script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Управление коллекторным двигателем постоянного тока arduino

Управление двигателем постоянного тока с помощью Arduino Uno

В этой статье мы будем подключать двигатель постоянного тока к Arduino Uno и управлять скоростью его вращения. Делать мы это будем с помощью ШИМ (широтно-импульсной модуляции, в англ. языке PWM — Pulse Width Modulation) – эта функция реализована в Arduino чтобы на основе постоянного напряжения иметь возможность получения изменяющегося напряжения.

Управление двигателем постоянного тока с помощью Arduino Uno: внешний вид конструкции

Общие принципы ШИМ

Метод осуществления ШИМ показан на следующем рисунке.

Если на представленном рисунке кнопка нажата, то двигатель начнет вращение и он будет вращаться до тех пор пока кнопка не будет отжата. Эта ситуация происходит если кнопка будет нажата постоянно – верхний график на представленном рисунке. Если же мы будем нажимать кнопку только в течение 8 мс из всего цикла в 10 мс, то в этом случае двигатель уже не будет в полной мере получать все напряжение батареи 9 В – в этом случае среднеквадратичная величина напряжения, получаемого двигателем, будет около 7 В. Соответственно, двигатель по сравнению с первым случаем (когда кнопка нажата постоянно) будет вращаться с меньшей скоростью. Поэтому цикл занятости (который еще называют коэффициентом заполнения ШИМ) в этом случае составит время включенного состояния/(время включенного состояния + время выключенного состояния) = 8/(8+2)=80%.

В следующих рассмотренных на рисунке случаях кнопка будет находиться в нажатом состоянии еще меньше чем в рассмотренном случае (80%). Соответственно, среднеквадратичная величина напряжения, получаемого двигателем, будет составлять еще меньшую величину, поэтому и скорость вращения двигателя также уменьшится. Это уменьшение скорости вращения двигателя вследствие уменьшения среднеквадратичной величины напряжения будет происходить до тех пор, пока получаемое двигателем напряжение не станет не достаточным для его вращения. То есть, изменяя величину цикла занятости (коэффициент заполнения ШИМ), можно управлять скоростью вращения двигателя постоянного тока.

Принцип работы H-моста

Перед тем, как переходить непосредственно к управлению двигателем, обсудим что такое H-BRIDGE (H-мост). Собранная нами далее схема будет осуществлять две функции: управлять двигателем постоянного тока с помощью управляющих сигналов малой мощности и изменять направление вращения двигателя.

Нам известно, что для изменения направления вращения двигателя постоянного тока необходимо изменить полярность приложенного к нему питающего напряжения. И как раз для смены полярности напряжения хорошо подходит устройство, называемое H-мостом. На представленном выше рисунке мы имеем 4 выключателя. Как показано на рисунке 2 если выключатели A1 и A2 замкнуты, то ток через двигатель течет справа налево как показано на второй части рисунка 2 – то есть в этом случае двигатель будет вращаться по часовой стрелке. А если выключатели A1 и A2 разомкнуты, а B1 и B2 – замкнуты, то ток через двигатель в этом случае будет протекать слева направо как показано на второй части рисунка, то есть двигатель будет вращаться против часовой стрелки. В этом и заключается принцип работы H-моста.

Рисунок 2 (часть 1)

Рисунок 2 (часть 2)

Мы в качестве H-моста будем использовать специализированную микросхему L293D, которую еще называют драйвером двигателей. Эта микросхема предназначена для управления двигателями постоянного тока малой мощности (см. рисунок) и содержит в своем составе два H-моста, то есть с ее помощью можно управлять двумя двигателями. Эта микросхема часто используется для управления двигателями в различных роботах.

В следующей таблице указаны необходимые значения напряжений на выводах INPUT1 и INPUT2 микросхемы L293D для смены направления вращения двигателя.

Enable Pin Input Pin 1 Input Pin 2 Motor Direction
High Low High вправо
High High Low влево
High Low Low стоп
High High High стоп

То есть, чтобы двигатель вращался по часовой стрелке необходимо чтобы на 2A было напряжение высокого уровня (high), а на контакте 1A – напряжение низкого уровня (low). Аналогично для вращения двигателя против часовой стрелки необходимо обеспечить на 1A напряжение высокого уровня, а на 2A – низкого.

Как показано на следующем рисунке Arduino UNO имеет 6 ШИМ каналов (обозначенных на плате специальным знаком – тильдой), любой из которых мы можем использовать для получения изменяющего напряжения (на основе ШИМ). В данном проекте мы будем использовать в качестве ШИМ выхода контакт PIN3 Arduino UNO.

Контакты ШИМ на плате Arduino UNO

Необходимые компоненты

  1. Плата Arduino UNO (купить на AliExpress).
  2. Драйвер двигателей L293D (купить на AliExpress).
  3. Электродвигатель постоянного тока.
  4. Светодиод (купить на AliExpress).
  5. Резистор 10 кОм (2 шт.) (купить на AliExpress).
  6. Кнопка (2 шт.).
  7. Конденсатор 100 пФ (купить на AliExpress).
  8. Переключатель.
  9. Источник питания с напряжением 5 В.

Работа схемы

Схема устройства (на макетной плате) представлена на следующем рисунке.

В рассматриваемой схеме мы имеем две кнопки, у каждой из которых, естественно, будет присутствовать эффект, называемый «дребезгом контактов». Но в данном случае для нас он не будет нести никакого негативного эффекта и не будет вызывать ошибок в работе схемы.

На нашем сайте мы уже рассматривали управление ШИМ с помощью микроконтроллера AVR ATmega и это управление было не самым простым делом – необходимо было сконфигурировать различные регистры. В отличие от этого управление ШИМ в Arduino UNO является крайне простым занятием, не требующем всего этого.

Исходный код программы

По умолчанию все необходимые заголовочные файлы подключаются автоматически самой средой ARDUINO IDE, она же конфигурирует сама и все регистры, необходимые для работы ШИМ, поэтому нам в программе уже не нужно заботиться об этих вещах. Все что нам нужно будет сделать – это определить на каком контакте мы будем использовать ШИМ.

То есть для использования ШИМ на нужном контакте нам необходимо сделать следующие вещи:

pinMode(ledPin, OUTPUT)
analogWrite(pin, value)
analogWriteResolution(neededresolutionnumber)

Сначала мы должны выбрать один из доступных 6 выходов (контактов) ШИМ. Потом необходимо установить этот контакт в режим на вывод данных.

После этого мы должны задействовать функции ШИМ на этом выходе используя функцию “ analogWrite(pin, value) ”. Здесь ‘pin’ обозначает номер контакта, на котором мы будем использовать ШИМ, в нашем случае это будет 3-й контакт.

Value в этой функции представляет собой цикл занятости (коэффициент заполнения) ШИМ, оно может принимать значения от 0 (всегда выключено) до 255 (всегда включено). Мы будем увеличивать и уменьшать это значение с помощью кнопок, присутствующих на схеме.

Плата Arduino UNO имеет максимальное разрешение (разрешающую способность) ШИМ, равную 8, что означает что value в функции analogWrite(pin, value) может принимать значения от 0 до 255. Но если в этом есть необходимость, мы можем уменьшать разрешение ШИМ используя функцию “ analogWriteResolution() ”, в скобках которой мы можем записать число в диапазоне 4-8, которое и будет определять разрешающую способность ШИМ платы Arduino UNO.

Переключатель на схеме служит для изменения направления вращения двигателя.

А теперь непосредственно сам код программы с комментариями.

Источник

Управление щёточными моторами с Arduino

Как вы знаете, никакую нагрузку мощнее светодиода нельзя подключать к Ардуино напрямую, особенно моторчики. Ардуино, да и вообще любой микроконтроллер – логическое устройство, которое может давать только логические сигналы другим железкам, а те уже могут управлять нагрузкой. Кстати, урок по управлению мощной нагрузкой постоянного и переменного тока у меня тоже есть. “Драйвером” мотора могут быть разные железки, рассмотрим некоторые из них.

Читайте также:  Таблица токов сечения постоянный ток

При помощи обычного реле можно просто включать и выключать мотор по команде digitalWrite(пин, состояние) , прямо как светодиод:

При помощи двойного модуля реле (или просто двух реле) можно включать мотор в одну или другую сторону, а также выключать:

Купить модуль реле можно на Aliexpress.

Мосфет

Полевой транзистор, он же мосфет, позволяет управлять скорость вращения мотора при помощи ШИМ сигнала. При использовании мосфета обязательно нужно ставить диод, иначе индуктивный выброс с мотора очень быстро убьёт транзистор. Скорость мотора можно задавать при помощи ардуиновской analogWrite(пин, скорость) .

Вместо “голого” мосфета можно использовать готовый китайский модуль:

Купить мосфет модуль можно на Aliexpress.

Реле и мосфет

Если объединить реле и мосфет – получим весьма колхозную, но рабочую схему управления скоростью и направлением мотора:

Специальный драйвер

Лучше всего управлять мотором при помощи специального драйвера, они бывают разных форм и размеров и рассчитаны на разное напряжение и ток, но управляются практически одинаково. Рассмотрим основные драйверы с китайского рынка:

Остальные драйверы смотри у меня вот тут. Схемы подключения и таблицы управления:




Пины направления управляются при помощи digitalWrite(pin, value) , а PWM – analogWrite(pin, value) . Управление драйвером по двум пинам может быть двух вариантов:

Моторы переменного тока

Мотором переменного тока (220V от розетки) можно управлять при помощи диммера на симисторе, как в уроке про управление нагрузкой.

Библиотеки

У меня есть удобная библиотека для управления мотором – GyverMotor, документацию можно почитать вот здесь. Особенности библиотеки:

  • Контроль скорости и направления вращения
  • Работа с ШИМ любого разрешения
  • Программный deadtime
  • Отрицательные скорости
  • Поддержка всех типов драйверов
  • Плавный пуск и изменение скорости
  • Режим “минимальная скважность”

Помехи и защита от них

Индуктивный выброс напряжения

Мотор – это индуктивная нагрузка, которая в момент отключения создаёт индуктивные выбросы. У мотора есть щетки, которые являются источником искр и помех за счёт той же самой индуктивности катушки. Сам мотор потребляет энергию не очень равномерно, что может стать причиной помех по линии питания, а пусковой ток мотора так вообще сильно больше рабочего тока, что гарантированно просадит слабое питание при запуске. Все четыре источника помех могут приводить к различным глюкам в работе устройства вплоть до срабатывания кнопок на цифровых пинах, наведения помех на аналоговых пинах, внезапного зависания и даже перезагрузки микроконтроллера или других железок в сборе устройства.

Отсечь индуктивный выброс с мотора можно при помощи самого обычного диода, чем мощнее мотор, тем мощнее нужен диод, то есть на более высокое напряжение и ток. Диод ставится встречно параллельно мотору, и чем ближе к корпусу, тем лучше. Точно таким же образом рекомендуется поступать с электромагнитными клапанами, соленоидами, электромагнитами и вообще любыми другими катушками. Логично, что диод нужно ставить только в том случае, если мотор или катушка управляется в одну сторону. Важные моменты:

  • При работе с драйвером и управлением в обе стороны диод ставить не нужно и даже нельзя!
  • При управлении ШИМ сигналом рекомендуется ставить быстродействующие диоды (например серии 1N49xx ) или диоды Шоттки (например серии 1N58xx).
  • Максимальный ток диода должен быть больше или равен максимальному току мотора.
  • Защитный диод, принимающий на себя обратный выброс ЭДС самоиндукции, также называется шунтирующим диодом, снаббером, flyback диодом.
  • В природе существуют мосфеты со встроенным защитным диодом. Этот диод является отдельным элементом и такой мосфет обычно имеет нестандартный корпус, читайте документацию на конкретный транзистор.
  • Диод, который показан на схематическом изображении мосфета, не является защитным диодом: это слабый и медленный “паразитный” диод, образованный при производстве транзистора. Он не защитит мосфет от выброса, нужно обязательно ставить внешний!

Помехи от щёток

Искрящиеся щетки мотора, особенно старого и разбитого, являются сильным источником электромагнитных помех, и здесь проблема решается установкой керамических конденсаторов с ёмкостью 0.1-1 мкФ на выводы мотора. Такие же конденсаторы можно поставить между каждым выводом и металлическим корпусом, это ещё сильнее погасит помехи. Для пайки к корпусу нужно использовать мощный паяльник и активный флюс, чтобы залудиться и припаяться как можно быстрее, не перегревая мотор.

Помехи по питанию, просадка

Мотор потребляет ток не очень равномерно, особенно во время разгона или в условиях переменной нагрузки на вал, что проявляется в виде просадок напряжения по питанию всей схемы. Беды с питанием решаются установкой ёмких электролитических конденсаторов по питанию, логично что ставить их нужно максимально близко к драйверу, то есть до драйвера. Напряжение должно быть выше чем напряжение питания, а ёмкость уже подбирается по факту. Начать можно с 470 мкф и повышать, пока не станет хорошо.

Разделение питания

Если описанные выше способы не помогают – остаётся только одно: разделение питания. Отдельный малошумящий хороший источник на МК и сенсоры/модули, и отдельный – для силовой части, в том числе мотора. Иногда ради стабильности работы приходится вводить отдельный БП или отдельный аккумулятор для надёжности функционирования устройства.

Экранирование

В отдельных случаях критичными являются даже наводки от питающих проводов моторов, особенно при управлении ШИМ мощными моторами и управлении мощными шаговиками в станках. Такие наводки могут создавать сильные помехи для работающих рядом чувствительных электронных компонентов, на аналоговые цепи, наводить помехи на линии измерения АЦП и конечно же на радиосвязь. Защититься от таких помех можно при помощи экранирования силовых проводов: экранированные силовые провода не всегда удаётся купить, поэтому достаточно обмотать обычные провода фольгой и подключить экран на GND питания силовой части. Этот трюк часто используют RC моделисты, летающие по FPV.

Видео


Источник



Управление мотором постоянного тока с помощью одного транзистора

В данной статье рассматривается наиболее простой способ подключения мотора постоянного тока к Arduino.

Введение

Моторы постоянного тока нельзя подключать напрямую к Arduino. Это обусловлено тем, что пины не способны выдавать ток более 40 мА. Мотору же, в зависимости от нагрузки, необходимо несколько сотен миллиампер. Потому возникает потребность увеличения мощности. Делается это, как-правило, с помощью транзисторов.

В статье «Транзисторы: схема, принцип работы,​ чем отличаются биполярные и полевые» можно ознакомиться с основными типами транзисторов и их принципами работы.

Так же рекомендуется посмотреть: Видеоуроки по Arduino, 5-я серия — Моторы и транзисторы. В данном уроке Джереми Блюм рассказывает о подключении мотора постоянного тока к Arduino через биполярный транзистор.

Необходимые компоненты

Мы рассмотрим вариант взаимодействия с полевым транзистором. Принципы подключения мотора будут разобраны на конкретном железе: DC-мотор, плата Arduino, N-канальный полевой транзистор, резистор на 10 кОм (R1), резистор на 220 Ом (R2).

Читайте также:  Как измеряется ток включенным амперметром

Вы же в своих экспериментах вольны использовать то, что есть в наличии. Важны лишь 3 условия:

Схема подключения

По-сути, обмотка мотора представляет собой катушку индуктивности. В момент подачи напряжения возникнет обратная электродвижущая сила, которая может вывести из строя транзистор. Flyback диод устанавливается в обратном направлении и предотвращает утечку тока с мотора на транзистор. Поэтому, если в транзисторе нет flyback диода, его необходимо установить дополнительно: анод на исток, катод на сток.

Транзистор IRF530N является мощным и поставляется в корпусе TO-220. Ниже приведена его распиновка.

В данной схеме транзистор будет работать в ключевом режиме: по одной команде (установка уровня HIGH на затворе) от Arduino транзистор будет подключать мотор к источнику питания (отпираться), по другой команде (установка уровня LOW на затворе) — отключать мотор от источника питания.

Резистор R1 подтягивает к земле затвор транзистора. Номинал не принципиален — можно использовать любые резисторы в диапазоне от 1 до 10 кОм. Резистор R2 служит для защиты пина микроконтроллера. Диапазон, примерно, от 10 до 500 Ом.

Чтобы запитать данную схему, можно подключить к Arduino внешний источник питания на 6-9 В, либо подать питание непосредственно на макетную плату ( синяя шина — минус, красная шина — плюс).

Программинг

Для наибольшей простоты воспользуемся, пожалуй, самым известным скетчем из готовых примеров — Blink.

Посмотрим, что получилось.

Цифровой пин 13 раз в секунду меняет своё состояние. Когда на выходе устанавливается значение HIGH — загорается светодиод и начинает вращаться мотор. Когда устанавливается LOW — светодиод гаснет, а мотор останавливается.

Результаты

Была получена возможность подключать к выводам Arduino мощные устройства, в частности, моторы постоянного тока.

Использование ШИМ для регулировки скорости мотора

Если мотором управлять ничуть не сложнее, чем светодиодом, то, наверное можно изменять яркость скорость вращения мотора точно так же, как при работе со светодиодами? Именно так! С точки зрения Arduino абсолютно не важно с чем мы имеем дело.

Как вы уже, наверно, могли догадаться, для изменения скорости вращения мотора нам понадобится скетч Fade.

Схема подключения

Чтобы использовать возможности функции analogWrite(..) , нам придётся перейти на один из пинов (3/5/6/9/10/11), поддерживающих аппаратный ШИМ. Поскольку, по умолчанию, в скетче Fade задействован 9-й пин, остановим свой выбор на нём.

Результат

Была получена возможность изменять скорость вращения мотора, используя аппаратный ШИМ Arduino.

На чём данная статья подходит к завершению. Теперь вы смело можете использовать моторы постоянного тока в своих проектах!

Источник

Управление двигателем постоянного тока с применением драйвера L298N и Arduino UNO

В данном примере мы рассмотрим один из способов управления электродвигателем постоянного тока, который осуществляется посредством платы Arduino и драйвера L298N. Несмотря на большое многообразие вариантов управления работой электрических машин постоянного тока, куда большей популярностью пользуется именно эта схема. Так как с ее помощью можно осуществлять достаточно широкий спектр различных операций, в сравнении со схемами, использующими другие драйвера и микроконтроллеры.

Введение

Электрическая машина постоянного тока является одной из самых простых в эксплуатации, благодаря чему ее так часто применяют в устройствах радиоэлектроники и робототехники. Такая популярность обусловлена простотой питания и управления – для этого подаются два полюса от источника эдс (отрицательный и положительный), и при протекании тока по обмоткам происходит вращение вала. При смене полярности двигатель совершает реверсивное движение.

В системах радиоэлектроники такие способы управления работой двигателя получили название широтно-импульсной модуляции (ШИМ). Такой процесс характеризуется изменением продолжительности подаваемого напряжения или формы его сигнала.

Как можно изменять скорость вращения при помощи ШИМ?

Применяя способ ШИМ, вы производите попеременную подачу и отключение напряжения на обмотки двигателя с большой частотой. Частота импульсов при этом может достигать нескольких килогерц.

Величина среднего напряжения, подаваемого на двигатель, напрямую зависит от формы сигнала ШИМ . Форма сигнала, в свою очередь, определяется рабочим циклом, который можно представить в виде отношения времени подачи сигнала к общему периоду (сумме времени подачи напряжения и его отключения). В результате получается безразмерная величина, которую выражают в процентном отношении – сколько времени от общего периода напряжение подавалось на двигатель. В слаботочных системах на 5, 12, 24 или 36 В применяется цикл на 25%, 50%, 75% и 100%.

Широтно-импульсная модуляция

Широтно-импульсная модуляци

Управление двигателем при помощи Arduino и сгенерированным сигналом ШИМ

Для запуска процесса плата генерирует сигнал, который подается на обмотки двигателя. Чтобы контролировать величину подаваемого сигнала в рабочую схему включается транзистор. Который включается в разрыв питающей сети, а на его базу подается управляющий импульс от Arduino. Задавая определенные параметры работы набором команд для Arduino, транзистор будет переходить в открытое, закрытое или приоткрытое состояние.

На рисунке ниже вы можете увидеть пример схемы, на которой питание двигателя контролируется Arduino через транзистор. Как видите, здесь от ШИМ выхода подается сигнал на базу транзистора, а через его коллектор и эмиттер будет подаваться напряжение на обмотку.

Принципиальная схема управления dc мотором

Принципиальная схема управления dc мотором

Программирование ардуино может выполняться с помощью компьютера, для этого используются как специальные утилиты, так и классические языки программирования. При программировании работы устройства вы можете использовать стандартный набор команд, который предоставит доступ к наиболее простым командам. Или собирать их в комбинации для формирования специфической логики работы устройства.

Пример программных команд для работы вышеприведенной схемы включения Arduino вы можете скачать по ссылке ниже. Применяя их, вы сможете управлять скоростью вращения, постепенно наращивая ее до максимального значения, и так же плавно снижая до полной остановки.

Полный скетч проекта:

Используемые команды:

  • void setup – поле для установки рабочего выхода с ШИМ порта;
  • void loop – поле для формирования рабочего процесса;
  • motorSpeed – задает скорость вращения двигателя;
  • analogWrite – задает работу конкретного вывода платы;
  • delay – устанавливает величину временного промежутка.

При помощи этой программы и вышеприведенной схемы вы сможете легко изменять скорость вращения двигателя постоянного тока, но менять направление его вращения будет достаточно сложно. Так как потребуется изменить направление протекание электрического тока по обмоткам. Поэтому менять направление вращения куда удобнее при помощи Н-моста на полупроводниковых преобразователях.

Управление двигателем постоянного тока с использованием Н-моста

Если рассмотреть принцип действия, то Н-мост представляет собой логическую схему из четырех логических элементов (релейного или полупроводникового типа), способных переходить в два состояния (открытое и закрытое). В данном примере рассматривается мост собранный на полупроводниках. Простым изменением попарного состояния этих элементов двигатель будет вращаться то в одну, то в другую сторону без необходимости переключения его контактов.

Свое название данное устройство получило за счет внешнего сходства с буквой «Н», где каждая пара транзисторов находится в вертикальных элементах буквы, а непосредственно сам управляемый мотор в горизонтальном. Пример элементарного Н-моста из четырех транзисторов приведен на рисунке ниже. Попарно открывая и закрывая нужные элементы схемы, вы сможете пропускать ток через обмотки в противоположных направлениях.

Читайте также:  Сила тока через закон фарадея

Схема H-моста

Схема H-моста

Посмотрите на рисунок, в этой схеме управление питанием двигателя происходит от выводов А и В, на которые подается управляющий потенциал.

Принцип определения направления вращения в Н-мосте происходит следующим образом:

  • при подаче на базы транзисторов Q1 и Q4 импульса для открытия перехода происходит протекание тока по обмоткам двигателя в одном направлении;
  • при подаче на базы транзисторов Q2 и Q3 импульса для открытия перехода ток будет протекать в противоположном направлении, в сравнении с предыдущим и произойдет реверсивное движение;
  • попарное открытие транзисторов Q1 и Q3, Q2 и Q4 приводит к торможению ротора;
  • открытие транзисторов в последовательности Q1 и Q2 или Q3 и Q4 совершенно недопустимо, поскольку оно приведет к возникновению короткого замыкания в цепи.

Применяя схему Н-моста для управления работой двигателя постоянного тока, вы сможете реализовать полный набор операций для электрической машины без необходимости переподключения ее выводов. В виду сложности подбора транзисторов и подключения их в схему Н-моста, гораздо проще использовать уже существующие драйвера, имеющие такую функцию. Среди них наиболее популярными являются драйверы L293D и L298N.

Сравнивая оба драйвера, следует отметить, что L298N превосходит L293D как по параметрам работы, так и по доступным опциям. Несмотря на то, что L293D более дешевая модель, L298N, ввиду значительных преимуществ, стал использоваться куда чаще. Поэтому в данном примере мы рассмотрим принцип управления двигателем при помощи драйвера L298N и платы Arduino.

Что представляет собой драйвер L298N?

Данная плата содержит микросхему и 15 выходов для генерации управляющих сигналов. Предназначено для передачи сигналов к рабочим элементам индуктивного типа – обмоткам двигателя, катушкам реле и т.д. Конструктивно L298N позволяет подключать в работу до двух таких элементов, к примеру, через нее можно одновременно управлять двумя шаговыми двигателями.

На схеме ниже приведен пример распределения выводов L298N от рабочей микросхемы.

L298N

L298N. Выводы

  • Vss – вывод питания для логических цепей в 5В;
  • GND – нулевой вывод (он же корпус);
  • INPUT1, INPUT 2, INPUT 3, INPUT 4 – позволяют плавно наращивать и уменьшать скорость вращения двигателя;
  • OUTPUT1, OUTPUT2 – выводы для питания первой индуктивной нагрузки;
  • OUTPUT3, OUTPUT4 – выводы для питания второй индуктивной нагрузки;
  • Vs – вывод для переключения питания;
  • ENABLE A, B – выводы, при помощи которых осуществляется раздельное управление каналами, могут устанавливать активный и пассивный режим (с регулируемой скоростью вращения и с установленной);
  • CURRENT SENSING A, B – выводы для установки текущего режима.

Принцип управления двигателем при помощи Arduino и драйвера L298N

Благодаря наличию в драйвере L298N встроенного моста данная плата позволяет осуществлять одновременное управление сразу двумя электрическими машинами от двух пар выводов. Логическая схема в данном устройстве работает от напряжения в 5В, а питание самих электрических машин можно осуществлять до 45В включительно. Максимально допустимый ток для одного канала платы составляет 2А.

Как правило, этот драйвер имеет модульное исполнение, за счет чего в комплект модуля уже включены рабочие элементы, выводы и разъемы, необходимые для передачи управляющих сигналов. Пример такого драйвера показан на рисунке ниже:

Пример драйвера L298N

Пример драйвера L298N

Теперь разберем, как осуществляется управление двигателем с помощью драйвера L298N. Подключение двигателя производится к винтовым клеммным зажимам – по паре для питания каждого моторчика. Остальные клеммные зажимы предназначены для подачи питания плюс и минус, а также получения пониженного напряжения (на них подается определенный уровень питающего напряжения, от которого работают двигатели, а внутренний преобразователь понижает его до 5В для собственных логических цепей). Штекерные выводы платы осуществляют широтно-импульсную модуляцию при формировании рабочих сигналов.

Зажимы, куда подключать моторы

Зажимы, куда подключать моторы

Следует отметить, что клеммный зажим с тремя выводами не только подводит к плате питающее напряжение, но и позволяет получить его уже преобразованное для собственных нужд драйвера величиной в 5В, как показано на рисунке выше. Этот выход можно использовать для запитки того же Ардуино или для любых других устройств, которые питаются от 5В.

Немаловажным моментом для получения 5В от этого клеммного вывода является установка черной перемычки, которая отвечает за преобразование отличного от 5 В уровня напряжения, при условии, что его уровень ниже 12В. Если уровень питающего напряжения выше 12В, перемычку необходимо снять, так как внутренний преобразователь на него не рассчитан, а сама плата должна запитываться от 5В через третий вывод этого же клеммника.

Простой пример работы Arduino с драйвером L298N

Сейчас мы рассмотрим пример простой схемы совместного использования Arduino и L298N. Такой вариант позволяет управлять скоростью вращения вала и его направлением у двигателя постоянного тока. Для этого задается специальная программа на ПК, которая будет определять генерацию ШИМ сигнала от L298N и направление протекания электрического тока через Н-мост. Разумеется, для формирования схемы потребуются еще несколько дополнительных компонентов, которые позволят соединить между собой драйвер, Ардуино, компьютер и двигатели.

Схема совместного использования Arduino и L298N

Схема совместного использования Arduino и L298N

Перечень необходимых компонентов для сборки схемы:

  • Arduino UNO — наиболее простая модель из линейки, но его функционала будет более чем достаточно. Если вы используете более продвинутый вариант, то он также хорошо справится с этой задачей.
  • Драйвер L298N – не самый доступный драйвер, но заменить его другим не получится, так как принцип работы похожих моделей может в корне отличаться.
  • Двигатель на 12 В – в данном примере используется электрическая машина постоянного тока.
  • Потенциометр 100 кОм.
  • Кнопка для коммутации цепи.
  • Источник питания 12 В — может подойти любой вариант, включая несколько пальчиковых батареек.
  • Плата для установки элементов.
  • Соединительные провода, желательно с готовыми штекерами папа/мама.
Компонент Спецификация Количество Где купить
Arduino UNO Rev3.0 1 [mask_link]Ссылка[/mask_link]
Драйвер L298N 1 [mask_link]Ссылка[/mask_link]
Мини-двигатель 12В, DC, 6000 об/мин. 1 [mask_link]Ссылка[/mask_link]
Блок питания 12 Вольт 1 [mask_link]Ссылка[/mask_link]
Кнопка Micro SMD SMT 1 [mask_link]Ссылка[/mask_link]
Потенциометр 100 кОм 1 [mask_link]Ссылка[/mask_link]
Соединительные провода папа-мама [mask_link]Ссылка[/mask_link]

Полный код проекта:

Практическое применение.

Программирование работы электрическими двигателями широко используется в робототехнике, к примеру, ваше изобретение, оснащенное колесами, сможет осуществлять движение и в прямом, и в обратном направлении. Как вы могли уже убедиться, совместная работа Arduino и драйвера L298N сможет без проблем решить такую задачу. При этом вы можете обеспечить одновременную работу сразу двух двигателей от одного драйвера, то есть управлять сразу двумя колесами, причем независимо друг от друга.

В другом варианте двигатели, управляемые Arduino и драйвером L298N могут перемещать руки робота в прямом и реверсивном направлении, передвигаться по линейной траектории и т.д. Полный перечень возможностей платы Arduino и драйвера L298N ограничивается только вашей собственной фантазией, поэтому вы можете самостоятельно найти им интересное применение.

Источник