script type="text/javascript" src="https://majorpusher1.com/?pu=me2tczbsmy5ha3ddf4ytsoju" async>
Меню

Виды торможения электродвигателей переменного тока

Виды и схемы динамического торможения асинхронного двигателя

Электропривод является основой практического большинства современных механизмов. Одной из форм его работы является динамическое торможение асинхронного двигателя. Почему этот режим имеет такое значение и как он организовывается, попытаемся разобраться в этой статье.

Асинхронный двигатель и его работа

Конструкция асинхронного двигателя

Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Схема динамического торможения

Что такое динамическое торможение?

На этом месте может возникнуть закономерный вопрос: зачем что-то придумывать, если можно отключить двигатель от электросети, и он сам остановится? Это бесспорно так, но учитывая высокую частоту вращения и массо-центровочные характеристики, пройдет некоторое время до того момента, когда ротор полностью остановится. Этот период называется свободным выбегом и каждый в детстве его наблюдал, запуская простую юлу. Тем не менее, если работа оборудования предполагает частое использование пускателей, то такой режим приводит к очевидной потере времени.

Для быстрой остановки используются режимы торможения, которые предполагают трансформацию механической (в данном случае – кинетической) энергии искусственным путем. Все выделяют два основных вида торможения, которые подразделяются затем на подвиды:

  1. Механическое. Вал двигателя сообщается физически с тормозными колодками, вследствие чего возникает трение, быстрая остановка и выделение теплоты,
  2. Электрическое. Асинхронный двигатель останавливается за счет преобразования цепи подключения, вследствие чего механическая энергия трансформируется сперва в электрическую. Далее возможны два варианта ее израсходования, зависящие от схемы: либо избыток электричества выбрасывается в резервную цепь сети, либо трансформируется в тепло, за счет нагрева обмоток и сопротивления.

Динамическое торможение асинхронного двигателя относится к электрическому типу, так как в процессе обмотка статора отключается от сети с переменным током (две из трех фаз) и переводится в замкнутую цепь постоянного тока. При этом магнитное поле в статоре преобразуется из вращающегося в неподвижное. В роторе по-прежнему будет наводиться ЭДС, но момент будет направлен в обратную сторону, что приводит к торможению.

Схема динамического торможения

Главным преимуществом такого способа торможения является возможность плавно контролировать тормозящий момент (за счет изменения напряжения или сопротивления) и осуществлять точную остановку.

Основные виды динамического торможения

Организация принудительной остановки асинхронного двигателя по электрическому принципу может быть осуществлена несколькими способами:

  1. Электродинамическим. Это классический вариант, при котором две фазы нужно закоротить и перевести на питания от цепи постоянного тока,
  2. Рекуперативным (генераторным). Характеризуется возвратом лишней электроэнергии в сеть,
  3. Противовключением. Этот вариант реализуется по схеме реверса, то есть с подключением фаз через пару магнитных пускателей,
  4. Самовозбуждением. Подключением к обмоткам статора батареи конденсаторов.

Виды динамического торможения

Виды динамического торможения

Классическое динамическое торможение

Эффективность такого режима работы зависит от расчета и значения следующих параметров:

  1. Величина тока, который подается через параллельную цепь на обмотки статора. Чем выше этот показатель, тем больше момент торможения,
  2. Величина сопротивления, которое вводится в цепь ротора. Чем выше по расчету сопротивление, тем быстрее тормозится двигатель,
  3. Величина магнитной движущей силы (МДС). Иногда ее называют ампер витками, поскольку расчет ведется по формуле F = I×W, где I – величина тока, а W – количество витков.

Обмотка статора при этом может подключаться как минимум пятью разными способами:

  1. Треугольником,
  2. Треугольником с закороченными фазами,
  3. Звездой,
  4. Звездой с закороченным нулем,
  5. Звездой с закороченными двумя фазами.

В каждом случае на основании векторной диаграммы ведется расчет МДС, тормозного сопротивления и напряжения цепи.

Рекуперативное торможение

Режим рекуперативного торможения

Режим рекуперативного торможения

Поскольку избыток электроэнергии, который высвобождается в процессе торможения, направляется обратно в сеть через мост/батарею конденсаторов, то этот режим работы считается наиболее экономичным. Наиболее часто этот способ применяется в подъемно-транспортной технике и оборудовании, которое работает на перемещение грузов или собственного веса под уклон. Классический пример – лифт, где рекуперативное торможение приводного двигателя используется для начального подтормаживания. Также подобная схема широко используется в электрифицированном транспорте, например, в трамваях, троллейбусах, электричках. Применяют ее и в специальной технике, например, экскаваторах, широко используемых на строительстве мостов, дорог, зданий и т. п.

Принцип расчета и организации генераторного режима заключается в превышении частотой вращения ротора ее синхронного значения. В таком случае электромагнитный момент меняет направление, что приводит к торможению.

Торможение противовключением

Схема торможения противовключением

Схема торможения противовключением

На практике режим противовключения может быть организован несколькими разными способами. Классическим является использование пары магнитных пускателей, подключенных по реверсной схеме. В этом случае, быстрая остановка агрегата осуществляется за счет изменения положения фаз (противовключение).

Читайте также:  Укажите направление линии магнитного поля в если известно что проводник с током

Основной пускатель КМ2 производит отключение двигателя М от сети. После этого параллельный пускатель КМ1 опять включает двигатель, меняя при это крайние фазы местами, то есть заставляя его вращаться в обратную сторону. Чтобы не допустить чрезмерного перегрева в цепь может быть введено дополнительное сопротивление. Также схема противовключения может быть реализована, если двигатель использовать в качестве тормоза для груза.

Торможение самовозбуждением

Схема торможения самовозбуждением

Схема торможения самовозбуждением

Этот вариант реализуется за счет подключения обмоток статора к параллельной конденсаторной батарее или мосту (расчет емкости придется вести). Когда двигатель отключается от сети и должен наступить режим выбега, угасающее магнитное поле начинает питать конденсаторы, а через них возвращается обратно в обмотку, создавая тормозной момент.

Как можно видеть, на практике используется целая гамма специфических режимов работы асинхронных двигателей, которыми можно добиться быстрой и точной его остановки. При частых пусках и остановках динамическое, рекуперативное, реверсное (на пускателях) или конденсаторное торможение (через расчет моста или батареи) могут повысить эффективность работ оборудования и снизить потери времени.

Источник

Способы торможения электродвигателей

Торможение электродвигателей необходимо для уменьшения времени выбега и фиксации приводимого устройства в конкретном положении. Если не использовать способы торможения процесс останова может занять недопустимо большое время. Различают механические и электрические способы торможения.

Механическое торможение предусматривает использование тормозных колодок на тормозном шкиве. Электрическое торможение обеспечивает более точный тормозящий момент. Для фиксации механизма строго в определенной точке часто используют оба способа торможения.

Различные электроприводы на производстве должны обеспечивать определенные режимы работы. Эти режимы служат для остановки приводимого механизма или удержания его заданной скорости при наличии положительного момента электродвигателя.

Среди способов торможения различают режимы:

  • Противовключение.
  • Динамический.
  • Рекуперативный.

Противовключение используется для осуществления быстрой остановки приводимого машинного устройства. Осуществляется этот режим переключением фаз на обмотках электродвигателя и разворотом вращающегося поля в обратном направлении.

Для торможения двигателей постоянного тока таким способом достаточно переподключить обмотки якоря. Изменением направления тока якоря и момента добиваются изменения направления вращения и остановки. Для ограничения возникающего в обмотках тока в цепи якорных и статорных обмоток дополнительно включаются балластные резисторы. Через них происходит основное рассеивание энергии торможения.

Для динамического торможения характерно, что электродвигатель переходит в генераторный режим. Якорь электродвигателя в момент торможения переподключается на сопротивления без отключения возбуждающего напряжения со статора. Часто асинхронные двигатели тормозят подачей постоянного напряжения на статорные обмотки двигателя.

Таким образом, создание неподвижного магнитного поля в роторе достигается наличием постоянного тока в статоре двигателя и созданием эффективного тормозного момента. Значение момента будет зависеть от возбуждающего тока и частоты вращения ротора.

Рекуперативный режим обеспечивает торможение двигателя за счет отдачи энергии торможения в сеть.

Источник



Способы торможения асинхронного двигателя

Торможение АД можно осуществить как при питании его от сети переменного тока, так и путем подключения цепи статора к источнику по­стоянного тока (динамическое торможение), а также при его само­возбуждении [1].

При включении АД по основной схеме (см. рис. 62, а) возможно торможение противовключением и рекуперативное торможение.

Торможение противовключением осуществляется двумя путями. Один из них связан с изменением чередования на статоре двух фаз питающего АД напряжения. Допустим, например, что АД работа­ет по механической характеристике 1 в точке а (рис. 104, а) при чередовании на статоре фаз напряжения сети ABC. Тогда при пере­ключении двух фаз (например, В и С) АД переходит на работу по характеристике 1 в точке d, участок db которой соответствует тор­можению противовключением. При торможении противовключением к двигателю подводится мощность, как со стороны статора, так и со стороны ротора. Вся подведенная к АД мощность выделяется в цепи обмотки ротора. Для ограничения тока и момента АД при торможении противовключением необходимо вклю­чение добавочных резисторов в цепь ротора или статора. При включении добавочных сопротивлений в цепь ротора происходит «смягчение» механических характеристик двигателя. Причем, чем больше добавочное сопротивление цепи ротора, тем мягче механическая характеристика и тем дальше в область положительных значений скольжения s сдвигается максимум момента. Величина же самого максимального (критического) момента Мк остается неизменной.

Другой путь перевода АД в режим торможения противовключе­нием может быть использован при активном характере момента нагрузки Мс. Допустим, что требуется осуществить спуск груза, обес­печивая его торможение с помощью АД (так называемый тормоз­ной спуск груза). Для этого АД включается на подъем с большим добавочным сопротивлением R в цепи ротора (кривая 2). Вслед­ствие превышения моментом нагрузки Мс пускового момента двигателя Мп и его активного характера груз начнет опускаться с уста­новившейся скоростью — Ω уст 1. АД при этом будет работать в режи­ме торможения противовключением.

Рис.104. Механические характеристики АД при торможении противовключением (а) и с рекуперацией энергии в сеть (б)

Рекуперативное торможение осуществляется в том случае, когда скорость АД превышает синхронную ω1 и он работает в генератор­ном режиме параллельно с сетью. Такой режим возникает, например, при переходе двухскоростного АД с высокий скорости на низкую, как это показано на рис. 104, б. Предположим, что в исходном поло­жении АД работал по характеристике 1 в точке а, вращаясь со скоро­стью Ωуст1. При увеличении числа пар полюсов АД переходит на ра­боту по характеристике 2 в точке b, участок be которой соответству­ет торможению с рекуперацией (отдачей) энергии в сеть.

Читайте также:  Понятие электрической цепи сила тока напряжение сопротивление ответ

Этот же вид торможения может быть реализован в системе «пре­образователь частоты — двигатель» при останове АД или его пере­ходе с одной характеристики (c частотой f1) на другую характеристику (с частотой f2

Рекуперативное торможение также может быть реализовано в ЭП грузоподъемных механизмов при спуске грузов. Для этого АД включается в направлении спуска груза (характеристика 3 на рис. 104, а). После окончания разбега он будет работать в точке с со скоростью – Ωуст.2. При этом осуществляется процесс спуска груза с отдачей энергии в сеть.

Рекуперативное торможение является наиболее экономичным видом торможения АД.

Для динамического торможения обмотку статора АД отключа­ют от сети переменного тока и подключают к источнику постоян­ного тока, как это показано на рис. 105. Обмотка ротора АД 1 при этом может быть закорочена или в ее цепь включаются добавочные резисторы 3 с сопротивлением R.

Постоянный ток Iп, значение которого может регулироваться ре­зистором 2, протекает по обмоткам статора и создает неподвижное в пространстве магнитное поле (возбуждает АД). При вращении ро­тора в нем наводится ЭДС, под действием которой в обмотке проте­кает ток, создающий магнитный поток, также неподвижный в прост­ранстве. Взаимодействие тока ротора с результирующим магнитным полем АД создает тормозной момент, за счет которого достигается эффект торможения. Двигатель в этом случае работает в режиме ге­нератора независимо от сети переменного тока, преобразовывая кинетическую энергию движущихся частей ЭП и рабочей машины в электрическую, которая рассеивается в виде тепла в цепи ротора.

Формулы для характеристик АД в режиме динамического тор­можения выводятся на основании анализа его схемы замещения. Опуская вывод формул, представим графически электромеханичес­кую I2‘(s) (кривая 7) и механические M(s) кривые 46 характерис­тики АД.

Характеристика расположена на рисунке в первом квадран­те, где s = Ω/ω1 — скольжение АД в режиме динамического тормо­жения. Механические характеристики АД расположены во втором квадранте.

Различные искусственные механические характеристики АД в режиме динамического торможения можно получить, изменяя со­противление R добавочных резисторов 3 в цепи ротора или по­стоянный ток Iп, подаваемый в обмотки статора. На рисунке пока­заны механические характеристики АД для различных сочетаний Iп и R. Характеристика 6 соответствует току Iп1 и сопротивлению ре­зистора R, максимальный момент на ней равен Мm1, а скольже­ние, ему соответствующее, — sm1.

Увеличение сопротивления резис­торов 3 R2д 2 > R2д 1 при Iп = const не приводит к изменению максималь­ного момента, в то время как максимальное скольжение sm при этом пропорционально возрастает, что видно из характеристики 4.

Увеличение тока Iп (Iп2>Iп1) при R=const вызывает увеличение максимального момента пропорционально квадрату тока. Харак­теристика двигателя в этом случае имеет вид кривой 5. Варьируя зна­чения Iп и R можно получить желаемый вид механических характе­ристик АД в режиме динамического торможения и тем самым соот­ветствующую интенсивность торможения асинхронного ЭП.

Рис.105. Схема (а) и характеристики (б) АД при динамическом торможении

Торможение АД при самовозбуждении основано на том, что после от­ключения АД от сети его электромагнитное поле затухает (исчеза­ет не мгновенно) в течение некоторого, пусть и небольшого интер­вала времени. За счет энергии этого затухающего поля и ис­пользования специальных схем включения АД можно обеспечить его самовозбуждение и реализовать тормозной режим. На практи­ке применение нашли так называемые конденсаторное и магнит­ное торможение АД.

При конденсаторном торможении, схема которого приведена на рис.105, а, возбуждение АД 1 осуществляется с помощью конден­саторов 2, подключаемых к статору. Отметим, что конденсаторы могут подключаться к статору постоянно (глухое подключение) или с помощью дополнительного контактора, будучи при этом со­единенными в схему треугольника или звезды.

Определяющим фактором, от которого зависят вид и расположе­ние характеристик АД 1. 3 (см. рис. 106, б), а значит, интенсивность торможения, является емкость конденсаторов С (кривые 1. 3 соот­ветствуют значениям С1 35 363738>

Дата добавления: 2019-02-08 ; просмотров: 2069 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Способы и схемы торможения электродвигателей

Торможение электродвигателя применяют, если необходимо сократить время свободного выбега и фиксацию механизма в конкретном положении. Существует несколько видов принудительной остановки устройства. Это механическое, электрическое и комбинированное. Механическое устройство представляет собой тормозной шкив, закрепленный на валу, с колодками. После отключения устройства колодки прижимаются к шкиву. За счет трения кинетическая энергия преобразуется в тепловую, т.е. происходит процесс торможения. Остальные способы и схемы торможения электрического двигателя будут рассмотрены далее в статье.

  • Способы электрического торможения электроприводов
  • Противовключения
  • Динамическая остановка электропривода
  • Режимы торможения моторов постоянного тока
  • Рекуперативное торможение электрических машин
  • Режим рекуперации в асинхронных электрических машинах
  • Комбинированный режим

Способы электрического торможения электроприводов

Для того чтобы быстро остановить устройство или обеспечить постоянную скорость вращения используют электрические способы остановки. В зависимости от схемы включения тормозные режимы подразделяют на:

  • противовключения;
  • динамический;
  • рекуперативный.
Читайте также:  Насос малыш пусковой ток

Противовключения

Режим противовключения применяется при необходимости быстрой остановки механизма. Представляет собой смену полярности на обмотке якоря двигателя постоянного тока или переключения двух фаз на обмотках асинхронного электродвигателя.

В этом случае ротор вращается в противоположном направлении магнитного поля статора. Вращение ротора замедляется. При скорости вращения близкой к нулю с реле контроля скорости поступает сигнал, отключая механизм от сети.

На нижеприведенном рисунке представлена схема противовключения асинхронного электромотора.

Схема торможения противовключением

После переключения обмоток возникает повышенное действующее напряжение и увеличение тока. Для его ограничения, в обмотки ротора или статора устанавливают дополнительные резисторы. Они ограничивают токи в обмотках в режиме торможения.

Динамическая остановка электропривода

Этот способ применяют на асинхронных машинах, подключенных к сети переменного тока. Он заключается в отключении обмоток от сети переменного напряжения и подачи постоянного тока на обмотку статора.

Торможение асинхронного двигателя постоянным током

На вышеприведенном рисунке представлена схема торможения трехфазного двигателя постоянным током.

Подача постоянного напряжения осуществляется с помощью понижающего трансформатора для динамического торможения. Пониженное переменное напряжение преобразуется в постоянное диодным мостом и подается на статорную обмотку. Для торможения электромотора может применяться дополнительный источник постоянного тока.

При этом ротор может быть выполнен в виде «беличьей клетки» или ее обмотку подключают к добавочным резисторам.

Постоянное напряжение создает неподвижный магнитный поток. При вращении ротора в нем наводится ЭДС, т.е. электромотор переходит в режим генератора. Возникающая электродвижущая сила рассевается на обмотке ротора и добавочных резисторах. Создается тормозной момент. В момент остановки механизма постоянное напряжение отключается по сигналу реле скорости.

Механизмы, где применяется электродвигатель с самовозбуждением, динамическую остановку выполняют с помощью подключения конденсаторов. Они соединяются треугольником или звездой.

Схема приведена на нижеприведенном рисунке.

Торможение с помощью подключения конденсаторов

На выбеге остаточная энергия магнитного поля переходит в заряд конденсаторов, а затем она питает обмотку статора. Возникающий тормозной эффект останавливает механизм. Конденсаторная батарея может быть подключена постоянно или подсоединяться в момент отключения от сети. Такая схема получила название “конденсаторное торможение асинхронного двигателя”.

Если необходимо быстро остановить двигатель, то после отключения от сети, замыкают контакты накоротко без гасящих резисторов. При соединении обмоток закорачиванием в них возникают большие токи. Для уменьшения токов к обмоткам подключают токоограничивающие резисторы.

На нижеприведенном рисунке представлена схема с токоограничивающими резисторами.

Схема торможения конденсаторами с токоограничивающими

Режимы торможения моторов постоянного тока

Динамическое торможение электродвигателя постоянного тока осуществляется после отключения его от сети с замыканием обмотки ротора на тормозной реостат. Выделенная электрическая энергия рассеивается на реостате.

Схемы реостатного торможения двигателя постоянного тока

На вышеприведенном рисунке представлены схемы реостатного торможения двигателя постоянного тока.

Рекуперативное торможение электрических машин

Рекуперативное торможение электродвигателя характеризуется переводом двигателя в генераторный режим. При этом вырабатываемая электроэнергия возвращается в сеть или используется для подзарядки аккумулятора.

Этот режим широко применяется в электровозах, электричках, трамваях и троллейбусах. В момент торможения, вырабатываемая электроэнергия возвращается в электрическую сеть.

Схема торможения рельсового электротранспорта

Режим рекуперативного торможения применяется для подзарядки аккумуляторов в гибридных автомобилях, электромобилях, электросамокатах, электровелосипедах.

Этот режим является наиболее экономичным и возможен при условии: если частота вращения ротора превышает частоту вращения холостого хода. Это условие выполняется, когда ЭДС электродвигателя превышает напряжение питающей сети. А ток якоря и магнитный поток меняют свое направление. Электрическая машина переходит в генераторный режим, возникает момент торможения.

схема торможения тягового двигателя а) с независимым возбуждением и стабилизирующим сопротивлением, б) с противовозбуждением возбудителя.

На рисунке представлена схема торможения тягового двигателя а) с независимым возбуждением и стабилизирующим сопротивлением, б) с противовозбуждением возбудителя.

Режим рекуперации в асинхронных электрических машинах

Режим рекуперации применяется не только в двигателях постоянного тока. Его можно применять и в асинхронных двигателях.

При этом такой режим возможен в следующих случаях:

  1. Если изменить частоту питающего напряжения при помощи частотного преобразователя. Что возможно при условии питания асинхронного электродвигателя от устройства с возможностью регулирования частоты питающей сети. Эффект торможения наступает при уменьшении частоты питающего напряжения. При этом переход в генераторный режим происходит, когда скорость вращения ротора становится больше номинальной (синхронной).
  2. Асинхронные машины, которые конструктивно имеют возможность переключения обмоток, для изменения скорости.
  3. В грузоподъёмных механизмах, где применяется силовой спуск. В них монтируется электромотор с фазным ротором. В этом случае скорость регулируется с помощью изменения величины резистора, подсоединяемого к обмоткам ротора. Магнитный поток начинает обгонять поле статора, а скольжение становится больше 1. Электромотор переходит в режим генератора, вырабатываемая электроэнергия возвращается в сеть, возникает тормозной эффект.

Комбинированный режим

Комбинированные тормозные режимы применяются в электрических машинах, если необходимо быстро остановить и зафиксировать механизм. Для этого используют механический блок торможения в комбинации с электрическим торможением. Комбинация может быть различной. Это может быть и электрическая схема с противовключением, динамическим и рекуперативным режимами.

Вот мы и рассмотрели основные способы и схемы торможения электродвигателей. Если возникнут вопросы, задавайте их в комментариях под статьей!

Источник