборудование станций и подстанций. Второе издание. Л.Д. Рожкова, В.С. Козулин. 1980 г.
  3. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования — РД 153-34.0-20.527-98.
  4. Расчеты токов короткого замыкания для релейной защиты. Учебное пособие. Часть первая. И.Л.Небрат 1996 г.
  5. Справочная книга электрика. Григорьева В.И. 2004г.
Читайте также:  Можно ли поседеть от удара током

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Пример расчета тока самозапуска нагрузки

Рассмотрим пример расчета тока самозапуска нагрузки приведенное к стороне ВН для подстанции ПС 110/6 кВ.

Расчет уставок дифференциальной защиты трансформатора на терминале RET 670

Требуется выполнить расчет уставок дифференциальной защиты на терминале RET 670 (фирмы «ABB») для защиты.

Выбор коэффициентов надежности, согласования, коэффициентов возврата реле

В этой статье пойдет речь об коэффициентах, которые используются в расчетных формулах при расчете.

Пример расчета уставок кабельной линии 10 кВ с ответвлениями

В данной статье будет рассматриваться пример расчета уставок токовых защит для кабельной линии 10 кВ с.

Расчет тока однофазного замыкания на землю в сети с изолированной нейтралью

В данном примере рассмотрим расчет тока однофазного замыкания на землю (ОЗЗ) для подстанции 10 кВ (Схема.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Источник



Ударный коэффициент Ку

Отношение ударного тока короткого замыкания iy к амплитуде периодической составляющей iпm называется ударным коэффициентом Ку:

Заменяя в формуле выше амплитуду iпm действующим током, получим

В расчетах ударный коэффициент Ку принимается равным: 1,8 — при к. з. в установках выше 1 кВ; 1,3 — при к. з. за протяженным участком кабельных сетей, на вторичной стороне понижающих трансформаторов общей мощностью не более 1000 кВ*А, а также в сетях напряжением до 1000 В.

Если бы цепь не имела активного сопротивления (R = 0 и Тк = ∞), то периодическая составляющая вообще не затухала бы и сохраняла свою первоначальную величину в течение всего периода короткого замыкания до отключения поврежденного участка аппаратом защиты, а величина Ку была бы максимальной, равной двум (Ку=2).

При к. з. в местах, находящихся на значительном удалении от источников питания, например в распределительных сетях 6—10 кВ или на стороне низкого напряжения ТП, токи, возникающие в месте повреждения, невелики по сравнению с номинальными токами источников питания. При этом токи источников питания изменяются в процессе к. з. незначительно, а напряжения на зажимах этих источников принимаются постоянными.

Следовательно, величина периодической составляющей токов iпt считается неизменной по амплитуде в течение всего режима к. з., а ток короткого замыкания iкt изменяется только вследствие затухания апериодической составляющей.

При указанных условиях периодический т. к. з. рассчитывается по результирующему сопротивлению Zpeз цепи к. з.:

где Uср среднее напряжение участка цепи, для которого рассчитывается т. к. з.

Zрез, Xрез, Rрез — результирующие сопротивления цепи к. з.

Величина амплитуды т. к. з. iу

Зависимость ударного коэффициента Ку от постоянной времени Tк (для отношения X/R)

В случае приближенного определения величины т. к. з. на стороне низкого напряжения ТП можно пренебречь результирующим сопротивлением от станции до рассматриваемой подстанции, поскольку это сопротивление значительно меньше полного сопротивления обмоток трансформатора понизительной подстанции.

При этом условии

Напряжение к. з. трансформатора UK %, определяется как

Поэтому, решая 2 формулы выше совместно относительно Iк получим

где Uк — 5,5% для двухобмоточных трансформаторов при напряжении до 10 кВ. Если работает параллельно несколько трансформаторов, то в качестве IN принимается суммарный номинальный ток.

Подставляя в формуле выше UK % = 5,5%, определяем, что ток к. з. на шинах низкого напряжения превышает номинальный ток трансформаторов примерно в 18 раз.

«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

Источник

Способы определения ударного коэффициента и ударного тока короткого замыкания

date image2020-04-07
views image417

facebook icon vkontakte icon twitter icon odnoklasniki icon

Способ расчета ударного тока КЗ зависит от требуемой точности расчета и конфигурации исходной схемы.

При расчете ударного тока КЗ с целью проверки проводников и электрических аппаратов по условиям КЗ допустимо считать, что амплитуда периодической составляющей тока КЗ в момент наступления ударного тока равна амплитуде этой составляющей в начальный момент КЗ.

Читайте также:  Ток заряда конденсатора вывод формулы

В практических расчетах ударный ток находят при наибольшей апериодической составляющей. Наибольшее начальное значение апериодической составляющей при холостом ходе в предшествующем режиме и когда вектор напряжения проходит через нуль.

С учетом этих условий выражение для ударного тока КЗ можно записать

где КУД – ударный коэффициент, характеризующий превышение ударного тока над амплитудой периодической составляющей тока КЗ, зависит от Та (рис. 2.26).

Ударный коэффициент рекомендуется определять по формуле:

Ударный коэффициент зависит от постоянной времени затухания апериодической составляющей . При КУД →1, а при КУД →2, т.е. значение ударного коэффициента изменяется в пределах 1

где КУД – ударный коэффициент, зависящий от Та (рис. 2.26).

Значение отношения х/r элементов систем электроснабжения и постоянных времени типичных радиальных ветвей даны в таблицах 2.5 и 2.6.

Средние значения отношения х»/r для элементов системы электроснабжения

Элемент х»/r
Подстанция энергосистемы, с которой ГПП связана, на напряжение:35 кВ 110 – 150 кВ 220 – 330 кВ 6,3 6,3 – 10 10 – 13
Электростанция, состоящая из блоков турбогенератор — трансформатор, при мощности генератора: 100 – 200 МВт: 300 МВт 500 МВт 80 100 110
Заводская ТЭЦ, связанная с предприятием на генераторном напряжении, с турбогенераторами мощностью 12 – 60 МВт 50 – 80
Воздушные линии электропередачи напряжением:35 кВ 110 кВ 150 кВ 220 кВ 330 кВ 0,6 – 1 1,3 – 2,6 3 – 3,5 3,6 – 4 4 – 4,5
Кабельные линии электропередачи напряжением 1/6 – 10/35 кВ, выполняемые трехжильным кабелем сечением алюминиевой жилы: 25 мм 2 35 мм 2 50 мм 2 70 мм 2 95 мм 2 120 мм 2 150 мм 2 185 мм 2 0,06/0,06/0,1 0,08/0,09/0,13 0,11/0,13/0,20 0,16/0,18/0,27 0,21/0,24/0,36 0,27/0,31/0,46 0,35/0,40/0,60 0,44/0,50/0,75
Силовые трансформаторы двухобмоточные 6 – 10/0,4 – 0,69 кВ номинальной мощностью 25 – 2500 кВ·А 2,8/5
Силовые трансформаторы двухобмоточные с высшим напряжением 35 кВ номинальной мощностью 1000 – 10000 кВ·А 5,4-11,5
Силовые трансформаторы двухобмоточные с высшим напряжением 110 кВ номинальной мощностью 10000 кВ·А: 16000 кВ·А 17,5 18,5
Силовые трансформаторы двухобмоточные с высшим напряжением 110 кВ: с расщепленной обмоткой НН, номинальной мощностью 25000 – 80000 кВ·А при параллельном соединении обмоток НН 40 – 65 26 – 45
Токоограничивающий реактор при номинальном токе до 630 А 1000 А и выше 15 – 70 40 – 80


Средние значения отношения xРЕЗ /rРЕЗ и постоянной времени TА ударного коэффициента КУД для характерных радиальных ветвей системы электроснабжения напряжением выше 1 кВ

Если исходная расчетная схема является многоконтурной, но все источники энергии связаны с расчетной точкой КЗ общим сопротивлением, то при приближенных расчетах ударного тока КЗ рекомендуется использовать формулу (2.53) , а ударный коэффициент определить по формуле:

где Та.эк – эквивалентная времени затухания апериодической составляющей тока КЗ рассчитывается по формуле:

где Xрез(R=0) — результирующее индуктивное сопротивление схемы, найденное при отсутствии всех активных сопротивлений (Rрез = 0);

Rрез(Х=0) — результирующее активное сопротивление схемы при отсутствии всех индуктивных сопротивлений (Xрез = 0), найденных относительно точки КЗ.

В тех случаях, когда исходная расчетная схема является многоконтурной, но точка КЗ делит ее на несколько независимых частей, то ударный ток допустимо принимать равным сумме ударных токов от соответствующих частей схемы, т.е.

где IП0i – начальное действующее значение периодической составляющей тока КЗ от i – й части схемы;

КУДi – ударный коэффициент тока КЗ от от i – й части схемы.

В приближенных расчетах эквивалентную постоянную времени не определяют, а принимают усредненные значения ударного коэффициента для ветви с гидрогенераторами – KУД.Г = 1,9; для ветви с турбогенераторами – KУД.Т = 1,8: для ветви с системой – KУД.С =1,4.

Ударный ток КЗ для сложной схемы определяют по формуле

iУД = (IП0.Г ·KУД.Г +IП0.Т ·KУД.Т +IПС ·KУД.С). (2.57)

Рис. 2.26. Зависимость КУД от постоянной времени ТА

(или от отношения ) при Iпt=Iп0

Источник